
Research Article
Lazy Network: A Word Embedding-Based Temporal Financial
Network to Avoid Economic Shocks in Asset Pricing Models

George Adosoglou ,1 Seonho Park ,1 Gianfranco Lombardo ,2 Stefano Cagnoni ,2

and Panos M. Pardalos 1,3

1Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
2Department of Engineering and Architecture, University of Parma, Parma, Italy
3LATNA, Higher School of Economics, Moscow, Russia

Correspondence should be addressed to Gianfranco Lombardo; gianfranco.lombardo@unipr.it

Received 6 December 2021; Accepted 11 March 2022; Published 22 April 2022

Academic Editor: Guilherme Ferraz de Arruda

Copyright © 2022 George Adosoglou et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Public companies in the US stock market must annually report their activities and financial performances to the SEC by filing the
so-called 10-K form. Recent studies have demonstrated that changes in the textual content of the corporate annual filing (10-K)
can convey strong signals of companies’ future returns. In this study, we combine natural language processing techniques and
network science to introduce a novel 10-K-based network, named Lazy Network, that leverages year-on-year changes in
companies’ 10-Ks detected using a neural network embedding model. (e Lazy Network aims to capture textual changes derived
from financial or economic changes on the equity market. Leveraging the Lazy Network, we present a novel investment strategy
that attempts to select the least disrupted and stable companies by capturing the peripheries of the Lazy Network. We show that
this strategy earns statistically significant risk-adjusted excess returns. Specifically, the proposed portfolios yield up to 95 basis
points in monthly five-factor alphas (over 12% annually), outperforming similar strategies in the literature.

1. Introduction

A 10-K form is an annual report that is required by the
Securities and Exchange Commission (SEC) for publicly
traded companies and becomes a reliable information source
for many investors. (e in-depth overview of a firm’s annual
performance mandated by the SEC in a 10-K renders it the
most comprehensive corporate disclosure that has a regular
cadence and continuous usage. However, due to an enor-
mous amount of 10-Ks filed annually as well as ever in-
creasing usage of redundant and boilerplate words, it has
become exceedingly difficult for investors to scrutinize [1].

Cohen et al. demonstrated in their paper about “Lazy
Prices” that year-over-year changes in 10-Ks tend to be
unattended for long periods of time and demonstrated that
the companies that change their 10-Ks significantly tend to
underperform whereas the companies that do not tend to
change their 10-Ks outperform the market [2].

Specifically, in the Lazy Prices paper, the authors used
the Bag-of-Words (BoW) model to track the year-on-year
changes in the 10-Ks. However, the BoWmodel suffers from
the curse of dimensionality. To overcome this issue, neural
network embedding techniques such as Doc2Vec [3] have
been used to represent the 10-K documents as vectors, such
that eventually the cosine similarity between the repre-
senting vectors captures the year-on-year change in 10-Ks
efficiently [4].

In this study, we extend this idea by measuring how
much a firm’s 10-K changes relative to its closely related
companies’ 10-Ks. (is is motivated by the fact that yearly
changes of the financial status of a company in the stock
market can be captured not only by its own changes over
years but also by its changes relative to other companies
having similar characteristics. (is is possible because of the
unique nature of the universe of the 10-Ks each year where
similar companies can be identified using the cosine
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similarity between the document vector representations
[5, 6] or just by clustering the embeddings [7]. Under the
studied scenario, a company’s 10-K changing relative to
another company’s 10-K or even a group of other 10-Ks can
be measured as the year-on-year change in the total cosine
similarity, i.e., the sum of the cosine similarities between the
10-K under consideration and all other 10-Ks.

In order to measure the yearly and relative financial
changes of the companies to their rivalry companies, we
propose the Lazy Network that is constructed in the fol-
lowing way: (1) We construct networks based on the 10-Ks
and document embedding technique for each year where the
edges represent the similarity between 10-Ks of the com-
panies. (2) (en, the yearly difference of two consecutive
networks can be calculated by the absolute differences be-
tween edge values in two consecutive years. (3) Finally, we
construct the resultant network, termed Lazy Network, over
two consecutive years; its edges correspond to the absolute
difference values, and nodes represent the companies in the
stock market.

After constructing the Lazy Network, it is used to
identify the peripheral area in the network where there is not
a lot of changes happening, compared to other companies.
(e companies in this area tend to have extraordinary
stability against other companies in the same industry. (us,
we capture those companies and construct long-only
portfolio strategies consisting of those that lead to statisti-
cally meaningful performance.

(e name of Lazy Network is also inspired by Lazy Prices
[2] in which the authors demonstrated that companies tend
to be lazy; i.e., they just append some words to their last
year’s 10-K to create a current year’s 10-K. (ey also tend to
change only what is necessary to fulfill their fiduciary duties.
(e Lazy Network has been named after having the same
property as Lazy Prices. On top of that, we also extend it to
have (1) neural network-based text embedding and (2)
network representation of the companies to construct the
more sophisticated portfolios.

Overall, the main contributions of this paper are as
follows:

(i) We show how to construct the Lazy Network that is
basically based on (1) form 10-K, (2) neural net-
work-based text embedding, and (3) network rep-
resentation of the connectivity between the
companies.

(ii) By exploiting the Lazy Network, we propose four
portfolio strategies that give high future risk-ad-
justed excess returns.

(iii) We show that these portfolio strategies are superior
to previous baselines by presenting their competi-
tive performance over the better.

Section 2 deals with the works related to our approach,
the Lazy Network. In Section 3, we revisit some method-
ological backgrounds including the natural language pro-
cessing model we used to extract the vectors from the 10-Ks
and the centrality measures we use to capture the relatively
stable companies to be included in the portfolios. We

present the details on the way of constructing the Lazy
Network and its corresponding portfolio strategies in Sec-
tion 4, followed by the performance results and discussions
about those in Section 5. Lastly, we give some concluding
remarks in Section 6.

2. Related Work

Numerous studies have used various types of data to doc-
ument financial linkages and build financial networks [8].
(e most common approach has been to use stock price
correlations to determine network edges. (is idea is
originated by [9] that established the standard methodology
used in many studies in the following two decades. Hoberg
and Phillips [5] demonstrated that the stock price similarity
changes can reflect positive and negative demand shocks
occurring within an industry. For example, they showed that
the positive demand shock in military industry because of
the September 11 attacks can be captured by the increase in
the similarity between the military companies because these
companies attempted to fill the product demand gap.
Moreover, a negative demand shock because of the post-
2000 software market collapse decreased the similarity in the
software industry as software companies attempted to pivot
into other product markets.

Other types of financial networks have been also con-
structed. Based on the supply chain data, dynamic supplier
networks were built, and the centrality measures for each
company were computed [10]. (e author found that stock
price movements of central suppliers can forecast the fol-
lowing overall market performance. Cooccurrence networks
have been created by [11], from parsed news articles, and
used as risk indicators. Similarly, Chen et al. [12] constructed
a media network based on investors’ attention predicting
abnormal returns. Souza and Aste [13] combined stock price
data with past social media sentiment information in a
network to predict the stock market structure.

Using director-based social networks, Houston et al. [14]
analyzed soft and hard information and showed how cen-
trality measures can aid in predicting partnerships and roles
in syndicated lending. Most similar to this work, Jeon et al.
[6] employed Doc2Vec on 10-Ks as well as Bloomberg news
data to build industry networks.

Existing literature has focused on portfolio selection by
utilizing financial network structures. Specifically, Pozzi
et al. [15] computed hybrid centrality measures based on five
common centrality measures and found peripheral securities
having better returns with lower risk compared to central
ones. Onnela et al. [16] also found that, during market
crashes, the Minimum Spanning Tree (MST) [9] greatly
contracts and that almost always the optimal Markowitz
portfolios lie on the peripheries of the MST.(ey also found
that there is a connection between peripheral stocks and
optimal Markowitz portfolios and that it is preferable to
include peripheral securities in a portfolio [17, 18]. (e
importance of the centrality of stocks has also been validated
by Leone et al. [19] who showed that connected but low-
degree centrality stocks outperform ones with high-degree
centrality. Lee et al. [20] showed how the incorporation of
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financial network indicators can enhance investment
strategies by forecasting the global stock markets.

Other approaches to portfolio selection that do not use
stock price correlation based networks have also been in-
vestigated. By constructing a network through trade rela-
tions, it was also found that the more central an industry is,
the greater its exposure to sectoral shocks which transmit
from one sector to another through trade [21]. By employing
a PageRank-type algorithm [22], a dynamic measure of firm
competitiveness has also been defined [23]. In particular, by
constructing a network from firms’ competitors mentioned
in their 10-K filings, they found that a firm’s competitiveness
is coming primarily from its ability to compete across dif-
ferent business environments.

Also the centrality metrics are quite important to select
firms for portfolio from the networks. Federico et al. [24]
created a metric to measure the importance of nodes in the
evolution of networks. Federico introduced the “change
centrality” metric which motivated several of the metrics
used in this study. (is metric is a centrality measure in the
sense that it quantifies how important a node is with respect
to the network’s changes.

3. Background

3.1. Neural LanguageModel. In natural language processing
(NLP), neural network-based methods have been employed
to extract salient information from various types of docu-
ments and texts for various tasks including translation and
prediction. Neural network-based approaches mainly aim to
establish a statistical model capable of predicting the joint
probability of the words in the documents. A first attempt to
do so was made by [25]. (at paper proposed the first neural
network-based language model, which is referred to as a
probabilistic feedforward neural network language model or
Distributed Representation and tries to predict a joint dis-
tribution of the words as well as represent each word as a
vector in a lower-dimension space.

Recently, another prevalent method, namely, Word2-
Vec, has been introduced in [26]. (is word embedding
algorithm comprises a shallow neural network that has a
linear activation function which maps words to distributed
low-dimensional feature vectors. (e Word2Vec model
learns the feature vector of a word as the indirect result of
predicting the context surrounding the other words (Con-
tinuous BoW) or the opposite trying to predict the missing
word given the context (Skip-gram model). To achieve this
result, the Skip-gram model of Word2Vec learns a proba-
bility distribution over the words and tries to minimize the
average negative log of the probability by adjusting the
neural network weights. (e output layer of the neural
network is a Hierarchical Softmax function. (e equation
that describes the Skip-gram objective function is the
following:

1
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(e objective function is optimized using Stochastic Gra-
dient Descent (SGD) in the form of backpropagation on a single
hidden-layer feedforward neural network. One-hot encoded
words are fed into the network, while the hidden layer has no
activation function. (e embedding of a word corresponds to
the value in the embedding matrix that contains the weights
between the one-hot encoded input and the hidden layer. In
order to extend this framework, the authors come up with
Doc2Vec [3] where a special paragraph token is considered in
each document to embed directly the entire content of the
document. (e paragraph token vectors are learned with other
word vectors during training. (ere are two prevalent variants
of Doc2Vec, distinguished by the way of training: Distributed
Bag-of-Words version of Paragraph Vector (PV-DBoW) and
Distributed Memory version of Paragraph Vector (PV-DM).
(ese, PV-DBoW and PV-DM modes, are extensions of the
CBoW and Skip-gram ofWord2Vec, respectively. In our work,
we used the PV-DM mode of Doc2Vec for our experiments
because of its better ability to capture semantic changes [4].
Similar techniques have been developed to perform node
embedding in networks for node classification and link pre-
diction tasks for static graph, e.g., Node2Vec [27]; for graph
clustering optimization [28]; for knowledge graphs [29]; for
multiplex networks [30]; and for dynamic networks [31].

3.2. Network Centrality Measures. In this subsection, we
provide all the formulations for computing the network
centrality measures used in this paper. Please note that all
these measures take into account the edges’ weights in their
computation.

(e network representation of the semantic space that
corresponds to our 10-Ks can be thought of as an undirected
network G � (V, E) where the node set V represents the
companies and the edge set E comprises weighted edges wij

where i, j ∈ V. Please note that if there is no edge between
node i and j, then wij � 0.

3.3. Strength Centrality. (e strength si of node i in the
network is computed by summing the weights of its adjacent
edges, namely,

si � 􏽘
j∈N(i)

wij,∀i ∈ V,
(3)

where N(i) is the set of neighbor nodes of node i.

3.4. Eigenvector Centrality. (e eigenvector centrality of a
node i corresponds to the ith element of the eigenvector v
associated with the maximum eigenvalue, λ, of the adjacency
matrix A ∈ Rn×n. (e elements of the adjacency matrix are
the weighted edges between nodes. (e eigenvector cen-
trality is defined as follows:

Av � λv. (4)

3.5. Closeness Centrality. (e closeness centrality is defined
as the inverse of farness. Farness is the sum of the distances
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to all other nodes. (e distance between nodes can be
represented by the shortest path between nodes, which is
usually calculated by Dijkstra’s algorithm [32].

(e closeness centrality of node i, ci, is thus defined as
the reciprocal of the average shortest-path distance to node i

over all the n − 1 reachable nodes:

ci �
n − 1

􏽐
n
j�1,j≠ i d(i, j)

, (5)

where d(i, j) is the shortest-path distance between node i

and j.

3.6. Betweenness Centrality. (e betweenness centrality of
node i is defined as the total number of shortest paths
between nodes that pass through node i:

bi � 􏽘
s,t∈V

σ(s, t|i)

σ(s, t)
, (6)

where σ(s, t) is the number of the shortest paths between
node s and t, and σ(s, t|i) is the number of the paths passing
through node i. If s � t, then σ(s, t) � 1, and if i ∈ s, t{ }, then
σ(s, t|i) � 0.

4. Methodology

(e proposed methodology is summarized below:

(i) Data collection and selection: For all years from
2000 to 2018, all available SEC 10-K filings and their
equivalents were collected along with their market
capitalization and monthly returns. To avoid biases
in our dataset as well as any extreme returns from
outliers, we filtered our collection based on the
market evaluation and annual return.

(ii) Preprocessing and model training: All the 10-Ks
were preprocessed and cleaned from any tables,
URLs, HTML tags, and stop words. Stemming was
also applied to derive the root of each word and
decrease the size of the dictionary. (e PV-DM
Doc2Vec model was afterwards trained on the
entire document collection to get the 10-K filings’
embeddings.

(iii) Construction of the Lazy Network: By means of the
cosine similarity between the embedding vectors,
we construct the 10-K Network for each year and
then, by considering the absolute value of the dif-
ferences between cosine similarity values for two
consecutive years’ 10-K Networks, we derive the
Lazy Network proposed in this work.

(iv) Portfolio selection and evaluation: We construct
four value-weighted and four equally weighted
portfolios by leveraging four different centrality
measures, namely, strength, eigenvector, closeness
and betweenness centrality, in order to measure the
impact of economic shocks on the companies in
terms of the shocks’ direct effects, total influence,
immediacy, and mediative effects, respectively.

4.1. Data Collection and Selection. From the Loughran-
McDonald dataset (https://sraf.nd.edu/data/stage-one-10-x-
parse-data/), we collected all the 10-Ks and 10-K-related SEC
filings (10-K, 10-KT, 10-KSB, 10-K405) from 2000 to 2018.
We, then, collected all the monthly stock price data for the
same firms from the Center for Research in Security Prices
(CRSP). Because the SEC identifies companies only through
their CIK codes, we used theWRDS linking tables. With this
data, we computed the market capitalization and the
monthly returns (including dividends).

For each year, we filtered the companies based on two
policies: (1) We excluded nano-caps, companies whose
market capitalization is below 50 million dollars. Nano-caps
correspond to a big part of the publicly traded stocks;
however, they are prone to yield extreme returns (see the
discussion in [33]), resulting in affecting the analysis in our
work negatively. (2) We also excluded firms whose annual
return value exceeded 10,000% during the years we consider
to avoid any outliers.

After this filtering, we totally gathered 830,664 firm-
month observations. (e resulting dataset gives equally and
value-weighted returns quite similar to those of the CRSP
stock universe, confirming that no bias of any kind has been
introduced. We discuss this further in the “Results and
Discussion.”

4.2. Text Preprocessing andModel Training. (en, we trained
the PV-DM Doc2Vec model for various vector dimensions
and hyperparameters on the total corpus consisting of all
companies’ 10-Ks. To combine the vectors, we used con-
catenation when we chose the number of epochs and the size
of the vector, and the rest of the hyperparameters were
chosen following the recommendations of [34]. We ended
up using the PV-DM Doc2Vec model that outputs a 256-
dimensional embedding vector.

4.3. Construction of the 10-K Network. We then constructed
consecutive yearly networks where the nodes represent
companies and the edges represent the similarity between
companies’ 10-Ks. Specifically, the weighted edge wij is
determined as max(CS(i, j), θ) where CS(·, ·) represents the
cosine similarity between the embedding vectors generated
by the Doc2Vec model of two companies’ 10-Ks and θ is a
predefined threshold called the slicing cutoff.

It is known that a proper degree distribution of the real-
world big network follows the power law [35]. By the term
“degree” here, we mean the number of edges connected to
the node, that decreases with a higher slicing cutoff. To
appropriately select the value of the slicing cutoff so that the
resultant network’s degree distribution follows this law, we
performed a threshold analysis with various slicing cutoff
values.

Figure 1 illustrates, in the log-log scale, the degree
distributions of the network for the first (2000), middle
(2009), and last (2018) years. (e total degree distribu-
tion of all the years is also illustrated. For the degree
distributions, we show the output when using 0.3 to 0.6 as
the slicing cutoffs. In order to choose the appropriate
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slicing cutoff across the years, we investigated the Kol-
mogorov–Smirnov (KS) statistic and its associated p
value while considering low-degree saturation [37]. Ta-
ble 1 shows the mean and standard deviation values over
the years. In this table, the KS statistic represents the
maximum distance between the empirical degree dis-
tribution and its theoretical power law function. (e
smaller the KS statistic, the more closely the degree
distribution follows the theoretical power law. In addi-
tion, as a goodness-of-fit test, the p value quantifies the

plausibility of the hypothesis. According to [36], if the p
value is larger than 0.1, the power law is a plausible
hypothesis for the data at a significance level of 10%.
(erefore, based on these experiments, we have chosen
0.4 as the slicing cutoff value for constructing the 10-K
Network across all the years.

It is also important to mention that we have tested using
network filtering techniques such as theMinimum Spanning
Tree (MST) and Planar Maximally Filtered Graph (PMFG)
[38] to construct the 10-K Networks because those filtering
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Figure 1: Node degree distributions for the first year (2000), middle year (2009), and last year (2018) 10-K Network as well as for all the
nodes in all years from 2000 to 2018, sliced at seven different thresholds (0.3, 0.35, 0.4, 0.45, 0.5, 0.55, and 0.6).
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techniques are frequently exploited in financial network
applications as mentioned in [15]. However, we could not
find any statistically meaningful performances in terms of
cumulative results. It is conjectured that using the filtering
techniques can hinder the centrality measures from finding
the periphery because it gets rid of some connectivity in the
network.

4.4. Construction of the Lazy Network. Since companies
update their 10-Ks every year, the 10-K Network is also
evolving accordingly. Because these updates reflect the
changes in the business situation of these companies, it is
important to track these changes relative to each other,
which can also help us study economic shocks in the market.
In an effort to measure howmuch the companies are affected
by various circumstances in the market, we construct the
Lazy Network, which has weights corresponding to the
absolute difference of each two consecutive years’ adjacency
matrices of the 10-K Networks. A visual representation of
how the Lazy Network is constructed is given in Figure 2.

Specifically, in our case, larger weights of the Lazy
Network represent 10-Ks becoming more dissimilar to each
other. For example, a higher weight value of the Lazy
Network means that the two companies linked by the
corresponding node change quite differently over the years
even though those two companies are similar in terms of the
cosine similarity. Also note that if two companies are quite
different from each other, the corresponding weight in the
10-K Networks is zero (meaning lower than the slicing
cutoff), resulting in zero weight in the Lazy Network as well.
(erefore, the center nodes of the Lazy Network represent
companies that are relatively changing their 10-Ks quite a lot
compared to their neighbor companies over two consecutive
years. Based on the same rationale as Lazy Prices [2], when it
comes to construct the portfolio, we expect that the com-
panies in the center of the Lazy Network tend to under-
perform; thus, we capture the periphery of the Lazy Network
and include those located in the periphery in the Lazy
Network-based portfolios.

4.5. Portfolio Selection and Evaluation. After we construct
the Lazy Network, we compute four centrality measures,
namely, strength, eigenvector, closeness, and betweenness
centrality, to capture the periphery of the Lazy Network. An
illustrative example for the Lazy Network obtained with the
different centrality measures is presented in Figure 3.

(e reason for testing all four centrality measures sep-
arately and not using a hybrid measure is that it is actually
common for a node to appear central in one centrality
measure and peripheral in another as they reflect different

criteria and capture different aspects of the topology of
the network. (is is also evident in Table 2 that shows the
correlations across different centrality measures. (e
correlations in this table are in line with expectations,
given these measures’ definitions (see “Network Cen-
trality Measures”). We observe that the betweenness
centrality is the least correlated with the other three
measures, which is expected since it measures a bro-
kerage-like attribute of the nodes. On the other hand, the
eigenvector centrality and closeness centrality are highly
correlated, also as expected, since they both consider the
full network. Finally, all measures are correlated with
strength centrality to a certain degree, which is the
simplest measure of centrality, merely capturing local
connections.

After computing all types of centrality measures for
all the years, we sort the companies based on them, and
then for each year, for inclusion in the portfolio, we select
the 50 peripheral companies with the lowest centrality
measures. Specifically, we form eight long-only portfolios
based on these four centrality measures and two basic
portfolio weighting methods, equally and value-
weighted. In the value-weighted portfolio, the 50 par-
ticipants are weighted according to the beginning market
capitalization, whereas in the equally weighted portfolio,
the 50 participants are equally weighted. We then
compute the corresponding calendar time portfolios and
show their performance in terms of risk-adjusted excess
returns as well as a comparison to other similar strategies
in the literature in the following sections.

(e holding period of all portfolios is 12 months (from
April 1st to March 30th of the following year), with the
rebalancing occurring every year on April 1st. (e bench-
marks used, the CRSP US Total Market Index and the S&P
500 Index, are rebalanced quarterly. We published in an
external source the list of companies (CIK codes) selected for
each centrality measure (http://sowide.unipr.it/sites/default/
files/files/2022-lazy-network-portfolios.zip).

5. Results and Discussion

In this section, we present the performance of each of the
four network centrality measures in capturing future ab-
normal returns. We also compare our performance to other
two strategies that also use 10-Ks.

In these strategies, the 10-Ks are also represented as
vectors in the first one ([2]) which uses the BoW model
and the second ([4]) which uses the Doc2Vec model.
After vectorizing the 10-Ks, these strategies go long on
companies that features, the highest cosine similarity of
their 10-K’s vector representation to the previous year’s

Table 1: Average ± standard deviation of Kolmogorov–Smirnov (KS) statistic and its corresponding p value for different threshold values
from 2000 to 2018. (e higher the p value, the more plausible it is that the degree distribution follows the power law. According to [36], a p
value larger than 0.1 provides strong evidence of following the power law at a significance level of 10%.

(reshold θ 0.30 0.35 0.40 0.45 0.50 0.55 0.60
KS statistic 0.17 ± 0.03 0.08 ± 0.04 0.05 ± 0.01 0.09 ± 0.04 0.10 ± 0.05 0.10 ± 0.03 0.14 ± 0.03
p value 0.00 ± 0.00 0.27 ± 0.32 0.62 ± 0.31 0.18 ± 0.21 0.19 ± 0.30 0.03 ± 0.06 0.01 ± 0.02
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Figure 3: Lazy Network for the year 2014. In the network, the nodes are colored based on the different centrality measures while their size
represents the degree. (a) Strength. (b) Eigenvector. (c) Closeness. (d) Betweenness.
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10-K. We believe it is appropriate to compare the three
strategies because all three frameworks process the same
input data and aim to capture market stability.

Finally, in Figure 4 we show the cumulative returns of
all the portfolios constructed with each of the centrality
measures from 2000 to 2019. We show two figures, one
with the equally weighted and the other with the value-
weighted cumulative returns. We compare these returns
with buying and holding the S&P 500 Index, our available
universe of stocks, and the CRSP stock universe. Note
that dividends are included in all of the reported returns.

5.1. Asset Pricing Models. Because the large excess returns
found in this study could have been a product of big sys-
tematic factor exposures, we also examine the returns with
respect to the Fama–French 3-factor model [39] and 5-factor
models [40, 41] that consider the Small Minus Big (SMB)
size, the High Minus Low (HML) value factors as well as the

Up Minus Down (UMD) momentum factor and
Pástor–Stambaugh’s traded liquidity factor (PS_VWF) in
order to explain returns.

We empirically estimate the Capital Asset Pricing Model
(CAPM) [33] and Fama–French 3-factor and 5-factor alphas
and betas by linearly regressing the portfolios’ monthly
abnormal returns on these factors’ monthly abnormal
returns over the period from 2000 to 2018, as follows:

Capital Asset Pricing Model (CAPM):

Rt − r
f
t � α + βMKT R

M
t − r

f
t􏼐 􏼑 + εt. (7)

Fama–French 3-factor model:

Rt − r
f
t � α + βMKT R

M
t − r

f
t􏼐 􏼑 + βHMLHMLt + βSMBSMBt + εt.

(8)

5-factor model:

Rt − r
f
t � α + βMKT R

M
t − r

f
t􏼐 􏼑 + βHMLHMLt + βSMBSMBt + βUMDUMDt + βPS VWFPS VWFt + εt, (9)

where Rt − r
f
t is the excess return of a portfolio, RM

t − r
f
t is

the market risk premium, and r
f
t is a risk-free rate of return.

Here, we denote one-month Treasury rate as r
f
t . HMLt is

constructed from the returns of the firms having the high
book-to-market value minus the returns of the firms having
low book-to-market value. SMBt denotes the returns of
small capitalization firms minus the returns of firms of large
capitalization. UMDt is the momentum factor, i.e., the
difference between the returns of winners’ and losers’
portfolios considering the past 11 months. PS VWFt is the
Pástor-Stambaugh liquidity traded factor, which is the
difference of the top liquidity beta decile portfolio returns
minus the returns of the bottom decile portfolios—we do not
subtract the risk-free rate from the SMB, HML, UMD, or
PS_VFW portfolios, as these factors’ returns are constructed
from the differences between two portfolios, and thus the
risk-free rate is already canceled out. (e parameter α
corresponds to the excess risk-adjusted return representing
the abnormal return over what is expected merely on the
basis of the riskiness of the portfolio. All the time series for
the factor returns and the risk-free rates are collected from
Wharton Research Data Services (WRDS; https://wrds-
web.wharton.upenn.edu/wrds/) and the Fama–French
datasets of portfolios and factors (https://mba.-
tuck.dartmouth.edu/pages/faculty/ken.french/data_-
library.html; the momentum factor (UMD) is referred to as
MOM in the data library).

5.2. PerformanceEvaluation. (e performance of each of the
eight long-only portfolios that were constructed based on the
four centrality measures (four equally and four value-
weighted) are presented in Table 3. (is table shows the
monthly abnormal portfolio returns as well as their statis-
tical significance. To compute these, we have regressed for
each case the excess monthly returns on the market, the
SMB, HML, UMD, and PS_VWF factors from 2000 to 2018.
We select 50 companies for each year.

Table 3 shows very positive and statistically significant
excess returns, 3-factor, and 5-factor alphas for almost all the
constructed portfolios. We also observe that the equally
weighted portfolio returns are similar in magnitude, but
larger than the value-weighted results. (is spread is the
largest in the eigenvector case, while the only exception to
this observation is the portfolio constructed using the
closeness centrality where the value-weighted returns are
larger than the equally weighted ones. Furthermore, the best
performance among all the portfolios is that of the eigen-
vector centrality when the portfolios are weighted equally
and that of the closeness centrality when they are value-
weighted. Specifically, the portfolio using eigenvector cen-
trality earns a large and significant 5-factor alpha of 96 basis
points per month (t� 4.69) in the equally weighted case,
while the portfolio using closeness centrality earns a 5-factor
alpha of 92 bps per month (t� 4.22) in the equally weighted
case.

Table 2: Mean ± standard deviation for the correlations of the network centrality measures for the years from 2000 to 2018.

Variable Strength Eigenvector Closeness Betweenness
Strength 1.000
Eigenvector 0.81 ± 0.07 1.000
Closeness 0.81 ± 0.04 0.88 ± 0.06 1.00
Betweenness 0.59 ± 0.09 0.48 ± 0.09 0.65 ± 0.04 1.00
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We notice that the results are not affected when we
control for the three Fama–French factors (market, size,
and value) and the additional momentum and liquidity
factors. (is suggests that the returns observed are not
explained by systematic exposures to common risk
factors.

Only when using the betweenness centrality, the value-
weighted portfolio failed to produce statistically significant
alphas. However, this is acceptable, since betweenness
centrality captures different attributes of the nodes that have
to do mainly with the control of the flow between most other
nodes. Furthermore, from Table 2 where the correlations
between the centrality measures are illustrated, we see that
the betweenness centrality shows the least correlation with
the rest of the network centrality measures. On the other
hand, the node strength centrality, even though the simplest
centrality measure examined here, is still very illuminating,
allowing the portfolio that uses it to yield alphas at the 0.90

level (t� 4.38). It is worth mentioning that in contrast to
previous literature that examines, often using correlation
networks, the association of centrality measures to the ex-
posure to shocks or systemic risk contribution in general
([18, 21]), we do not detect the resiliency or susceptibility of
companies; instead, we detect signals about the level of
impact from previous economic shocks that goes unnoticed
by investors for long periods of time.

5.3. FactorLoadings. For the portfolio that uses the closeness
centrality, we report in Table 4 all the factor exposures
obtained from the time-series regressions utilizing the
CAPM, 3-factor, and 5-factor models. (ese loadings
measure the exposures to the market, size, value, momen-
tum, and liquidity risks. We observe statistically significant
low betas in all portfolios ranging from 0.81 to 0.95. We also
observe a big value tilt across the portfolios (the statistically

Table 3: Monthly portfolio returns: monthly portfolio abnormal returns, 3-factor alphas, and 5-factor alphas (market, size, value, mo-
mentum, and liquidity) of four long-only portfolios that select the 50most peripheral companies in terms of strength, eigenvector, closeness,
and betweenness centrality in the Lazy Network.

Portfolio
Equally weighted Value-weighted

CAPM alpha 3-factor alpha 5-factor alpha CAPM alpha 3-factor alpha 5-factor alpha
Strength t-stat 1.05∗∗∗ (4.21) 0.89∗∗∗ (3.94) 0.94∗∗∗ (4.38) 0.84∗∗∗ (3.51) 0.76∗∗∗ (3.23) 0.87∗∗∗ (3.75)
Eigenvector t-stat 1.07∗∗∗ (4.57) 0.92∗∗∗ (4.35) 0.96∗∗∗ (4.69) 0.64∗∗∗ (2.62) 0.56∗∗ (2.30) 0.62∗∗ (2.52)
Closeness t-stat 0.84∗∗∗ (4.32) 0.70∗∗∗ (4.03) 0.72∗∗∗ (3.80) 0.94∗∗∗ (3.97) 0.90∗∗∗ (4.14) 0.92∗∗∗ (4.22)
Betweenness t-stat 0.71∗∗∗ (4.08) 0.52∗∗∗ (4.13) 0.51∗∗∗ (4.07) 0.19 (1.08) 0.14 (0.83) 0.13 (0.78)
(e t-statistics are in parentheses and displayed under the estimates. ∗, ∗∗, ∗∗∗(e significance at the 1%, 5%, and 10% levels, respectively.
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Figure 4: Equally weighted and value-weighted (left and right, respectively) cumulative returns from 2000 to 2019 for all the proposed
portfolios using strength, eigenvector, closeness, or betweenness.(e returns are compared to buying and holding the S&P 500 Index, as well
as the whole universe of the available stocks portfolio (universe of stocks), and the CRSP market index. (a) Equally weighted cumulative
returns. (b) Value-weighted cumulative returns.
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significant HML loadings range from 0.15 to 0.49) as well as
a statistically significant negative relation to the momentum
factor (the UMD loadings range from -0.10 to -0.23).

(ese findings show that the portfolios yield lower risk,
which is expected because these strategies have the defensive
nature that avoids industry transformations. Defensive
strategies usually tilt toward value. Our strategies avoid high
beta, high growth, and high momentum stocks in rapidly
changing industries. It is noted that text-derived informa-
tion relates to the Fama and French value premium as well as
the one-year momentum factor. (e remaining factor
loadings, SMB and PS_VWF, are generally not statistically
significant. Note that the positive coefficient to the SMB
factor in the equally weighted portfolios is expected given the
weighting on smaller capitalization firms.

5.4. Performance Comparison. In this section, our results
are compared to the results from other literature that uses
companies’ 10-Ks to predict future abnormal returns,
namely, [2, 4]. In these studies, the changes are tracked
only at the individual level, which means that networks
are not being constructed. Specifically, these studies focus
on companies that do not change their 10-K in significant
way from the prior year. Before we proceed to the
comparison, however, we document some differences
between the data used for the portfolio selection in “Lazy
Prices” and ours. (1) We examine the 2000–2018 period,
while the authors of that paper study the period from 1995
to 2014. (2) (e holding period is 12 months for our
portfolios compared to 9 months for theirs. (3) (ey also
consider companies that have “off-cycle” fiscal year-ends.
(4)(ey select the quintile of firms that change their 10-Ks
the least year over year in contrast to a constant number of

companies selected in our strategy. We think that the
comparison is fair because each portfolio is invested all
year round, while the discrepancy in the periods should
not be influencing the alphas generated by each strategy.
No major differences in the data used exist when com-
paring to the strategy proposed in [4].

In Table 5, we show the performance of the portfolios
found in literature that track only the year-on-year changes
of the firms’ 10-Ks. (ese are two long-only portfolios that
go long on companies which do not change their 10-Ks in a
significant way from year to year, one using the BoW model
to represent the documents and the second using the PV-
DM mode of Doc2Vec model. We denote the portfolios as
“Lazy Prices” [2] portfolio and “Semantic Similarity Port-
folio,” or “SSP” as referred to by [4], respectively. In a direct
comparison to the proposed portfolios constructed using the
eigenvector and closeness centrality, we see that our port-
folios outperform both strategies suggested in [2, 4] in terms
of both equally and value-weighted portfolios’ 3-factor and
5-factor alphas. Specifically, an equally weighted portfolio
selecting companies that do not alter their 10-Ks in a sig-
nificant way using the BoW model earns 23 basis points in
monthly 5-factor alpha (a value-weighted portfolio earns
43 bps) and the one using the PV-DM mode of Doc2Vec
earns 60 bps (a value-weighted portfolio earns 48 bps). All
these 5-factor alphas are smaller both in value and statistical
significance compared to the proposed portfolios. (is
outperformance is at the 40 bps level in monthly risk-ad-
justed excess returns.

5.5. Cumulative Returns. Figure 4 illustrates the cumulative
returns of the equally and value-weighted portfolios based
on the Lazy Network and the different centrality measures. It

Table 4: Factor exposures of the portfolio that uses closeness centrality: the factor loadings of the long-only portfolio that goes long on the 50
companies with the lowest closeness centrality in the Lazy Network.

Factors
Equally weighted Value-weighted

3-factor 5-factor 3-factor 5-factor
Intercept (α) t-stat 0.70∗∗∗ (3.80) 0.72∗∗∗ (3.97) 0.90∗∗∗ (4.14) 0.92∗∗∗ (4.22)
MKTRF t-stat 0.97∗∗∗ (21.71) 0.90∗∗∗ (18.92) 0.87∗∗∗ (16.55) 0.81∗∗∗ (14.30)
SMB t-stat 0.52∗∗∗ (7.28) 0.52∗∗∗ (7.40) -0.03 (-0.35) -0.03 (-0.30)
HML t-stat 0.26∗∗∗ (4.38) 0.24∗∗∗ (3.99) 0.17∗∗ (2.32) 0.15∗∗ (2.01)
UMD t-stat — -0.13∗∗∗ (-3.41) — −0.11∗
PS_VWF t-stat — 0.07 (1.32) — 0.06 (0.97)
(e t-statistics are in parentheses and displayed under the estimates. ∗, ∗∗, ∗∗∗(e significance at the 1%, 5%, and 10% levels, respectively.

Table 5: Portfolio returns comparison: monthly excess returns (returns minus risk-free rate), 3-factor alphas (market, size, value), and 5-
factor alphas (market, size, value, momentum, and liquidity) for the long-only portfolios, “Lazy Prices” [2] and “Semantic Similarity
Portfolio,” or “SSP” as referred to by [4]. To make comparisons easier, we also repeat the results from Table 3 for the proposed portfolios that
use the eigenvector and closeness centrality. All these portfolios use similar rebalancing as well as similar datasets as input.

Portfolio
Equally weighted Value-weighted

CAPM alpha 3-factor alpha 5-factor alpha CAPM alpha 3-factor alpha 5-factor alpha
Eigenvector t-stat 1.07∗∗∗ (4.57) 0.92∗∗∗ (4.35) 0.96∗∗∗ (4.69) 0.64∗∗∗ (2.62) 0.56∗∗ (2.30) 0.62∗∗ (2.52)
Closeness t-stat 0.84∗∗∗ (4.32) 0.70∗∗∗ (4.03) 0.72∗∗∗ (3.80) 0.94∗∗∗ (3.97) 0.90∗∗∗ (4.14) 0.92∗∗∗ (4.22)
Lazy Prices [2] t-stat 0.96∗∗∗ (3.05) 0.24∗∗∗ (2.76) 0.23∗∗∗ (2.70) 1.00∗∗∗ (3.00) 0.44∗∗∗ (2.78) 0.43∗∗∗ (2.81)
SSP [4] t-stat 0.87∗∗ (2.56) 0.53∗∗ (2.50) 0.60∗∗ (2.69) 0.87∗∗ (2.75) 0.64∗∗ (2.27) 0.48 (1.59)
(e t-statistics are in parentheses and displayed under the estimates. ∗, ∗∗, ∗∗∗(e significance at the 1%, 5%, and 10% levels, respectively.
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also shows the benchmarks including the returns for the
whole universe of stocks we consider, the CRSP market
index, the S&P500 returns, and the risk-free rate. Firstly, we
notice that there is no significant deviation of the available
universe of stocks’ returns from the CRSP market index
returns, implying that the data used in this research is
representative and it is free of survivor-biases or any other
biases of any sort.

(e widening gap between the performance of the
suggested portfolios and the universe of stocks reflects the
increasing complexity of the markets. Even though tech-
nological advancements have reduced the cost of infor-
mation, relations between businesses are much harder to
monitor and keep track of. (us, investors are inattentive to
this valuable information, which is then only reflected in
prices after a substantial delay. As has been also evident in
recent years, tech companies have the potential to negatively
impact some of the non-tech companies. Companies that
operate in areas with limited nascent competition might be
outperforming areas with rising competition when we look
at the market from a text-based network point of view.

Overall, the results in this paper highlight a distinct
source of mispricing stemming from the slow reaction of
investors to information about the effects of economic
shocks and their propagation inside a network constructed
with the similarities between firms’ 10-K fillings. It is pos-
sible to determine the exact stocks that are most reflective of
these market behaviors using the centrality measures in this
network. It is important to stress that the non-disrupted
companies are determined not only by their own 10-Ks but
also by firms that are peers, suppliers, or customers by
considering their adjacent nodes. (is means that this is not
just an independent evaluation based on attributes that are
specific to a firm, such as size of the company or profitability,
or even the competitive tone in its 10-K; instead, it captures
the overall view among all companies concerning market
events. (is factor thus brings up the question as to whether
investors are aware of the level at which the propagation of
economic shocks is impinging on firms’ performance.

6. Conclusion

In this study, we have developed a useful new metric of
corporate risk from economic shocks that can be captured by
analyzing the textual part of companies’ 10-Ks. By leveraging
neural network-based embedding techniques to construct
the Lazy Network, we find that companies that are the least
associated with economic shocks tend to outperform the
market in a significant way. We argue that this happens
because they face the fewest problems, as well as because
these signals of stability are being overlooked by investors
for long periods of time.

Specifically, the proposed novel portfolios that go long
on companies which correspond to the least central nodes in
the Lazy Network, measured by the strength, eigenvector,
closeness, and betweenness centrality, yield relevant risk-
adjusted excess returns. We find that the highest and most
statistically significant 3-factor and 5-factor alphas are
produced when we sort the companies based on the

eigenvector and closeness centrality when constructing
equally weighted portfolios and value-weighted portfolios,
respectively. However, the portfolio that just sorts the stocks
based on the strength centrality, which is the simplest
measure in this study, also yields very high and statistically
significant risk-adjusted excess returns of up to 90 basis
points per month. Furthermore, we also found that even the
worst portfolio based on betweenness centrality outperforms
the baselines using 10-K.

(e proposed approach can be used to detect emerging
risks in specific sectors and industries and help identify the
non-disrupted areas in the market where firms operate. (e
Lazy Network can be used for visual decision-making in
financial management. Analysts, portfolio managers, retail
investors, and policy makers alike could leverage the net-
work to identify at any given moment which areas in the
market are undergoing the greatest changes. Furthermore,
our measures can be further applied to a variety of financial
documents in which the timing is routine and the content is
narrative and not restricted, for example, the proxy state-
ments, the letters to shareholders, the earnings press releases,
and the prepared part of earnings conference calls.

(is study paves the way to research that integrates
various approaches using deep learning and graph theory to
analyze non-structured data, revealing valuable information
to investors who are inattentive to them.
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