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In presence of predator population, the prey population may significantly change their behavior. Fear for predator population
enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. In this study,
we propose a predator-prey fishery model introducing the cost of fear into prey reproduction with Holling type-II functional
response and prey-dependent harvesting and investigate the global dynamics of the proposed model. For the system without
harvest, it is shown that the level of fear may alter the stability of the positive equilibrium, and an expression of fear critical level is
characterized. For the harvest system, the existence of the semitrivial order-1 periodic solution and positive order-q (q≥ 1)
periodic solution is discussed by the construction of a Poincaré map on the phase set, and the threshold conditions are given,
which can not only transform state-dependent harvesting into a cycle one but also provide a possibility to determine the harvest
frequency. In addition, to ensure a certain robustness of the adopted harvest policy, the threshold condition for the stability of the
order-q periodic solution is given. Meanwhile, to achieve a good economic profit, an optimization problem is formulated and the
optimum harvest level is obtained. Mathematical findings have been validated in numerical simulation by MATLAB. Different
effects of different harvest levels and different fear levels have been demonstrated by depicting figures in numerical simulation
using MATLAB.

1. Introduction

Prey-predator interaction is a crucial topic in theoretical
ecology and evolutionary biology. .e history of the study
about the prey-predator interactions dates back long. .e
pioneering work to describe the prey-predator interac-
tions in mathematics belongs to the Lotka-Volterra model
[1, 2]. Subsequently the model was improved by adding
logistic growth term for the prey and variety of pop-
ulation-dependent response functions [3–15]. A proto-
type model that captures the prey-predator interaction
takes the form

dx

dt
� bx − dx − cx

2
− yp(x, y),

dy

dt
� eϕ(p(x, y))y − my,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where x(t) and y(t) represent the densities of prey and
predator population, respectively, b, d, (d< b) and c rep-
resent the birth rate, natural death rate, and density-de-
pendent decay rate due to the intraspecies competition,
respectively, p(x, y) represents the functional response, e is
the efficiency of conversion, m is natural mortality of
predator, and ϕ is a monotonically increasing function.

Due to prey-predator interactions, predators always have
an impact, direct, indirect, or both, on prey population. In
model (1), the term yp(x, y) models the direct impact of
predator on prey by catching and killing behavior. Mean-
while fear of predation risk can be regarded as the indirect
impact of predator on prey, and some theoretical ecologists
and biologists have realised that a prey-predator model
should involve not only direct killing but also the fear
[16, 17]..e fieldwork of Zanette et al. [18] on song sparrows
observed the impact of fear and found a reduction in re-
production by 40% in the number of offspring due to the fear

Hindawi
Complexity
Volume 2022, Article ID 9496599, 19 pages
https://doi.org/10.1155/2022/9496599

mailto:tianyuan1981@163.com
https://orcid.org/0000-0002-9263-2333
https://orcid.org/0000-0002-1643-7755
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9496599


of predation. Based on this phenomenon, Wang et al. [19]
incorporated a predator-dependent fear factor into the birth
rate of prey inmodel (1) (i.e., replace b by b(y) � b/(1 + ky))
with linear and Holling type-II functional response to ex-
plore the effect of fear on population dynamics. .e results
show that high level of fear could stabilize the system. Das
and Samanta [20] investigated the impact of fear in expo-
nential form on a stochastic prey-predator system when the
predator is provided additional food. Sahoo and Samanta
[21] investigated a two prey-one predator model by in-
cluding the cost of fear into prey reproduction and switching
mechanism in predation. Das et al. [22] developed and
explored a predator-prey model incorporating the cost of
perceived fear into the birth and death rates of prey species
with Holling type-II functional response. Sarkar and Kha-
janchi [23] and Kumar and Kumari [24] incorporated a form
of fear factor into the birth rate of prey by assuming a
nonzero minimum cost of fear. .e impact of fear has also
been investigated on prey-predator systems with prey refuge
[25–27], Allee effect [26], hunting cooperation [28], and
additional food resource for predator [20, 29].

.e study of resource management including fisheries,
forestry, and wildlife management has great importance. It is
necessary to harvest the population but harvesting should be
regulated in such a way that ecological sustainability as well
as conservation of the species can be implemented in a long
run. Besides, it is always hoped that the sustained ability can
be achieved at a high level of productivity and good eco-
nomic profit. In the past decade, scholars considered dif-
ferent kinds of harvest on the dynamics of the predator-prey
system such as continuous harvesting [30–33] and inter-
mittent harvesting [34–37]. Compared to fixed time harvest
strategy, the state-dependent harvesting strategy takes the
existing resources of species into full consideration and can
maintain the sustainability of species in certain level. State-
dependent harvested system can be described by the im-
pulsive semidynamical system [38–45]. Recently, Lai et al.
[46] proposed and studied a Lotka-Volterra predator-prey
system incorporating both continuous harvesting and fear
effect; that is,

dx

dt
�

bx

1 + ky
− dx − cx

2
− pxy −

qEx

a1E + a2x
,

dy

dt
� epxy − my,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where k is the level of fear, E is the fishing effort used to
harvest, q is the catchability coefficient, and a1 and a2 are
constants. .e harvest in (2) is continuous and in Michaelis-
Menten type. However, in reality, the harvest of species
should consider the aspect of ecological sustainability as well
as conservation. .us, in most cases, species are caught
intermittently, not continuously.

To the best of our knowledge, to this day, still no
scholars investigated the dynamic behavior of the predator-
prey system incorporating both fear effect and intermittent
harvesting, which motivated us to study a predator-prey
model incorporating fear effect based on state-dependent

harvesting strategy. .e aim of this study is to check the
influence of fear level on the stability of the positive steady
state of the system without harvest. Meanwhile, for the
harvest system, it mainly discusses the existence of the
order-q (q> 0) periodic solution, since it provides a pos-
sibility to transform the state-dependent harvesting into a
cycle one. Meanwhile, in order to make a maximum
economic profit in the harvest process, the optimal control
problem is discussed. .e organization of this study is as
follows. In the next section, we introduce the mathematical
model for predator-prey system with fear effect based on
state-dependent harvesting strategy. In the same section,
we present some preliminaries used in the discussion of the
system dynamics. Section 3 is dedicated to the existence
and stability of semitrivial order-1 and positive order-1
periodic solution. We also study the existence of order-2
and order-3 periodic solution. In Section 4, we demonstrate
different effects of different harvest levels and different fear
levels by depicting figures in numerical simulation using
MATLAB. .e paper concludes in Section 5, in which we
briefly summarize the biological indications of our ana-
lytical findings.

2. Model Formulation and Preliminaries

2.1. Model Formulation. In presence of predator pop-
ulation, the prey population may significantly change their
behavior. Fear for predator population enhances the sur-
vival probability of prey population, and it can greatly
reduce the reproduction of prey population [23]. In this
study, we consider a predator-prey model introducing the
cost of fear into prey reproduction with Holling type-II
functional response and a saturation function ϕ in equation
(1); that is,

dx

dt
�

bx

1 + ky
− dx − cx

2
−

pxy

1 + h1x
,

dy

dt
�

epxy

1 + h1 + h2p( x
− my.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

Where the variables, model parameters, and their units/
dimensions are given in Table 1. To achieve the commercial
purpose of the fishery, it is necessary to harvest the pop-
ulation in such a way that ecological sustainability as well as
conservation of the species can be implemented in a long
run. .e harvest can be continuous or intermittent. In this
work, a state-dependent harvest strategy is considered. Let l

be the harvest level of prey population; that is, when the
density of prey population reaches level l, the harvest is
implemented, resulting in a portion of prey and predator
being caught. Let E denote the harvest effort, which is
dependent on the harvest level l, and let q1 and q2 be the
catchability coefficients of prey and predator populations.
In addition, to avoid the extinction of predator, it is
necessary to release a quantity of predator pups, denoted by
τ, which is also dependent on level l. Based on this con-
sideration, the model with state-dependent harvesting
takes the following form:
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dx

dt
�

bx

1 + ky
− dx − cx

2
−

pxy

1 + h1x

dy

dt
�

epxy

1 + h1 + ph2( x
− my

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, x≠ l,

Δx � − q1Ex

Δy � − q2Ey + τ

⎫⎪⎪⎬

⎪⎪⎭
, x � l.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Denote K≜ (b − d)/c. .en K is the carrying capacity of
prey population in absence of predator. System (4) is
considered in the domain S � (x, y)|0≤x≤K, y≥ 0  for
ecological practices. .e purpose of this paper is to analyze
the dynamics of system (4). Besides, it is always hoped that
the harvest can be achieved at a good economic profit, and
this requires determining an optimal harvest level l. Next,
some preliminaries are listed for the analysis of the harvest
model (4).

2.2. Preliminaries. Let us consider a general planar system:

dx

dt
� P(x, y),

dy

dt
� Q(x, y), if χ(x, y)≠ 0,

Δx � α(x, y), Δy � β(x, y), if χ(x, y) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where (x, y) ∈ Ω ⊂ R2, and χ(x, y) � 0 describes the states
at which the harvest is implemented; α and β describe the
effects of the harvest strategy. P(x, y) and Q(x, y) are ar-
bitrarily derivative with respect to (x, y) ∈ Ω; χ, α, and β are
linearly dependent on x and y; that is, χx, χy, αx, αy, βx, and
βy are constant.

.e dynamic system constituted by the solution map-
ping defined by system (5) is called an impulsive semi-
continuous dynamic system, denoted as (Ω, π; I, MIMP),
where π � (π1, π2): Ω × R⟶Ω, MIMP ≜ (x, y)|

χ(x, y) � 0}, and

I: MIMP⟶ NPHA � I MIMP( 

≜ x′, y′( |x′ � x + α(x, y), y′ � y + β(x, y), (x, y) ∈MIMP .
(6)

Let z(t) � (x(t), y(t)) be the solution of system (5) with
initial value z(0) � z0. Denote c(z, z0) � z(t)|t≥{

t0 with z(t0) � z0}, also denoted as c(z) in short. Denote
zk � z(t+

k ) ∈ c(z), where tk ∈  ≜ tk|k � 1, 2, . . .  with
z(tk) ∈MIMP.

Definition 1 (priodic solution [47–49]). (e solution
z � z(t) of system (5) is said to be periodic if there exists
positive integer m≥ 1 such that zm � z0. Denote k≜ min
m ∈ N, zm � z0 ; then orbit c(z) is said to be an order- k

periodic orbit of system (5).

Definition 2 (orbitally stable [47–49]). An orbitc(z) is said
to be orbitally stable if, for any ε> 0, there is a neigh-
borhood V of z so that, for all z in V, there is a repar-
ameterization of time (a smooth, monotonic function) t(t)

such that |z(t) − z(t(t))|< ε for all t≥ t0.

Definition 3 (asymptotic orbital stability [47–49]). c(z) is
said to be asymptotically orbitally stable if it is orbitally stable
and additionally V may be chosen so that, for all z ∈ V, there
exists a constant τ(z) such that |z(t) − z(t − τ(z))|⟶
0 as t⟶∞.

Table 1: .e description of the model parameters and variables and their units/dimensions.

Symbol Description Units/dimensions
x Density of prey population Mass
y Density of predator population Mass
b Birth rate of prey population not affected by predators 1/time
d Natural death rate of prey population 1/time
c Decay rate due to intraspecies competition 1/mass.1/time
p Rate of predation 1/mass.1/time
h1 Handling time 1/mass
e Conversion rate of prey biomass to predator biomass Dimensionless
h2 Conversion time 1/mass
m Death rate of predator 1/time
k Level of fear 1/mass
l Harvesting level of prey population Mass
E Harvesting effort Dimensionless
q1 Catchability coefficient of prey Dimensionless
q2 Catchability coefficient of predator Dimensionless
τ Quantity of predator pups released Mass
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Definition 4 (Poincaré map). Let Nω ≜ S ∈ NPHA|∃TS >

0 such that π(S, TS) ∈MIMP}. Define the Poincaré mapϕN:
Nω⟶ NPHAas follows: ϕN(S) � S+ ≜ I(π(S, TS)) �

π(S, TS)+ (α(π(S, TS)), β(π(S, TS))).

Remark 1. If there exists a point L ∈ Nω and q> 0 such that
ϕq

N(L) � L and ϕj
N(L)≠L (j< q), that is, L is a fixed point of

ϕq

N, then system (4) admits an order-qperiodic solution.

Lemma 1 (analogue of Poincaré criterion [47–49]). (e
order-qT-periodic solutionz(t) � (ξ(t), η(t))of system (5) is

orbitally asymptotically stable and enjoying the property of
the asymptotic phase if the multiplier μ2 satisfies the con-
dition|μq

2|< 1, where

μq
2 � 

q

j�1
Δj exp 

T

0

zP

zx
(ξ(t), η(t)) +

zQ

zy
(ξ(t), η(t)) dt ,

(7)

with

Δj �
P+((zβ/zy)(zϕ/zx) − (zβ/zx)(zχ/zy) + zχ/zx)

P(zχ/zx) + Q(zχ/zy)
+

Q+((zα/zx)(zχ/zy) − (zα/zy)(zϕ/zx) +(zχ/zy))

P(zχ/zx) + Q(zχ/zy)
, (8)

and P+ � P(ξ(τ+
j ), η(τ+

j )),Q+ � Q(ξ(τ+
j ), η(τ+

j )), and
P,Q,zα/zx, zα/zy, zβ/zx, zβ/zy,zχ/zx, zχ/zy are calculated
at the point (ξ(τj), η(τj)).

3. Main Works

Define

eM ≜
m + h1 + h2p( mK

pK
. (9)

.en eM is called the critical value of the conversion; that
is, when e≤ eM, the conversion is not enough to maintain the
survival of predator and the predator population will go to
extinction. .us, in this work, it is reasonable to assume that
e> eM.

Besides, denote

x
∗ ≜

m

ep − mh1 − pmh2
,

y
∗ ≜

������������������������������������������������

p + k d + cx
∗

(  1 + h1x
∗

( ( 
2

− 4pk d + cx
∗

− b(  1 + h1x
∗

( 



− p − k d + cx
∗

(  1 + h1x
∗

( 

2pk
,

k
∗ ≜ −

ph1 h1 d + cx
∗

− b(  + c 1 + h1x
∗

(  

c 1 + h1x
∗

( 
2

c 1 + h1x
∗

(  + h1 d + cx
∗

(  
,

T
∗

� x
∗ ph1y

∗

1 + h1x
∗

( 
2 − c⎡⎣ ⎤⎦,

D
∗

�
bk

1 + ky
∗

( 
2

+ p/1 + h1x
∗

⎡⎣ ⎤⎦
epx
∗
y
∗

1 + h1x
∗

+ h2px
∗

( 
2 > 0.

(10)

For system (3), the following result holds.

Theorem 1. (ere are three equilibria for system (3)
whene> eM: two boundary saddlesO(0, 0)andE(K, 0)and
one positive equilibrium E∗(x∗, y∗). Moreover, one of the two
following cases holds:

(i) E∗(x∗, y∗) is a stable focus or node in case of k> k∗

(ii) E∗(x∗, y∗) is unstable in case of k< k∗, and a unique
stable limit cycle exists, denoted by ΓLC

Proof. .e Jacobian matrix J(E) of model (3) at the
equilibrium E(x, ty) is

b

1 + ky
− d − 2cx −

py

1 + h1x( 
2 −

kbx

(1 + ky)
2 −

px

1 + h1x

epy

1 + h1x + h2px( 
2

epx

1 + h1x + h2px
− m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)
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It is obvious that O(0, 0) and E(K, 0) are saddles. At the
equilibrium E∗(x∗, y∗), the characteristic equation
λ2 − T∗λ + D∗ � 0. If y∗ <yM ≜ a(1 + h1x

∗)2/ph1 holds,
then T∗ < 0. By equation (6), y∗ <yM if and only if k> k∗.
.us, the positive equilibrium E∗(x∗, y∗) is locally as-
ymptotically stable in case of k> k∗ and unstable in case of
k< k∗. In this case, there exists a unique stable limit cycle for
system (3). □

3.1. Semitrivial Order-1 Periodic Solution for τ � 0. When
τ � 0, there is y(t) ≡ 0 for t> 0 with y(0) � 0. In this case,
system (3) is reduced to the following system:

dx

dt
� (b − d)x 1 −

x

K
 , x≠ l,

Δx � − q1Ex, x � l.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

Setting x0 � (1 − q1E)l, the solution of equation dx/dt �

(b − d)x(1 − x/K) with x(0) � x0 is

x(t) �
K 1 − q1E( l exp((b − d)t)

K − 1 − q1E( l(  + 1 − q1E( l exp((b − d)t)
. (13)

Let

T≜
1
r
ln

K − 1 − q1E( l

1 − q1E( (K − l)
 . (14)

.en there is x(T) � l and x(T+) � (1 − q1E)l � x0 by
impulse effect. .us, the following result holds.

Theorem 2. System (4) withτ � 0has a semitrivial order-1
periodic solution for(n − 1)T< t≤ nT:

ξ(t) �
K 1 − q1E( l exp((b − d)(t − (n − 1)T))

K − 1 − q1E( l(  + 1 − q1E( l exp((b − d)(t − (n − 1)T))
,

η(t) � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

which is orbitally asymptotically stable when R0 < 1, where

R0 ≜ 1 − q2E( 
1 + h1 + h2p( l(  K − 1 − q1E( l( 

1 + 1 − q1E(  h1 + h2p( l( (K − l)
 

ep/c 1+K h1+h2p( )( ) 1 − q1E( (K − l)

K − 1 − q1E( l
 

m/(b− d)

. (16)

Proof. To discuss the stability of (ξ(t), η(t)), let us consider
a small disturbance δ0. .e trajectory starting from B1((1 −

q1E)l, δ0) is denoted by (ξ(t), η(t))..is disturbed trajectory
first intersects the harvest set MIMP at point B2(l, y1) when
t � T + δt, and then it jumps to point B+

2((1 − q1E)l, δ1).
.us, there is

ξ(0) � 1 − q1E( l,

η(0) � δ0,
ξ(T + δt) � l,

η(T + δt) � y1.

(17)

Let δx � ξ(t) − ξ(t) and δy � η(t) − η(t). .en
δx0 � ξ(0) − ξ(0) � 0, and δy0 � η(0) − η(0) � δ0. Setting
δy1 ≜y1, for 0< t<T, the variables δx and δy can be
expressed by the relation

δx(t)

δy(t)
  � Φ(t)

0

δ0
  + o δ20 , (18)

where Φ(t) � (ϕij)2×2 is the fundamental solution satisfying
the variation equation.

Φ′(t) �

b − d − 2cξ(t) − kbξ(t) −
pξ(t)

1 + h1ξ(t)

0
epξ(t)

1 + h1 + ph2( ξ(t)
− m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Φ(t),

Φ(0) � I2.

(19)

According to the first-order Taylor expansion on η(t),
there is δy1 � η(T + δt) ≈ δy(T) � ϕ22(T)δ0, where

ϕ22(T) �
1 + h1 + h2p( l(  K − 1 − q1E( l( 

1 + 1 − q1E(  h1 + h2p( l( (K − l)
 

ep/c 1+K h1+h2p( )( ) 1 − q1E( (K − l)

K − 1 − q1E( l
 

m/(b− d)

. (20)
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By impulse effect, there is δ1 � (1 − q2E) δy1 �

((1 − q2E)ϕ22(T)δ0. .us, if inequality (10) holds, there is
δ1 < δ0. By the arbitrary of δ0, it concludes that the order-1
semitrivial periodic solution is orbitally asymptotically
stable. □

Corollary 1. (e semitrivial order-1 periodic sol-
ution(ξ(t), η(t)) is orbitally asymptotically stable if one of the
two following cases is satisfied: (i) l≤x∗ and (ii) l> x∗ and
E>E∗ ≜ max 0, (ϕ22(T) − 1)/ϕ22(T)q2 .

3.2. Positive Order-K Periodic Solution for τ > 0. Since the
harvest may cause the extinction of predator when τ � 0, in
order to keep the predator species from going extinct, it is
necessary to reduce the harvest strength and release a certain
quantity of predator pups.

For 0≤x≤K, define

yL(x)≜

��������������������������������������������

p + k(d + cx) 1 + h1x(  
2

+ 4pk(b − d − cx) 1 + h1x( 



− p + k(d + cx) 1 + h1x(  

2pk
. (21)

Let N0 and M0 denote the intersection point between
y � yL(x) and the phase set NPHA and the harvest set MIMP,
respectively;G0 denotes the intersection point between y � τ
and the phase set NPHA; in general τ ≤ τmax ≜yN0

�

yL((1 − q1E)l). For a point S on NPHA with 0≤ys ≤yN0
, if

the trajectory of system (4) starting from S((1 − q1E)l, ys)

intersects the harvest set MIMP, then it defines a function
relationship between y and x for (1 − q1E)l≤x≤ l, denoted
by y � y(x, ys), which satisfies

dy

dx
�

epxy/1 + h1 + ph2( x − my

bx/1 + ky − dx − cx
2

− pxy/1 + h1x

≐ κ(x, y),

y 1 − q1E( l, ys(  � ys.

(22)

By equation (22), the function y � y(x, ys) can be
expressed as follows:

y x, ys(  � ys + 
x

1− q1E( )l
κ u, y u, ys( ( du. (23)

Define l ≜ max l|y(l, yN0
)≤yL(l) . When l≤ l, the

trajectory of system (4) starting from N0 will intersect the
harvest set MIMP, and denote the intersection point by N1;
that is, N1 � π(N0, T0) for some T0 > 0. Define
τf ≜yL((1 − q1E)l) − (1 − q2E)π2(N0, T0).

3.2.1. Existence of Order-1 Periodic Solution. By .eorem 1,
the dynamic behavior of system (3) varies with the model
parameter k. .us, the discussions will be divided according
to parameter k and harvest level l.

Case I: k> k∗

Case I-1: l≤x∗

Since x ≡ (1 − q1E)l on NPHA, map ϕN in Definition 4 is
only a function of y. Next, the Poincaré map ϕN will be
characterized and its main property will be analyzed.

For 0≤ys ≤yN0
� yL((1 − q1E)l), by Definition 4, there

is ϕN(ys) � (1 − q1E)y(l, ys) + τ. Meanwhile, for ys >yN0
,

there exists a unique ys
′ ∈ (0, yN0

) and Ts > 0 such that
ys
′ � π2(((1 − q1E)l, ys), Ts). .en ϕN(ys) � (1 − q2E)y

(l, π2(((1 − q1E)l, ys), Ts)) + τ. To sum up, there is

ϕN ys(  �
1 − q2E( y l, ys(  + τ, 0≤ys ≤yN0

,

1 − q2E( y l, π2 1 − q1E( l, ys( , Ts( (  + τ, ys >yN0
.

⎧⎨

⎩ (24)

Property 1. For system (4), when l≤x∗, the Poincaré map
ϕN defined by equation (24) has the following properties:

(i) ϕN is continuous on [0, +∞). Moreover, ϕN is in-
creasing on [0, yL((1 − q1E)l)] and decreasing
on(yL((1 − q1E)l), +∞)

(ii) ϕN is continuously differentiable on [0, +∞), and ϕN

is concave on [0, yL((1 − q1E)l)]

(iii) (ere exists a horizontal asymptote ϕN � τ; that is,
ϕN(ys)⟶ τ when ys⟶ +∞

Define fN(y)≜ϕN(y) − y. .e following result holds.

Theorem 3. (ere exists a unique positive order-1 periodic
solution for system (4) when0< l≤ x∗and0< τ ≤ τmax.

Proof. By Remark 1, the existence of order-1 periodic
solution is equivalent to the existence of a point L ∈ NPHA
such that yL is a fixed point of ϕN. By Property 1 (i), fN is
continuous on [0, +∞). Since fN(0) � ϕN(0) � τ > 0 and
fN(y) � ϕN(y) − y⟶ − ∞ as y⟶ +∞, by the in-
termediary property of continuous function, there
exists at least one yL > 0 such that fN(yL) � 0; that is,
ϕN(yL) � yL. .us, the trajectory of system (4)

6 Complexity



starting from L((1 − q1E)l, yL) forms an order-1 periodic
orbit.

Next, the location and uniqueness of the order-1 peri-
odic orbit will be analyzed. By Property 1 (i), ϕN achieves its
maximum at y � yN0

� yL((1 − q1E)l). It is obvious that
fN(τ)> 0.

If τ � τf, then ϕN(yN0
) � yN0

.
If τ < τf, then fN(yN0

)< 0, which means that
yL ∈ (τ, yN0

), as shown in Figure 1(a). Since ϕN(y) is
concave on [0, yN0

], yL is unique.
If τ > τf, there is fN(yN0

)> 0; that is, ϕN(yN0
)>yN0

.
Since ϕN is decreasing on [yN0

, +∞), ϕN(ϕN(yN0
))<

ϕN(yN0
); that is, fN(ϕN(yN0

))< 0. Besides, define
y1
τ ≜ max y|ϕN(y) � yN0

  and y2
τ ≜ min y|ϕN(y) � yN0

 .
Denote ymin ≜ min y1

τ , ϕN(y) . .en there is yL ∈ (yL((1 −

q1E)l), ymin) and yL is unique, as shown in Figure 1(b)). □

Case I-2: l>x∗: in case of x∗ < l≤ l, the trajectory of
system (4) starting from N0 will intersect the harvest set
MIMP. When l> l, the trajectory starting from point N0 does
not intersect the harvest set MIMP. Denote
yM2

� max y|ϕN(y) � yM0
  and yM1

� min y|ϕN(y) �

yM0
}. .en the domain of ϕN is [0, yM1

]∪ t[yM2
, +∞).

Define τM1
≜yM1

− (1 − q2E)yL(l) and τM2
≜yM2

−

(1 − q2E)yL(l).

Theorem 4. (ere exists a positive order-1 periodic solution
for system (4) when (i) l≤ landτ ∈ (0, τmax]or (ii)
l> landτ ∈ (0, τM1

]∪ [τM2
, τmax].

Proof. When x∗ < l≤ l, similar to the proof of .eorem 3,
system (4) admits an order-1 periodic solution. For l> l, if
yM1
> (1 − q2E)yL(l), then, for τ ∈ (0, τM1

], there is
ϕN(yM1

)≤yM1
. Combining with ϕN(yG0

)>yG0
, it can be

concluded that system (4) admits an order-1 periodic so-
lution. For τ ∈ [τM2

, τmax], there is ϕN(yM2
)≥yM2

and
ϕN(yϕN(yM2))< ϕN(yM2

); thus, there exists yL ∈ [yM2
, ϕN

(yM2
)] such that ϕN(yL) � yL; that is, system (4) admits an

order-1 periodic solution. □ □

Case II: k< k∗: in this case, the trajectory of system (4)
starting from N0 will intersect the harvest set MIMP.

Theorem 5. (ere exists a positive order-1 periodic solution
for system (4) when (i) l≤ landτ ∈ (0, τmax]or (ii)
l> landτ ∈ (0, τM1

]. Moreover, the order-1 periodic solution
is unique whenl≤x∗.

3.2.2. Stability of the Order-1 Periodic Solution. Let
(ξ(t), η(t))(0≤ t≤T) be an order-1 periodic solution of
system (4). Denote ξ0 � ξ(0), ξ1 � ξ(T), η0 � η(0), and
η1 � η(T). Define

Θ η1( ≜ ln
1 − q2E( η1 + τ
1 − q2E( η1

b/1 + kη1(  − d − cl − pη1/1 + h1l( 

b/1 + k 1 − q2E( η1 + τ( (  − d − c 1 − q1E( l − p 1 − q2E( η1 + τ( /1 + h1 1 − q1E( l( 



 . (25)

Theorem 6. (e order-1T-periodic solution(ξ(t), η(t))is
orbitally asymptotically stable if


T

0+

ph1ξ(t)η(t)

1 + h1ξ(t)( 
2 − cξ(t)⎡⎣ ⎤⎦dt<Θ η1( . (26)

Proof. In system (4), there is

P(x, y) �
bx

1 + ky
− dx − cx

2
−

pxy

1 + h1x
,

Q(x, y) �
epxy

1 + h1 + ph2( x
− my,

χ(x, y) � x − l,

α(x, y) � − q1Ex,

β(x, y) � − q2Ey + τ.

(27)

.en

zP

zx
�

b

1 + ky
− d − 2cx −

py

1 + h1x( 
2,

zQ

zy
�

epx

1 + h1 + ph2( x
− m,

zχ
zx

� 1,

zχ
zy

� 0,

zα
zx

� − q1E,

zα
zy

� 0,

zβ
zx

� 0,

zβ
zy

� − q2E.

(28)

With a direct calculation, there is
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P
I
+ 1 + βy

′ χx
′ − βx
′χy
′  + Q

I
+ 1 + αx

′( χy
′ − αy
′χx
′ 

P
Iχx
′ + Q

Iχy
′

� 1 − q2E( 
P 1 − q1E( l, 1 − q2E( yL− + τ( 

P l, yL−( 
, (29)

and


T

0+

zP

zx
+

zQ

zy
 

(ξ(t),η(t))

dt � 
T

0+

ξ
dt

ξ
+
ηdt

η
  + 

T

0+

ph1ξη
1 + h1ξ( 

2 − cξ⎡⎣ ⎤⎦dt

� ln
ξ(T)

ξ(0)
  + ln

η(T)

η(0)
  + 

T

0+

ph1ξη
1 + h1ξ( 

2 − cξ⎡⎣ ⎤⎦dt.

(30)

.us, in case of (26), there is μ12 < 1; then, by Lemma 1,
the order-1 T-periodic solution (ξ(t), η(t)) is orbitally as-
ymptotically stable. □

Theorem 7. Forl≤x∗, ifτ ≤ τf, the order-1 periodic solution
for system (4) is globally orbitally asymptotically stable.

Proof. By .eorem 3, system (4) admits a unique order-1
periodic solution when l≤x∗. If τ ≤ τf, there exists a unique
yL ∈ (τ, yN0

) such that ϕN(yL) � yL. .us, for any y0, a
sequence yk k�1,2,... is obtained under ϕN; that is,
yk � ϕN(yk− 1). If y0 <yL, then yk  is a monotonically
increasing sequence with yk <yL, so the limit is yL. Simi-
larly, if y0 ∈ (yL, yN0

], then yk  is a monotonically
bounded decreasing sequence, and the limit is yL. If
y0 >yN0

, then y1 � ϕN(y0) ∈ (0, yN0
); thus yk k�1,2,... is a

monotonically bounded sequence with limit yL. To sum up,
by the arbitrariness of y0, the order-1 periodic solution is
globally attractive and so is globally orbitally asymptotically
stable. □

3.2.3. Existence of Order-q (q≥ 2) Periodic Solution. For
l≤ x∗, by .eorem 3, if τ ≤ τf, the order-1 periodic solution
is orbitally asymptotically stable and globally attractive,
which means that system (4) does not admit order-q (q≥ 2)
periodic solution. For τ > τf, there exists unique
yL2
∈ (yN0

, ϕN(yN0
)) such that ϕN(yL2

) � yL2
. Let

yL1
∈ (0, yN0

) such that ϕN(yL1
) � yL2

. .en ϕ2N(yL1
) �

ϕN(yL2
) � yL2

. Meanwhile, let yN1
∈ (0, yL1

) and
yN2
∈ (yL2

, +∞) such that ϕN(yN1
) � ϕN(yN2

) � yN0
.

Theorem 8. For l≤ l and τ > τf , if (i) ϕ2N(yN0
)<yN0

or (ii)
ϕ2N(yN0

)≥yN0
and μ12 > 1 holds, system (4) admits an order-2

periodic solution.

Proof. Obviously, ϕ2N(yN1
) � ϕ2N(yN2

) � ϕN(yN0
). It can

be easily checked that ϕ2N(y) is increasing on [0, yN1
] and

[yN0
, yN2

], and ϕ2N(y) is decreasing on [yN1
, yN0

] and
[yN2

, +∞).

(i) ϕ2N(yN0
)<yN0

. In this case, there is ϕN(yN0
)>yN2

;
that is, ϕ2N(yN2

)>yN2
; then ϕ2N(ϕN(yN0

))<
ϕN(yN0

). Besides, there is ϕ2N(yL1
) � yL2
>yL1

. .us,

ϕ N
 (y

)

y=yN0

0

2

4

6

2 4 60
y

(a)

ϕ N
 (y

)

y=yN0

0

2

4

6

2 4 60
 y

(b)

Figure 1: Illustration of the Poincaré map ϕN for different values of τ. .e parameters are taken as b � 0.7, d � 0.2, c � 0.005,
p � 0.1, h1 � 0.036, e � 0.44, h2 � 1.44, m � 0.2, q1 � 0.8, q2 � 0.6, and l � 25%K. (a) τ � 0.4286; (b) τ � 2.5714.
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there exist yP1
∈ (yL1

, yN0
) and yP2

∈ [yN2
,

ϕN(yN0
)] such that ϕ2N(yP1

) � yP1
and ϕ2N(yP2

) �

yP2
. Moreover, there are ϕN(yP1

) � yP2
and

ϕN(yP2
) � yP1

.
(ii) ϕ2N(yN0

)≥yN0
. In this case, there is ϕN(yN0

)≤yN2
;

that is, ϕ2N(yN2
)≤yN2

. For any y ∈ [yN0
,ϕN(yN0

)],
there is yN0

≤ϕ2N(yN0
)≤ ϕN(y)≤ ϕN(yN0

). Next, it
mainly discusses the property of ϕN on
[yN0

,ϕN(yN0
)]. Let y0 � yN0

. .en y1 � ϕN(y0) �

ϕN(yN0
)>yL2
>yN0

, y2 � ϕN(y1) � ϕ2N(y0)>y0,
and y3 � ϕN(y2)< ϕN(y0) � y1. .en, under ϕN, a
sequence yk  is obtained, where

y0 <y2 <y4 < · · · <yL2
< · · · <y5 <y3 <y1. (31)

Denote yP1
� limk⟶∞y2k and yP2

� limk⟶∞y2k+1. It is
obvious that yP1

≤yL2
≤yP2

. Since μ12 > 1, then
yP1
<yL2
<yP2

. Moreover, there is ϕN(yP1
) � yP2

and
ϕN(yP2

) � yP1
. It can be concluded that μ22 < 1, that is, the

order-2 periodic solution is orbitally asymptotically stable
and globally attractive. □

Theorem 9. Forl≤ landτ > τf, system (4) admits an order-3
periodic solution if and only ifϕ2N(yN0

)≤yN1
. Moreover, there

is at least one order-3 periodic solution whenϕ2N(yN0
) � yN1

,
and there are at least two order-3 periodic solutions
whenϕ2N(yN0

)<yN1
.

Proof. “Necessity.” Proof by contradiction. Assume that
ϕ2N(yN0

)>yN1
.

Since ϕ2N(yN0
)<yL2

, if ϕ2N(yN0
)≥yN0

, system (4) admits
a stable order-1 periodic solution or a stable order-2 periodic
solution. Moreover, there is ϕN(yN0

)≤yN2
. If τ ≤yN1

, that
is, ϕN(τ)≤yN0

, there exist yR1
∈ [0, yN1

] and
yR4
∈ (yN2

, +∞) such that ϕ2N(yR4
) � ϕ2N(yR4

) � yN0
. It can

be easily checked that ϕ3N is increasing on [0, yR1
],

[yN1
, yN0

], and [yN2
, yR4

], and ϕ3N is decreasing on
[yR1

, yN1
], [yN0

, yN2
], and [yR4

, +∞). If τ >yN1
, then R1

does not exist, ϕ3N is increasing on [yN1
, yN0

] and [yN2
, yR4

],
and ϕ3

N is decreasing on [0, yN1
], [yN0

, yN2
], and [yR4

, +∞).
In any case, since ϕ3N(yN1

) � ϕ2
N(yN0

)≥yN0
>yN1

,
ϕ3N(yN0

)>ϕN(yL2
) � yN0

, and ϕ3N(yR4
) � ϕN(yN0

)<yR4
, it

k=0

k=0.02
k=0.03

k=0.04

k=0.01

0

2

4

6

8

y 
(t)

20 40 60 80 1000
x (t)

Figure 2: .e dependence of isoline dx/dt � 0 on x for different fear level k with parameters given in numerical section. .e red asterisk
represents the positive equilibrium. For k � 0, 0.01, 0.02, 0.03, the positive equilibrium E∗ is unstable and, for k � 0.04, the positive
equilibrium E∗ is locally asymptotically stable.
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Figure 3:.e time series evolution of prey population x(t), predator population y(t), and the phase portrait diagram ofmodel (4) for τ2 � 0
with parameters given in numerical section. .e phase portrait diagram shows that the semitrival order-1 periodic solution is orbitally
asymptotically stable and predator population tends to extinction.

Complexity 9



0
20
40
60

x 
(t)

500 1000 1500 20000
t

2

4

6

y 
(t)

0 1000 1500 2000500
t

0

2

4

6

y 
(t)

20 40 600
x (t)

Figure 5: .e time series evolution of prey population x(t), predator population y(t), and the phase portrait diagram of model (4) for
l � 60%K and τ2 � 2 with parameters given in numerical section. .e phase portrait diagram shows that the trajectory of system (4) will
eventually tend to the positive equilibrium E∗. In this case, the positive equilibrium E∗ is globally asymptotically stable.
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Figure 4: Illustration of the Poincaré map ϕN of system (4) for τ2 � 2 and different harvest level l with parameters given in numerical
section: (a) l � 30%K; (b) l � 50%K; (c) l � 60%K. .e dotted line represents v � y and the intersection point is the fixed point of the
Poincaré map ϕN. For l � 30%K and l � 50%K, the Poincaré map ϕN has a unique fixed point; that is, system (4) admits a unique order-1
periodic solution. For l � 60%K, the Poincaré map ϕN does not have fixed point; that is, system (4) does not admit order-1 periodic solution.
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Figure 6: .e phase portrait diagram of model (4) for τ2 � 9 and different harvest level l with parameters given in numerical section:
(a) l � 60%K; (b) l � 80%K. For l � 60%K, there is τ2 > τM2

, and system (4) admits an order-1 periodic solution; for l � 80%K, there is τ2 ∈
(τM1

, τM2
), and the trajectory of system (4) will tend to the positive equilibrium E∗ after finite impulses.
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Figure 7: Illustration of the successor function fN(y) � ϕN(y) − y for q2 � 0 with parameters given in numerical section. .e result
indicates that the function is always greater than zero, whichmeans that the Poincaré map ϕN of system (4) does not have fixed point and the
trajectory will tend to the positive equilibrium E∗.
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Figure 8: Illustration of the Poincaré maps ϕN and ϕ2N of system (4) for l � 25%K and τ2 � 8 and different values of q1 with parameters given
in numerical section. For q1 � 0.8, system (4) admits a unique orbitally asymptotically stable order-1 periodic solution; for q1 � 0.5, there is
ϕ2N(4.92)> 4.92 and μ1 > 1; in this case, system (4) admits a stable order-2 periodic solution; (c) for q1 � 0.2, there is ϕ2N(4.92)< 4.92, and
system (4) admits a stable order-2 periodic solution.
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Figure 9: Illustration of the Poincaré map ϕN of system (4) for l � 25%K and different values of τ2 with parameters given in numerical
section. .e results indicate that ϕN has a unique fixed point for any τ2; that is, system (4) admits a unique order-1 periodic solution.
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can be concluded that ϕ3N(y) � y if and only if y � yL2
; that

is, the order-3 periodic solution does not exist.
If yN1
<ϕ2N(yN0

)<yN0
, system (4) simultaneously ad-

mits an order-1 periodic solution and order-2 periodic

solution. Moreover, there is ϕN(yN0
)>yN2

. If τ ≤yN1
, that

is, ϕN(τ)≤yN0
, there exist yR1

∈ [0, yN1
], yR2
∈ (yL1

, yN0
),

yR3
∈ (yN0

, yL2
), and yR4

∈ (yN2
, +∞) such that

ϕ2N(yR1
) � ϕ2N(yR2

) � ϕ2N(yR3
) � ϕ2N(yR4

) � yN0
. It can be

 f N
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Figure 10: Illustration of the successor function fN(y) of system (4) for l � 50%K and different values of τ2 with parameters given in
numerical section..e results indicate that fN(y) has a zero point in case of τ2 < 2.55; that is, system (4) admits an order-1 periodic solution
when τ2 < 2.55.
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Figure 11: Illustration of functions ϕ3N(y) and ϕN(y) of system (4) for l � 50%K and τ2 � 2.9 with parameters given in numerical section.
.e time series evolution of prey population x(t), predator population y(y), and the phase portrait diagram demonstrate the order-3
periodic solution.
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easily checked that ϕ3N is increasing on [0, yR1
], [yN1

, yR2
],

[yN0
, yR3

], and [yN2
, yR4

], and ϕ3N is decreasing on
[yR1

, yN1
], [yR2

, yN0
], [yR3

, yN2
], and [yR4

, +∞). If τ >yN1
,

then R1 does not exist, ϕ3N is increasing on [yN1
, yR2

],
[yN0

, yR3
], and [yN2

, yR4
], and ϕ3N is decreasing on [0, yN1

],
[yR2

, yN0
], [yR3

, yN2
], and [yR4

, +∞). Since
ϕ3N(yN1

) � ϕ2N(yN0
)≥yN0
>yN1

and ϕ3N(yR4
) � ϕN

(yN0
)<yR4

, it can be concluded that ϕ3N(y) � y if and only if
y � yL2

; that is, the order-3 periodic solution does not exist.
“Sufficiency.” If ϕ2N(yN0

)≤yN1
, then there is ϕ3N(yR1

) �

ϕN(yN0
)> 0 and ϕ3N(yN1

) � ϕ2N(yN0
)≤yN1

. If
ϕ2N(yN0

) � yN1
, then there exists an order-3 periodic so-

lution since ϕN(yN1
)≠yN1

. If ϕ2N(yN0
)<yN1

, then there
exists at least one yf ∈ (yR1

, yN1
) such that ϕ3N(yf) � yf

and ϕN(yf)>yf; that is, system (4) admits an order-3
periodic solution.

Next, the number of order-3 periodic solutions will be
discussed:

(i) When ϕ2N(yN0
) � yN1

, there are ϕ3N(yN1
) � yN1

,
ϕ3N(yN0

) � yN0
, and ϕ3N(ϕN(yN0

)) � ϕN(yN0
).

Moreover, there are yN0
� ϕN(yN1

) and yN1
� ϕN

(ϕN(yN0
)); that is, system (4) admits at least one

order-3 periodic solution.

(ii) When ϕ2N(yN0
)<yN1

, there are ϕ3N(yR1
) � ϕ3N

(yR2
) � ϕ3N(yR3

) � ϕ3N(yR4
) � ϕN(yN0

)>yR4
>

yR3
> yR2
>yR1

, and ϕ3N(yN1
)<yN1

, ϕ3N(yN0
)<yN0

,
ϕ3N(yN2

)<yN2
, and ϕ3N(ϕN(yN0

)) � ϕ2N(τ)< ϕN

(yN0
); then there exist y1 ∈ (yR1

, yN1
),

y2 ∈ (yN1
, yR2

), y3 ∈ (yR2
, yN0

), y4 ∈ (yN0
, yR3

),
y5 ∈ (yN2

, yR4
), and y6 ∈ (yR4

, ϕN(yN0
)) such that

ϕ3N(yi) � yi (i � 1, 2, . . . , 6). Moreover, there are
ϕN(y1) � y3, ϕN(y3) � y6, ϕN(y6) � y1; ϕN(y2) �

y4, ϕN (y4) � y5, and ϕN(y5) � y2; that is, system (4)
admits at least two order-3 periodic solutions. □

3.3. Optimal Harvest Level Determination. To achieve the
commercial purpose of the fishery, it is necessary to harvest
the population, and it is always hoped that the sustained
ability can be achieved at a good economic profit. For the
harvest problem, it is necessary to determine the controlled
values E and τ and harvest level l, and this in general involves
the optimization theory [48, 49].

Let l be the harvest level, which is a decision variable.
.eorems 3 and 4 show that system (4) admits an order-1
periodic solution when l≤ l or l> l with τ ≤yM1

−

(1 − q2E)yL(l). Since the harvest effort and yield of released
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Figure 12: Illustration of functions ϕ5N(y) and ϕN(y) of system (4) for l � 50%K and τ2 � 3 with parameters given in numerical section..e
time series evolution of prey population x(t), predator population y(t), and the phase portrait diagram demonstrate the order-5 periodic
solution.
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predator are dependent on the harvest level, then it is as-
sumed that E(l) and τ(l) take the following forms:

E(l) � E1 + E2 − E1( 
l − l1
l2 − l1

,

τ(l) � τ1 + τ2 − τ1( 
l − l1

l2 − l1
,

(32)

where l1 ≤ l≤ l2, l1 and l2 are minimum and maximum of the
harvest level, and E1 (E2) and τ1 (τ2) are the harvest effort
and yield of released predator at the harvest level l1 (l2).

Let c1 and c2 be the unit selling prices of prey and
predator, let c3 be the unit cost of harvest, and let c4 be the
unit cost in breeding predator. .en the benefits from
harvest can be described as Fbenefit(l) � c1q1E(l)l +

c2q2E(l)η(T(l)) − c3E
2(l) − c4τ(l). .e objective is to

maximize the unit benefits; that is,

max
Fbenefit(l)

T(l)
such that l1 ≤ l≤ l,

l < l≤ l, τ(l)≤yM1
− 1 − q2E( yL(l).

(33)

4. Numerical Simulations and Optimization

In this section, we compute some numerical simulations
regarding the existence and stability of the periodic solution
for the predator-prey model (4). It is quite difficult to verify
themathematical model simulations with realistic parameter
values. We take a hypothetical set of parameter values to
illustrate our analytical findings. .e model parameters are
as follows: b � 0.7, d � 0.2, c � 0.005, p � 0.1, h1 � 0.036,
h2 � 1.44, e � 0.44, and m � 0.2. .e control parameters are
as follows: E1 � 0.2, E2 � 1, and τ1 � 0.

4.1. Numerical Simulations. Since e> eM, the boundary
equilibrium E(100, 0) is unstable, and system (3) has a positive
equilibrium E∗. From equation (6), it can be observed that the
fear effect factor k only affects the value y∗. Figure 2 illustrates
the dependence of isoline dx/dt � 0 on x for different fear level
k. As illustrated, the positive equilibrium becomes stable from
unstable with increasing of k. By equation (6), there is
k∗ � 0.0376. To verify the theoretical results obtained in the
above section, the simulations are implemented by considering
different combinations of k, q1, q2, τ2, and l.
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Figure 13: Illustration of functions ϕ2N(y) and ϕN(y) of system (4) for l � 50%K and τ2 � 3.1 with parameters given in numerical section.
.e time series evolution of prey population x(t), predator population y(t), and the phase portrait diagram demonstrate the order-2
periodic solution.
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Case I: k � 0.04, q1 � 0.8, and q2 � 0.6.
I-(1): τ2 � 0. By.eorem 2, system (4) admits an order-1

semitrivial periodic solution for any l≤K � 100, which is
expressed by equation (10). Moreover, for l≤ l � 34.45, by
Corollary 1, the semitrivial order-1 periodic solution is
orbitally asymptotically stable. Meanwhile, for l � 50%K, by
.eorem 2, there is R0 � 0.5673< 1; that is, the order-1
semitrivial periodic solution is orbitally asymptotically
stable, as presented in Figure 3.

I-(2): τ2 > 0. Firstly, for τ2 � 2, there is l � 34.45%K. For
l � 25%K≤x∗, .eorem 4 and .eorem 7 indicate that
system (4) admits a globally asymptotically stable positive
order-1 periodic solution, as illustrated in Figure 1.
Meanwhile, for l>x∗, function ϕN of system (4) for
l � 30%K, l � 50%K, and l � 60%K is presented in Figure 4.
It can be observed that system (4) admits an order-1 periodic
solution for l � 30%K and l � 50%K since the inequality
τ <yM1

− (1 − q2E)yL(l) in .eorem 4 holds. When
l � 60%K, the direction of the inequality has changed, and
the trajectory of system (4) will tend to the positive equi-
librium E∗(25, 4.93) after finite impulses, as shown in
Figure 5. But this is not always true; it is dependent on the
value of τ2. As τ2 goes up to 9, the inequality τ >yM2

− (1 −

q2E)yL(l) in .eorem 4 holds; then system (4) admits a
positive order-1 periodic solution, as shown in Figure 6(a).
However, for l � 80%K, the direction of the inequality is

changed again, and the trajectory of system (4) will tend to
the positive equilibrium E∗(25, 4.93) after finite impulses, as
shown in Figure 6(b).

Case II. k � 0.04 and q2 � 0.
II-(1): τ2 � 0 and q1 � 0.8. Notice from Figure 1 that a

higher catching rate for predators (e.g., q2 � 0.6) will cause
the predator species extinction for l � 50%K. When the
catch for the predator is very small or ignored, that is, q2 � 0,
the order-1 semitrivial periodic solution is unstable by
Corollary 1 (i.e., R0 � 1.02> 1). .e function
fN(y) � ϕN(y) − y is presented in Figure 7 and it can be
observed that fN(y)> 0, and, for any initial condition, the
trajectory of system (4) will eventually tend to the positive
equilibrium E∗(25, 4.93).

II-(2): τ2 > 0. For τ2 � 8 and q1 � 0.8, by .eorem 3,
system (4) admits a unique positive order-1 periodic
solution for l � 25%K. To show the existence of order-2
periodic solution, the catching rate for prey q1 is selected
as a key parameter to verify how does the dynamic be-
havior of the system change. Function ϕN for different
catching rate for prey is presented in Figure 8. It can be
observed that system (4) admits a unique globally as-
ymptotically stable order-1 periodic solution for a higher
catching rate for prey, for example, q1 � 0.8, as shown in
Figure 8(a). As the catching rate for prey goes down, for
example q1 � 0.5, condition (ii) ϕ2N(yN0

)≥yN0
and μ12 �

ϕ N
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Figure 14: Illustration of function ϕN(y) of system (4) for l � 50%K and τ2 � 3.6 with parameters given in numerical section. .e time
series evolution of prey population x(t), predator population y(t), and the phase portrait diagram demonstrate the order-1 periodic
solution.
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1.2612> 1 in .eorem 8 holds; then system (4) admits a
stable order-2 periodic solution, as shown in Figure 8(b).
Meanwhile, for q1 � 0.2, condition (i) ϕ2N(yN0

)<yN0
in

.eorem 8 holds, and then system (4) admits an order-2
periodic solution, as shown in Figure 8(c).

Case III: k � 0.01 and q1 � q2 � 0.6.
.e positive equilibrium E∗ becomes unstable when

k � 0.01, and system (3) admits a limit cycle ΓLC. Since the
existence and stability of semitrivial order-1 periodic so-
lution for τ � 0 do not depend on the fear factor k, the results
are the same as those in Case I-(1) and are omitted hereby. So
it mainly discusses the dynamic behavior of system (4) for
τ2 > 0. It is easily checked that l � 32.7%K.

Firstly, for l � 25%K≤ x∗, by .eorem 3, system (4)
admits a positive order-1 periodic solution for any τ, as
shown in Figure 9.

Next, let us consider l � 50%K> l. It is easily checked
that τM1

� 1.2495 (i.e., τ2 � 2.1867); then, by .eorem 4,
there exists an order-1 periodic solution for system (4) when
τ2 ≤ 2.1867. Here it should be pointed out that the condition
given in.eorem 4 is only a sufficient one; in fact, as long as
τ2 ≤ 2.55, system (4) admits an order-1 periodic solution, as
illustrated in Figure 10.

With an increase of τ2, the existence of order-1 periodic
solution cannot be guaranteed. For example, for any
τ2 ∈ [2.56, 3.58], there does not exist order-1 periodic so-
lution for system (4). System (4) admits an order-3 periodic
solution for τ2 � 2.9 (Figure 11), an order-5 periodic so-
lution for τ2 � 3 (Figure 12), an order-2 periodic solution for
τ2 � 3.1 (Figure 13), an order-1 periodic solution for τ2 �

3.6 (Figure 14), and an order-4 periodic solution for τ2 � 4.2
(Figure 15).

4.2. Optimization. To achieve a good economic profit, it is
necessary to find a level l∗ at which the benefits from harvest
are maximal. Assume that c1 � 100, c2 � 5c1 � 500, and
c3 � 20%c2 � 100. Denote σ ≜ c3/c1. In order to sustain the
harvest, the releasing yield of predator should not be too
large, so, in this part, it is assumed that τ2 � 1.

For k � 0.04, system (4) admits an order-1 periodic
solution when l≤ 70%K; the dependencies of period T and
benefit Fbenefit on the harvest level l are presented in Fig-
ure 16. It can be seen that period T increases as l increases.
Meanwhile the benefit function Fbenefit climbs up and then
declines as l increases. For different σ, Fbenefit achieves its
maximum at different l∗σ . When the cost of harvest is ig-
nored, that is, σ � 0, there is l∗0 � 40%K. As σ goes up, Fbenefit
goes down. When σ � 8, Fbenefit achieves its maximum at
l∗8 � 50%K.

For the case of k � 0.01, system (4) admits an order-1
periodic solution when l≤ l2, and the dependencies of period
T and benefit Fbenefit on the harvest level l are presented in
Figure 17. .e benefit funtion Fbenefit climbs up and then
declines as l increases. For different σ, Fbenefit almost achieves
its maximum at l∗σ � 50%K.

5. Conclusion and Discussions

In this paper, we have discussed the dynamics of a harvested
prey-predator model, where the prey is provided with fear
effect. For the system without harvest (3), there exists a
unique positive equilibrium. To verify the stability of the
equilibrium, a critical level of fear factor k∗ is characterized
(i.e., equation (6)). When the impact of fear on prey is small,
that is, 0≤ k< k∗, the positive equilibrium is unstable and a
limit cycle exists. As the impact of fear grows and exceeds k∗,
the positive equilibrium becomes stable and the limit cycle
disappears (Figure 2). In any case, predators coexist with
prey and the system is persistent.

For the system with harvest (4), if we do not consider the
release of predator (i.e., τ � 0), system (4) admits a semi-
trivial order-1 periodic solution for any harvest level (Fig-
ure 3). Moreover, the semitrivial order-1 periodic solution is
orbitally stability when the harvest level is not higher than
the first equilibrium component (i.e., l≤ x∗). Meanwhile, for
the case of l>x∗, the semitrivial order-1 periodic solution is
orbitally stable when a strong harvest intensity is imple-
mented. .is means that the system can be disrupted, and
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predators will go extinct if the harvest is not properly
planned. To maintain the ecological health and avoid the
extinction of predator populations, it is necessary to reduce
the catch rate of predators (Figure 7) or release a certain
quantity of predator pups. In the second case, that is, τ > 0,
system (4) admits a positive order-1 periodic solution when
l≤ l (Figures 1, 4, and 9). Moreover, the order-1 periodic
solution is orbitally asymptotically stable and globally at-
tractive when l≤ x∗ and τ ≤ τf. Meanwhile, for τ > τf,
system (4) admits an order-2 periodic solution in case of
ϕ2N(yN0

)≥yN0
and μ12 > 1 (Figure 8). In case of l> l, system

(4) also admits a positive order-1 periodic solution for
τ ≤ τM1

(Figures 4 and 10) or τ ≥ τM2
(Figure 6). But, for

τ ∈ (τM1
, τM2

), when k> k∗, the trajectory of system (4) will
tend to the positive equilibrium E∗(25, 4.93) after finite
impulses (Figure 5). Meanwhile, in case of k< k∗, the dy-
namic behavior of system (4) depends heavily on parameter
τ. For different value of τ, system (4) may admit an order-
k(k � 1, 2, 3, 4, 5) periodic solution (Figures 11–15).

To achieve a good economic profit, optimization with
τ2 � 1 is carried out and the results show that the benefits
from harvest depend on the unit selling prices of prey and
predator, as well as the unit cost of harvest. For given
c1 � 100, c2 � 500, and c4 � 100, the benefit function first
climbs up and then declines as l increases. For k � 0.04, the
economic profit Fbenefit achieves its maximum at l∗ � 40%K

when σ � 2. As σ goes up, Fbenefit goes down, and Fbenefit
achieves its maximum at l∗ � 50%Kwhen σ � 8.Meanwhile,
in case of k � 0.01, Fbenefit almost achieves its maximum at
l∗ � 50%K.
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