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Lentinus edodes sticks are susceptible to mold infection during the culture process, and manual identification of infected sticks is
heavy, untimely, and inaccurate. Aiming to solve this problem, this paper proposes a method for identifying infected Lentinus
edodes sticks based on improved ResNeXt-50(32 x 4d) deep transfer learning. First, a dataset of Lentinus edodes stick diseases was
constructed. Second, based on the ResNeXt-50(32 x 4d) model and the pretraining weight of the ImageNet dataset, the influence
of pretraining weight parameters on recognition accuracy was studied. Finally, six fine-tuning strategies of the fully connected
layer were designed to modify the fully connected layer of ResNeXt-50(32 x 4d). The experimental results show that the rec-
ognition accuracy of the method proposed in this paper can reach 94.27%, which is higher than the Vggl6, GoogLeNet, ResNet50,
and MobileNet v2 models by 8.47%, 6.49%, 4.68%, and 9.38%, respectively, and the F1-score can reach 0.9422. The improved
method proposed in this paper can reduce the calculation pressure and overfitting problem of the model, improve the accuracy of
the model in the identification of Lentinus edodes stick mold diseases, and provide an effective solution for the selection of

diseased sticks.

1. Introduction

As an important carrier for the production of Lentinus
edodes, Lentinus edodes sticks are often infected by mold
diseases [1], which results in large economic losses. Cur-
rently, the selection of diseased sticks is still at the level of
empirical management, which requires an inspector to
manually extract the Lentinus edodes sticks and judge
whether they are diseased. This traditional method has
some problems, such as sticks being missed by inspectors
and untimely selection of diseased Lentinus edodes sticks,
which can easily lead to mold diffusion. At the same time,
research on the automatic identification of Lentinus edodes
stick diseases has been very rare, and there is a lack of
specific identification models. Therefore, it is necessary to
collect and process Lentinus edodes stick disease images
during inoculation, precultivation, cultivation, cold stor-
age, and other steps, to research identification technology

of Lentinus edodes stick diseases, and to achieve accurate
identification and judgment of Lentinus edodes stick dis-
eases. It is of great significance to reduce the spread of
Lentinus edodes stick diseases, improve the yield and
quality of Lentinus edodes, drive the large-scale develop-
ment of the Lentinus edodes industry, and improve eco-
nomic benefits.

Since the large-scale development of deep learning [2-4],
an increasing number of researchers have introduced deep
learning into the field of crop disease image detection [5-10].
Compared with the traditional image recognition method,
this new nondestructive testing technology avoids the
complex image data preprocessing process by inputting the
image directly into the network. Deep learning uses the
method of automatic feature extraction to combine low-level
features into high-level abstract visual features. It can quickly
and nondestructively identify crop diseases within the visible
light range without using hyperspectral imaging technology.
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It has higher accuracy, faster detection speed, and better
stability.

At present, deep learning research in the field of agri-
cultural disease identification has become a hot spot for the
application of deep learning. Fan Xiangpeng et al. [11]
optimized the convolutional neural network, trained, and
tested corn disease images under complex backgrounds, and
the recognition rate reached 97.10%. Mohanty S P et al. [12]
used AlexNet and GoogLeNet to classify and recognize
54306 plant disease images in the PlantVillage dataset, and
the model accuracy was up to 99.35%. Yang Sen et al. [13]
used VGG-16 as the feature extractor of the Faster R-CNN
model through the method of deep transfer learning, made
the clustering method to build a composite dictionary for the
mixed features of color and SIFT, and achieved a recognition
accuracy of 90.83% of diseased potato leaves. Although deep
learning has achieved quite good results in the field of crop
disease identification, relevant literature on deep learning in
the identification of Lentinus edodes stick diseases has not
been found in previous studies.

To solve the above problems, this paper proposes a
method based on the ResNeXt-50(32 x4d) deep transfer
learning method for Lentinus edodes sticks disease identi-
fication. The main contributions are as follows: (1) this paper
takes the lead in applying the deep learning model to the
identification of Lentinus edodes sticks infection, which
makes up for the gap of domestic deep learning in the disease
identification of Lentinus edodes sticks. (2) For the Lentinus
edodes stick disease dataset, the fully connected layer of
ResNeXt-50(32 x 4d) model is redesigned to improve the
recognition accuracy. (3) The disease identification method
of Lentinus edodes sticks studied in this paper can be ex-
tended to the disease identification of other bagged edible
fungi.

2. Materials and Methods

2.1. Lentinus Edodes Sticks Diseases Dataset. Shandong Qihe
Biotechnology Limited Company produces approximately
700 thousand Lentinus edodes sticks every year, which are
infected by diseases such as Aspergillus flavus, Trichoderm
viride, and Neurospora, resulting in a direct economic loss of
9 million yuan. In the Qihe biological intelligence factory,
the images of Lentinus edodes sticks infected by mold in the
culture shed were collected manually, and they were divided
into Aspergillus flavus diseased sticks, Trichoderm viride
diseased sticks, Neurospora diseased sticks, and normal
Lentinus edodes sticks based on the type of mold disease (see
Figure 1).

In this paper, 942 images of Aspergillus flavus diseased
sticks, 893 images of Trichoderm viride diseased sticks, 664
images of Neurospora diseased sticks, and 1179 images of
normal Lentinus edodes sticks were collected, for a total of
3678 images. Because the amount of image data of Lentinus
edodes stick diseases is relatively low, this study uses image
enhancement methods [14] such as random rotation and
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horizontal flip to increase the diversity of the samples and
builds a Lentinus edodes stick disease dataset.

2.2. ResNeXt-50(32 x 4d) Network. The traditional method
to improve the accuracy of model recognition is to deepen or
widen the network. However, with the increase in the
number of hyperparameters (such as channel number and
filter size), the difficulty of network design and computa-
tional overhead will increase. The ResNeXt-50(32 x 4d)
network [15] combines the stacking strategy of the ResNet
network [16] and the packet convolutional strategy of the
inception network [17]. It uses a residual block with the same
topology to stack in parallel instead of the original three-
layer convolutional residual block of ResNet. Compared
with the ResNet network, the ResNeXt-50(32 x 4d) network
can not only improve the accuracy without increasing the
complexity of parameters but also reduce the number of
hyperparameters to achieve a better classification effect.

ResNeXt network is composed of a series of residual
blocks, and each residual block has the same topological
structure [18]. The residual block of ResNeXt-50(32 x 4d)
network conv2 is takenn as an example (see Figure 2), the
ResNeXt residual block is divided into 32 groups for the
image feature matrix with 256 input channels. For each
grouping, first, the image feature matrix is reduced by 4
convolutional kernels with 256 channels and 1x1 in size.
Second, it is convolved by 4 convolutional kernels with 4
channels and 3 x 3 in size. Then, it uses 256 channels of 4 and
a size of 1 x 1 convolutional kernel to increase the dimen-
sionality of the output. Finally, the output image feature
matrix of each group is added, and then, the image feature
matrix is added with 256 input channels to obtain the final
output image matrix.

The ResNeXt residual block implements the splitting-
transforming-merging strategy, which is expressed as

C
F(x) =x+ ) T;(x). (1)
i=1

Here, T; has the same topological structure, and C
represents the number of groups of each ResNeXt residual
block and C=32.

ResNeXt-50(32 x 4d) network structure is shown in Fig-
ure 3. Conv2, conv3, conv4, and conv5 are composed of 3, 4, 6,
and 3 residual blocks, respectively. The design of residual blocks
follows two rules: (1) if a characteristic diagram of the same size
is generated, these groups share the same hyperparameters
(convolutional kernel size and number of channels); (2) when
the size of the feature map is down-sampled twice, the number
of channels in the feature map needs to be doubled. For ex-
ample, when the number of channels in the residual block of
conv2 is 256, it is divided into 32 groups, and the number of
channels in each group is 4; when the number of channels in the
residual block of conv3 is 512, it is divided into 32 groups, and
the number of channels in each group is 8. By analogy, the
number of channels gradually doubles.
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FiGure 1: Examples of diseased Lentinus edodes sticks and normal Lentinus edodes stick images. (a) Aspergillus flavus diseased sticks. (b)
Trichoderm viride diseased sticks. (c) Neurospora diseased sticks. (d) Normal Lentinus edodes sticks.
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FiGURE 2: ResNeXt block.

After the feature calculation of the residual neural
network, the fully connected layer flattens the incoming
feature vectors into one-dimensional vectors and then uses
these feature vectors as input to calculate the probability
value of each sample category.

2.3. Transfer Learning. With the rapid development of image
recognition technology, the demand for labeled image data is
growing. However, labeling image data is a repetitive and
cumbersome task. At present, although there are high-
precision image datasets and application scenes, it is time-
consuming to establish a new model for each scene, and
there are not enough labeled image data. In recent years,
with the establishment of large datasets such as ImageNet
[19], there have been an increasing number of publicly

stag output ResNeXt-50 (32x4d)
convl 112x112 7x7,64,stride 2
3x3 max pool,stride 2
1x1,128
conv2 56x56
3x3,128, C =32 x3
1x1,256
1x1,256
conv3 28x28 3x3,256, C =32 x4
1x1,512
1x1,512
conv4 14x14 3x3,512,C =32 X6
1x1,1024
1x1,1024
conv5 7x7 3x3,1024, C = 32 x3
1x1,2048
Ix1 global average pool
x 4-d fc,softmax

FIGURE 3: Structure of ResNeXt-50(32 x 4d) network.

available annotated image data. As the largest image rec-
ognition task database in the world, there are more than 14
million labeled images in the ImageNet dataset, among
which there are a large number of plant disease images.



Based on these plant disease image data, multiple deep
neural network models have been trained, and the complete
training parameters and model weights have been saved.

In 2014, Yosinski [20] and others took the lead in ex-
ploring the transitivity of deep neural networks and reached
three main conclusions as follows:

(1) The first few layers of the neural network learn the
basic features of the image, and the trained pa-
rameters based on these features have a good rec-
ognition effect.

(2) The result of fine-tuning the deep transfer network is
better than that of the initial training.

(3) Fine-tuning can overcome the differences between
data.

In this study, ResNeXt-50(32 x 4d) model is used for
transfer learning [21], in which the pretraining weight is
trained on the ImageNet data set. Because the weight trained
by ImageNet image data has a strong ability to express the
underlying features during transfer learning and can well
deal with the same type of image recognition tasks, therefore,
based on transfer learning, the trained model weights are
used, and the model is fine-tuned, which can not only
improve the robustness and generalization of the model but
also save training time by not training the network from
scratch [22-24].

3. Results and Discussion

3.1. Evaluation Criteria. In order to evaluate the effect of
model recognition, this paper uses Accuracy and F1-score in
the confusion matrix [25] as evaluation indicators. The value
of the F1-score depends on the calculation of Precision and
Recall, and the calculation rule of Macro-F1 is used. The
calculation formula is as follows. Among them, TP repre-
sents the number of positive samples predicted to be pos-
itive, FP represents the number of negative samples
predicted to be positive, TN represents the number of
negative samples predicted to be negative, and FN represents
the number of positive samples predicted to be negative.

TP+TN

A = . 2

Y = b Y FP+ FN+ TN @
TP

Precision = ———. 3

recision TP T TP 3)
TP

Recall = — - 4

TPy EN )

2 % Precision * Recall
F1 — score = — . (5)
Precision + Recall

3.2. Influence of Pretraining Weight Parameters on Accuracy.
To reduce the calculation pressure and overfitting problem
of the model [26, 27], the transfer learning pretraining
weight is introduced. The pretraining weight retains a large
amount of parameter information trained on the ImageNet
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dataset. In this section, the influence of pretraining weight
parameters on Accuracy is studied.

The experimental running environment is Windows 10 and
Python 3.7. The open-source deep learning framework PyTorch
is used as the development environment. An Nvidia
GTX1070Ti GPU is used to accelerate the training in the
training process. In order to improve the generalization ability
of the model in the process of image recognition, the collected
Lentinus edodes sticks disease dataset is preprocessed: The
RandomResizedCrop function is used to uniformly adjust the
size of the picture to the size 224 x 224 required by the ResNeXt-
50(32 x 4d) model; image enhancement techniques such as
random rotation and horizontal flip are used to increase the
diversity of Lentinus edodes sticks disease images and expand
the data set. The ToTensor function is used to convert the image
into the tensor format acceptable to the model and normalize it
to between [0.0, 1.0]. The Normalize function is used to
standardize the image. After standardization, the data are more
in line with the distribution law of data centralization, which can
increase the generalization ability of the model.

The Lentinus edodes stick disease dataset is divided into a
training set and a test set at a ratio of 9:1. Then, the transfer
learning method is adopted, and the load_state_dict function is
used to load the pretraining weight resnext-50(32 x 4d).pth
corresponding to the ResNeXt-50(32 x 4d) model and transfers
its network parameters to the collected dataset of Lentinus
edodes stick diseases. To study the influence of transfer learning
pretraining weight parameters on Accuracy, the following six
groups of comparative experiments were designed.

(1) The Accuracy of the ResNeXt-50(32 x 4d) network
was only 72.89% without using the pretraining
weight of transfer learning and using the Lentinus
edodes stick disease dataset to train the ResNeXt-
50(32 x 4d) network from scratch.

(2) Transfer learning was used to pretrain the weights,
but none of the weight parameters of the layers were
frozen. The Lentinus edodes stick disease dataset is
used to retrain the weights of all layers, and the
Accuracy was 91.39%.

(3) The transfer learning pretraining weight was used,
and all parameters of the pretraining weight con-
volutional layer and layer1 were frozen. The Lentinus
edodes stick disease dataset was used to retrain
layer2, layer3, layer4, and the fully connected layer.
The Accuracy was 90.62%.

(4) The transfer learning pretraining weight was used,
and all parameters of the pretraining weight con-
volutional layer, layerl, and layer2 were frozen. The
Lentinus edodes stick disease dataset was used to
retrain layer3, layer4, and the fully connected layer.
The Accuracy was 85.52%.

(5) The transfer learning pretraining weight was used,
and all parameters of the pretraining weight con-
volutional layer, layerl, layer2, and layer3 were
frozen. The Lentinus edodes stick disease dataset was
used to retrain layer4 and the fully connected layer.
The Accuracy was 84.37%.



Complexity

(6) The transfer learning pretraining weight was used,
and all parameters of the pretraining weight con-
volutional layer, layerl, layer2, layer3, and layer4
were frozen. The fully connected layer was retrained
with the Lentinus edodes stick disease dataset, and
the Accuracy was 76.55%.

The comparison between experiments (2)-(6) and experi-
ment (1) shows that for the Lentinus edodes stick disease
dataset, the pretraining weight parameter had a significant effect
on the improvement of the model recognition accuracy. This is
due to the use of the large image dataset ImageNet for transfer
learning pretraining weight. ImageNet provides a large number
of images, which enables the model to learn more features and
better fit the parameters. Therefore, the model obtained better
initialization network parameters during transfer learning and
reduced the possibility of overfitting. This also shows that the
transfer learning ability of the pretraining weight obtained with
sufficient training data in the target domain is stronger than that
of directly training small sample data.

In an experiment (2), the transfer learning pretraining
model was used, but none of the weight parameters of the layers
were frozen, and then, the weights of all layers were retrained.
This transfer learning method achieved the highest Accuracy of
91.39%. This shows that on the premise of using the transfer
learning pretraining weight, training the whole model with the
Lentinus edodes stick disease dataset will quickly improve the
learning ability of the model. Because the training process from
beginning to end gradually refines the underlying features of the
original input, the feature expression ability between layers is
stronger, and the abstract features of the image can be better
integrated.

In experiments (3)-(6), the more frozen layers there were,
the lower the accuracy of the model, and the higher the
overfitting ratio of the model. The reason for this situation is
that the more frozen layers there are, the fewer the parameters
that can be trained in the model, the weaker the calculation and
feature extraction capabilities of the model on the images of
Lentinus edodes stick diseases, the weaker the mutual influence
ability of the shared features between layers, and the original
bottom features cannot be relearned when they propagate layer
by layer. This leads to the gradual decline of the feature transfer
ability of the top layer. That is, the model only transfers high-
level features but cannot realize the gradual abstraction, char-
acterization, and extraction of features from the bottom to the
high level, and so the recognition rate of the model will
gradually decline in the end.

On the basis of experiment (2), the fully connected layer
fine-tuning experiment of the model is carried out.

3.3. Fine-Tuning Strategy of Model Fully Connected Layer.
To improve the accuracy of the model in the identification of
Lentinus edodes stick diseases, six fine-tuning strategies of
the fully connected layer were designed to modify the fully
connected layer of ResNeXt-50(32 x 4d).

Based on the influence experiment of pretraining weight
parameters, the hyperparameters of the feature extraction layer
are modified to adapt to the training of the Lentinus edodes
stick disease dataset. The design of the hyperparameters uses a
grid search algorithm [28] to select the best combination of
parameters. After experiments, the best hyperparameters of
ResNeXt-50(32 x 4d) in this experiment are shown in Table 1.

Before entering the fully connected layer, the image
feature matrix will pass through the global pooling layer and
then use the Flatten function to flatten the dimension, and
the multidimensional output will become one-dimensional.
At this time, the number of nodes is 2048. To improve the
classification performance of the model, the usual approach
is to increase the depth of the model, increase the number of
model parameters, or increase the samples of the training
dataset. However, simply increasing these values will cause
the model to become overfit and will reduce training ac-
curacy. For the fine-tuning model, the classification per-
formance can be improved by adding the fully connected
layer and setting the number of neuron nodes in the fully
connected layer. The increase in the number of neuron
nodes and layers will enable the model to learn more in-
formation from the Lentinus edodes stick disease dataset.
However, this will also increase the computational com-
plexity and even lead to network degradation and loss of
feature extraction information [29]. Based on this, 7 groups
of comparative experiments are designed, including six fine-
tuning methods of the fully connected layer and the
ResNeXt-50(32 x 4d) original fully connected layer.

(1) FCO:ResNeXt-50(32x4d) model original fully
connected layer. The fully connected layer was
redesigned to contain 1 layer. The number of nodes
was the classification number 4.

(2) FC1 (2048-4): The fully connected layer of the
ResNeXt-50(32 x4d) model was redesigned to
contain 3 layers. The number of nodes in the 1st
and 2nd layers was 2048 and the classification
number 4.

(3) FC2 (2048-1024-4): The fully connected layer of the
ResNeXt-50(32 x4d) model was redesigned to
contain 3 layers. The number of nodes in the 1st, 2nd,
and 3rd layers was 2048, 1024, and the classification
number 4, respectively.

(4) FC3 (2048-512-4): The fully connected layer of the
ResNeXt-50(32 x4d) model was redesigned to
contain 3 layers. The number of nodes in the Ist,
2nd, and 3rd layers was 2048, 512, and the clas-
sification number 4, respectively.

(5) FC4 (2048-256-4): The fully connected layer of the
ResNeXt-50(32 x4d) model was redesigned to
contain 3 layers. The number of nodes in the Ist,
2nd, and 3rd layers was 2048, 256, and the clas-
sification number 4, respectively.
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TasLE 1: The hyperparameters settings.
Hyperparameters Value
Learning rate 0.001
Batch size 64
Epochs 150
Optimization Adam
Dropout 0.5
Activation function Relu
TasLE 2: Classification results of the ResNeXt-50(32 x 4d) model under different fine-tuning strategies.

Fine-tuning method Accuracy (%) Precision Recall F1-score
FCo 91.39 0.8611 0.8891 0.8749
FC1 92.39 0.9074 0.8938 0.9005
FC2 90.58 0.9318 0.9041 0.9177
FC3(the best) 94.27 0.9432 0.9412 0.9422
FC4 91.78 0.8879 0.9130 0.9003
EC5 91.99 0.8959 0.9180 0.9068
FC6 92.59 0.9357 0.9032 0.9192

class: Aspergillus flavus prob: 0.875

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

class: Neurospora prob: 0.955

500

1000

1500

2000

2500

0 500

1000

1500 2000 2500 3000 3500

500 |
1000
1500
2000

2500

0 500 1000 1500 2000 2500 3000 3500

class: Nomal prob: 0.997

500 }
1000
1500
2000
2500

3000

0 1000

2000 3000 4000 5000

FIGURE 4: Part of the prediction results.

(6) FC5 (2048-1024-512-4): The fully connected layer of the
ResNeXt-50(32 x 4d) model was redesigned to contain
4 layers. The number of nodes in the 1st, 2nd, 3rd, and
4th layers was 2048, 1024, 512, and the classification
number 4, respectively.

(7) FC6 (2048-1024-256-4): The fully connected layer
of the ResNeXt-50(32 x 4d) model was redesigned
to contain 4 layers. The number of nodes in the 1st,
2nd, 3rd, and 4th layers was 2048, 1024, 256, and
the classification number 4, respectively.
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TaBLE 3: Classification confusion matrix.

Actual label

Forecast label

Normal Aspergillus flavus disease Trichoderm viride disease Neurospora disease
Normal 112 2 1 3
Aspergillus flavus disease 2 88 4 0
Trichoderm viride disease 1 85 0
Neurospora disease 3 1 1 61

TaBLE 4: Classification results of different models for Lentinus edodes stick diseases.

Model Accuracy (%) Precision Recall F1-score
The model proposed in this paper 94.27 0.9432 0.9412 0.9422
VGG16 85.80 0.8742 0.8571 0.8656
GoogLeNet 87.78 0.8505 0.8863 0.8680
ResNet50 89.59 0.9378 0.8728 0.9041
MobileNet v2 84.89 0.8564 0.8466 0.8515

The number of nodes in the first layer of the fully connected
layer is the one-dimensional vector obtained after global pooling
and flattening the dimension with the Flatten function, while
the number of nodes in the last layer is the number of output
categories. The number of nodes in the middle layer is set to an
exponential multiple of 2, and a large value is set to improve the
calculation efficiency. At the same time, the BatchNormld
function is used to accelerate the convergence of the neural
network and improve the stability in the training process. The
feature mapping is transformed into a nonlinear map by the
ReLU activation function, which makes up for the deficiency of
linear operation and improves the classification ability of the
model. The comparison results of six fully connected layer fine-
tuning strategies are shown in Table 2.

It can be seen from the table that the Accuracy of the model
was improved by fine-tuning methods FC1, FC3, and FC5,
which indicates that the model fine-tuning studied in this paper
is effective. Among the fine-tuning methods, FC3 had the best
effect. The Accuracy in the Lentinus edodes stick disease test set
reached 94.27%, which was 2.88% higher than that of the
original fully connected layer of the model. Part of the pre-
diction results is shown in Figure 4.

When the number of images in the test set is 367, the
confusion matrix obtained by ResNeXt-50(32 x 4d) based on
FC3 method model fine-tuning is shown in Table 3.

3.4. Comparison and Analysis of Algorithms. To reflect the
effectiveness of the research model in this paper, VGG16,
GoogLeNet, ResNet50, and MobileNet v2 deep learning
models are selected to conduct comparative experiments
on the self-built Lentinus edodes stick disease dataset.
The experimental results are shown in Table 4. It can be
seen from the table that the Accuracy of the model
studied in this paper has reached 94.27% and the F1-score
value has reached 0.9422, which is the best for the rec-
ognition of Lentinus edodes stick diseases.

4. Conclusions

In this paper, the ResNeXt-50(32 x 4d) model based on deep
transfer learning is designed and improved. It is used for the
automatic identification of Lentinus edodes stick diseases. First,
based on the pretraining weight of the ResNeXt-50(32 x 4d)
model and ImageNet dataset, the influence of pretraining
weight parameters on recognition accuracy is studied, and it is
proven that the pretraining weight parameters have a significant
effect on the improvement of the model’s recognition accuracy.
At the same time, without freezing the pretraining weight
parameters, using the Lentinus edodes stick disease dataset to
retrain the weights of all layers of ResNeXt-50(32x4d) can
better initialize the network parameters and reduce the cal-
culation pressure and overfitting problems of the model. Sec-
ond, to improve the accuracy of the model, the fully connected
layer of the ResNeXt-50(32 x 4d) model was redesigned to
contain 3 layers, and the number of nodes in the 1st, 2nd, and
3rd layers was 2048, 512, and classification number 4,
respectively.

In this paper, there are still deficiencies in the construction
of data sets, and there is a lack of disease images of Lentinus
edodes sticks in the actual culture environment. Therefore, in
the next step, it is planned to add image acquisition equipment
to the Lentinus edodes sticks pricking machine. When the
Lentinus edodes sticks pricking machine pulls out the Lentinus
edodes sticks from the shelf and rotates, the image acquisition
equipment can shoot the Lentinus edodes sticks images 360°, so
as to complete the collection of Lentinus edodes sticks disease
images in the actual environment. In addition, the author will
continue to study the compression algorithm [30] for Lentinus
edodes stick disease identification and optimize the network
structure to limit the number of computing and storage re-
sources needed to run the deep neural network on mobile or
embedded devices. The recognition test results will be analyzed
from multiple evaluation dimensions, such as Recognition
Speed, Accuracy, F1-score AUC, and ROC.
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