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In this study, under some inequality conditions, necessary and sufficient conditions, using fixed-point theorem in cones, are
established for the existence of C1-positive solutions for a class of second-order impulsive differential equations. Two examples are
given in the last section to illustrate the abstract results.

1. Introduction

+e theory of differential equations with impulsive effects
has an extensive application in realistic mathematical
models. It has been used to describe many evolution pro-
cesses, containing abrupt change, such as biological systems,
population dynamics, and optimal control. Hence, in recent
years, more and more attention has been paid on this topic.
For the general theory of impulsive differential equations,
one can see the monographs of Lakshmikantham et al. [1],
Bainov and Simeonov [2], and Benchohra et al. [3].+ere are
also some studies focusing on impulsive differential equa-
tions. In [4], Ye investigated the existence of mild solutions
for first-order impulsive semilinear neutral functional dif-
ferential equations with infinite delay in Banach spaces by
using the Hausdorffmeasure of noncompactness conditions.
In [5], Hernández et al. concerned with the existence of
solutions for partial neutral functional differential equations
of first and second order with impulses by using fixed-point
theorems. +e existence of solutions for fractional differ-
ential equations have also been studied widely. In [6], Gu
et al. studied the existence of positive solutions for impulsive
fractional differential equations attached with integral
boundary conditions via global bifurcation techniques. In
[7], Benchohra and Seba demonstrated the existence and
uniqueness of solutions for the initial value problem of

fractional differential equations by utilizing fixed-point
theorems.

+e existence of solutions for second-order differential
equations, involving different boundary conditions, has been
studied by many authors. Chu and Nieto in [8], utilizing the
nonlinear alternative principle of Leray-Schauder type and
Schauder’s fixed-point theorem, presented existence results
of positive T-periodic solutions for second-order differential
equations. In 2019, Ma and Zhang in [9] proved sharp
conditions for the existence of positive solutions of second-
order singular differential equation with integral boundary
conditions. Recently, Zhang and Tian [10] established sharp
conditions for the existence of positive solutions of second-
order impulsive differential equations. But in their work, a
key assumption is that the nonlinearity f(t, x) is nonde-
creasing with respect to x≥ 0. Clearly, if
f(t, x) � t2x1/3 + t3x− 1/3, the results obtained in [9, 10] are
not valid.+e aim of this study is to extend the results in [10]
to more general cases. We establish necessary and sufficient
conditions for the existence of C1-positive solutions for a
class of second-order impulsive differential equations. +e
results obtained in this study extend and improve some
existing works.

In the present work, we consider the boundary value
problem (BVP for short) of second-order impulsive dif-
ferential equation:
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− x″(t) � τ(t)f(t, x(t), y(t)), t ∈ I, t≠ tk,

Δx|t�tk
� δkx tk( , k � 1, 2, . . . , n,

αx(0) − βx′(0) � 0, cx(1) + ωx′(1) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where α, β, c,ω are the nonnegative constants satisfying
(α + β)c + αω> 0, I � (0, 1), τ ∈ Lp[0, 1](1≤p< +∞),
y(t) � ς(t)x− 1(t), and ς is a positive continuous function on
I, f ∈ C(I × (0, +∞) × (0, +∞), [0, +∞)), f(t, x, y) may be
singular at t � 0, 1, t0 � 0< t1 < t2 < · · · < tn < tn+1 � 1,
δk 

n

k�1 is a real sequence, and Δx|t�tk
� x(t+

k ) − x(tk)(k �

1, 2, . . . , n) represents the impulsive term, where x(tk) �

x(t−
k ) and x(t+

k ) denotes the right-hand limit of x(t) at
t � tk.

In addition, τ and δk 
n
k�1 satisfy the following

conditions:

(A1)τ ∈ Lp[0, 1] for some 1≤p< +∞, and there ex-
ists ξ > 0, such that τ(t)≥ ξ, i.e., t ∈ I.
(A2)(δk)n

k�1 is a real sequence with
δk > − 1, k � 1, 2, . . . , n, and denoted by

δ(t) � 
0<tk<t

1 + δk( , t ∈ I
∗ ≔ [0, 1]. (2)

Clearly, δ(t) is continuous on I∗. Denote by
δM � maxt∈I∗δ(t), δm � mint∈I∗δ(t). From (A2), we have

δ(t)≥ δm > 0,∀t ∈ I
∗
,

δ(t) � 1,∀t ∈ 0, t1 ,
(3)

δ′(t) ≡ 0,∀t ∈ I
∗
. (4)

Furthermore, δ− 1(t) � 0<tk<t(1 + δk)− 1 for any t ∈ I∗.
+e main results of this work are summarized as follows:

(i) +e necessary and sufficient conditions on τ and f

are established for the existence of C1-positive so-
lutions of the BVP (1) (+eorems 1 and 2)

(ii) We assume that the nonlinear term f(t, x, y) sat-
isfies (A3), which implies that f(t, x, y) is non-
decreasing with respect to x and nonincreasing with
respect to y (Remark 2). Butf(t, x, y) does not have
monotonicity in whole;

(iii) Correct examples are given in the last section to
illustrate our abstract results, which show that the
results obtained in this study contain some existing
works (+eorem 3 and 4).

+e rest of this study is organized as follows. Some
preliminaries and notations are presented in Section 2.
Particularly, we transform the BVP (1) to a problem without
impulse in this section. In Section 3, we prove the main
results by using the fixed-point theorem of cone mapping
and give some remarks. Examples are given in Section 4 to
illustrate the abstract results.

2. Preliminaries

In this section, some preliminaries and notations, which are
useful in the proof of the main results, are presented. In
order to discuss the BVP (1) more clearly, we first transform
the BVP (1) to a problem without impulse. Let

x(t) � δ(t)u(t), ∀t ∈ I
∗
. (5)

+en, y(t) � δ(t)u− 1(t) with ς(t) � δ2(t). +e BVP (1)
is rewritten into the BVP:

− u″(t) � δ− 1
(t)τ(t)f t, δ(t)u(t), δ(t)u

− 1
(t) , t ∈ I,

αu(0) − βu′(0) � 0, cδ(1)u(1) + ωδ(1)u′(1) � 0.

⎧⎨

⎩

(6)

Lemma 1. Let the assumptions (A1) and (A2) hold. *en,
u(t) is a solution of BVP (2) on I if and only if x(t) �

δ(t)u(t) is a solution of BVP (1) on I.

Proof. (Necessity). Let u(t) be a solution of the BVP (2) on I.
+en, on each interval (tk, tk+1], k � 0, 1, 2, . . . , n,
x(t) � δ(t)u(t) is absolutely continuous. For t≠ tk, we have

x′(t) � δ(t)u′(t),

x″(t) � δ(t)u″(t).
(7)

So,

− x″(t) � − δ(t)u″(t) � τ(t)f t, δ(t)u(t), δ(t)u
− 1

(t)  � τ(t)f(t, x(t), y(t)). (8)

When t � tk, we have

x t
+
k(  � lim

t⟶t+
k

δ(t)u(t) � 
0<ti≤tk

1 + δi( u tk( ,

x tk(  � x t
−
k(  � lim

t⟶t−
k

δ(t)u(t) � 
0< ti ≤ tk− 1

1 + δi( u tk( .

(9)

It follows that

Δx|t�tk
� x t

+
k(  − x tk( 

� 
0<ti≤tk− 1

1 + δi( δku tk( 

� δkδ tk( u tk( 

� δkx tk( .

(10)

Obviously, x(t) satisfies the boundary conditions. +en,
x(t) is a solution of the BVP (1) on I.
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(Sufficiency). Let x(t) be a solution of the BVP (1) on I.
+en, u(t) � δ− 1(t)x(t) and u″(t) � δ− 1(t)x″(t), which
follows

− δ(t)u″(t) � − x″(t) � τ(t)f(t, x(t), y(t)) � τ(t)f t, δ(t)u(t), δ(t)u
− 1

(t) , ∀t ∈ I. (11)

When t � tk, since x(tk) � x(t−
k ) and

δ− 1(t+
k ) � (1/1 + δk)δ− 1(t−

k ), we have

u t
+
k(  − u t

−
k(  � δ− 1

t
+
k( x t

+
k(  − δ− 1

t
−
k( x t

−
k( 

� δ− 1
t
+
k(  x t

−
k(  + δkx t

−
k(   − δ− 1

t
−
k( x t

−
k( 

� 1 + δk( δ− 1
t
+
k( x t

−
k(  − δ− 1

t
−
k( x t

−
k( 

� 0.

(12)

Direct calculation shows that u(t) satisfies all boundary
conditions. +en, u(t) is a solution of the BVP (2) on I. □

Definition 1. A function u ∈ C[0, 1]∩C2(0, 1) is called a
positive solution of the BVP (2) if u(t) satisfies all the
equations in (2) and u(t)> 0 for all t ∈ I. If u(t) is the
positive solution of the BVP (2) and u ∈ C1[0, 1], namely,
u′(0+) and u′(1− ) exist, then u is called a C1-positive so-
lution of the BVP (2).

+roughout this study, the following assumptions on f

are needed.

(A3)f(t, δm, δM)> 0 for any t ∈ I, and there exist
constants σ1 ≥ σ2 > 1, such that, for every ℓ ∈ (0, 1],

ℓσ1f(t, x, y)≤f t, ℓx, ℓ− 1
y ≤ ℓσ2f(t, x, y), (13)

for any t ∈ I and x, y ∈ (0, +∞).
(A4) 

1
0 δ

− 1(t)f(t, δM, δm)dt< +∞.

Remark 1. +e condition (A3) implies, for every ℓ ≥ 1,

ℓσ2f(t, x, y)≤f t, ℓx, ℓ− 1
y ≤ ℓσ1f(t, x, y), (14)

for any t ∈ I, x, y ∈ (0, +∞).

Remark 2. If f(t, x, y) satisfies (A3), then for any t ∈ I,
f(t, x, y) is nondecreasing with respect to x ∈ (0, +∞) and
nonincreasing with respect to y ∈ (0, +∞).

Denote by E: � C[0, 1] the Banach space of all con-
tinuous functions on [0, 1] equipped with the norm
‖u‖ � maxt∈I∗ |u(t)|. Define an operator Q: E⟶ E by

(Qu)(t) � 
1

0
G(t, s)δ− 1

(s)τ(s)f s, δ(s)u(s), δ(s)u
− 1

(s) ds, t ∈ I
∗
, (15)

where G(t, s) is Green’s function of the BVP (2) with u″ � 0,
and

G(t, s) �
1
ρ

(c + ω − ct)(β + αs), 0≤ s≤ t≤ 1,

(c + ω − cs)(β + αt), 0≤ t≤ s≤ 1,

⎧⎪⎨

⎪⎩
(16)

where ρ � (α + β)c + αω> 0.

Remark 3. By the definition of Q, u ∈ C[0, 1]∩C2(0, 1) is a
positive solution of the BVP (2) if and only if u ∈ C[0, 1] is a
positive fixed point of Q.

Lemma 2 (See [10]). Green’s function G(t, s) of the BVP (2)
satisfies

0< α∗ ≤ q(t)G(s, s)≤G(t, s)≤G(s, s)≤ β∗, ∀t, s ∈ I
∗
,

(17)

where

q(t) � min
αt + β
α + β

,
c + ω − ct

c + ω
 ,

α∗ �
ωβ
ρ

,

β∗ �
(c + ω)β

ρ
.

(18)

For any ] ∈ (0, 1/2), let I0 � [], 1 − ]] and
η � mint∈I0q(t). +en, η> 0. Define a cone P by

P � u ∈ E: ∃ζ ≥ 1 s.t.0< u(t)≤ ζG(t, t),∀t ∈ I
∗
,min

t∈I0
u(t)≥ η‖u‖ . (19)
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+en, P is a closed convex cone in E.

Lemma 3. Let the assumptions (A1)–(A4) hold. *en, the
operator Q: P⟶ E, defined by (3), is well defined.

Proof. Assume that (A1)–(A4) hold. For fixed u ∈ P with
u(t)> 0 for any t ∈ I∗, choosing a constant a ∈ (0, 1) sat-
isfying 0< au(t)< 1 for t ∈ I∗, we have

f t, δ(t)u(t), δ(t)u
− 1

(t) ≤
1
a

 
σ1

f t, aδ(t)u(t),
1
a
δ(t)u

− 1
(t) 

≤
1
a

 
σ1

(au(t))
σ2f(t, δ(t), δ(t))

≤ a
σ2− σ1‖u‖

σ2f t, δM, δm( .

(20)

So, for t ∈ I∗, by (17), we have

0<(Qu)(t) � 
1

0
G(t, s)δ− 1

(s)τ(s)f s, δ(s)u(s), δ(s)u
− 1

(s) ds

≤ a
σ2− σ1‖u‖

σ2β∗‖τ‖p 
1

0
δ− 1

(s)f s, δM, δm( ds

< +∞.

(21)

+is implies that the operatorQ: P⟶ E is well defined.
To end this section, we state a fixed-point theorem of

cone mapping, which is useful in the proof of our main
results. □

Lemma 4 (See [11]). Let E be a Banach space, and P ⊂ E be a
cone in E. Assume thatΩ1 andΩ2 are two bounded and open
subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2. If

Q: P∩ Ω2∖Ω1( ⟶ P, (22)

is a completely continuous operator such that either

(i) ‖Qu‖≤ ‖u‖,∀u ∈ P∩ zΩ1 and
‖Qu‖≥ ‖u‖,∀u ∈ P∩ zΩ2, or

(ii) ‖Qu‖≥ ‖u‖,∀u ∈ P∩ zΩ1 and
‖Qu‖≤ ‖u‖,∀u ∈ P∩ zΩ2,

then Q has at least one fixed point in P∩ (Ω2∖Ω1).

3. Main Results

In this section, we establish necessary and sufficient con-
ditions for the existence of C1-positive solutions of the BVP
(1) +e proof is based on Lemma 4.

Theorem 1. Let the assumptions (A1)–(A4) hold. *en, the
BVP (1) has at least one positive solution x ∈ C1[0, 1] if and
only if

0< 
1

0
δ− 1

(s)τ(s)f s, δ(s)G(s, s),(

δ s)G
− 1

(s, s) ds< +∞.

(23)

Proof. (Necessity). Let x ∈ C1[0, 1] be a positive solution of
the BVP (1) By Lemma 1, u ∈ C1[0, 1] is a positive
solution of the BVP (2). So, u′(0) and u′(1) exist and are
finite.

Since u″(t)≤ 0 for t ∈ I∗, it follows that u′(t) is non-
increasing on I∗ and u′(0)≥ u′(1). Hence, by (2.1) of [6],
there exists b> 0, such that

u(s)≥ bG(s, s), s ∈ I
∗
. (24)

+en,

u
− 1

(s)≤
1
b
G

− 1
(s, s), s ∈ I

∗
. (25)

Let ℓ � min b, 1{ }. +en,

δ(s)u(s)≥ ℓδ(s)G(s, s), δ(s)u
− 1

(s)

≤
1
ℓ
δ(s)G

− 1
(s, s), s ∈ I

∗
.

(26)

Hence, on the one hand, by Remark 1, we have
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1

0
δ− 1

(s)τ(s)f s, δ(s)G(s, s), δ(s)G
− 1

(s, s) ds≤ 
1

0
δ− 1

(s)τ(s)f s,
1
ℓ
δ(s)u(s), ℓδ(s)u

− 1
(s) ds

≤
1
ℓ

 
σ1


1

0
δ− 1

(s)τ(s)f s, δ(s)u(s), δ(s)u
− 1

(s) ds

�
1
ℓ

 
σ1


1

0
− u″(s) ds �

1
ℓ

 
σ1

u′(0) − u′(1) < +∞.

(27)

On the other hand, if f(s, δ(s)u(s), δ(s)u− 1(s)) ≡ 0 for
s ∈ I∗, then

δ− 1
(s)τ(s)f s, δ(s)u(s), δ(s)u

− 1
(s)  ≡ 0. (28)

By (15) and Lemma 1, u(t) ≡ 0 for t ∈ I∗. So, x(t) ≡ 0 for
t ∈ I∗, which contradicts the positivity of x. Hence, there
exists t∗ ∈ (0, 1), such that

f t
∗
, δ t
∗

( u t
∗

( , δ t
∗

( u
− 1

t
∗

(  > 0. (29)

By (2.1) of [6], there exists c> 0, such that u(s)≤ cG(s, s)

for s ∈ I∗. +en,

u
− 1

(s)≥
1
c

G
− 1

(s, s), s ∈ I
∗
. (30)

Let ℓ1 � max c, 1{ }. +en,

δ t
∗

( u t
∗

( ≤ ℓ1δ t
∗

( G t
∗
, t
∗

( , δ t
∗

( u
− 1

t
∗

( 

≥
1
ℓ1
δ t
∗

( G
− 1

t
∗
, t
∗

( .

(31)

Hence, by (A1) and Remark 1, we have the following:

Case (1): if τ(t∗)> 0, then

0< δ− 1
t
∗

( τ t
∗

( f t
∗
, δ t
∗

( u t
∗

( , δ t
∗

( u
− 1

t
∗

(  

≤ δ− 1
t
∗

( τ t
∗

( f t
∗
, ℓ1δ t

∗
( G t

∗
, t
∗

( ,
1
ℓ1
δ t
∗

( G
− 1

t
∗
, t
∗

(  

≤ ℓ1( 
σ1δ− 1

t
∗

( τ t
∗

( f t
∗
, δ t
∗

( G t
∗
, t
∗

( , δ t
∗

( G
− 1

t
∗
, t
∗

(  .

(32)

Case (2): if τ(t∗) � 0, choose a small neighborhood
[a1, b1] of t∗, such that τ(s) ≡ 0 for s ∈ [a1, b1] ⊂ I. So,


b1

a1

δ− 1
(s)τ(s)f s, δ(s)G(s, s), δ(s)G

− 1
(s, s) ds> 0.

(33)

Consequently, under both cases, we have


1

0
δ− 1

(s)τ(s)f s, δ(s)G(s, s), δ(s)G
− 1

(s, s) ds> 0. (34)

(Sufficiency). At first, we prove that Q: P⟶ P is a
completely continuous operator. In fact, on the one hand,
for any u ∈ P, by (15) and (17), we have

(Qu)(t)≥ 
1

0
q(t)G(s, s)δ− 1

(s)τ(s)f s, δ(s)u(s), δ(s)u
− 1

(s) ds. (35)

+en,

min
t∈I0

(Qu)(t) ≥ min
t∈I0

q(t) 
1

0
G(s, s)δ− 1

(s)τ(s)f s, δ(s)u(s), δ(s)u
− 1

(s) ds

≥ η‖Qu‖, ∀t ∈ I
∗
.

(36)

On the other hand, since u ∈ P, there exists a constant
ζ ≥ 1, such that u(s)≤ ζG(s, s) for any s ∈ I∗. Hence,

Complexity 5



δ(s)u(s)≤ ζδ(s)G(s, s), δ(s)u
− 1

(s)≥
1
ζ
δ(s)G

− 1
(s, s), s ∈ I

∗
.

(37)

Consequently, by (A3) and Remark 1, we have

(Qu)(t)≤ 
1

0
G(t, s)δ− 1

(s)τ(s)f s, ζδ(s)G(s, s),
1
ζ
δ(s)G

− 1
(s, s) ds

≤ ζσ1 
1

0
G(t, s)δ− 1

(s)τ(s)f s, δ(s)G(s, s), δ(s)G
− 1

(s, s) ds

≤ ζσ1G(t, t) 
1

0
δ− 1

(s)τ(s)f s, δ(s)G(s, s), δ(s)G
− 1

(s, s) ds, ∀t ∈ I
∗
.

(38)

Let ζ∗ � max ζσ1 
1
0 δ

− 1(s)τ(s)f(s, δ(s)G(s, s), δ(s)G− 1

(s, s))ds, 1}. +en,

(Qu)(t)≤ ζ∗G(t, t), ∀t ∈ I
∗
. (39)

Hence, Q(P) ⊂ P. By Ascoli-Arzela’s theorem, one can
prove that Q: P⟶ P is completely continuous.

Second, we prove that there exists a constant r> 0, such
that

‖Qu‖≤ ‖u‖, ∀u ∈ P∩ zΩr, (40)

where Ωr � u ∈ E: ‖u‖< r{ } and zΩr � u ∈ E: ‖u‖ � r{ }.
For u ∈ P with ‖u‖≤ 1, we have u(t)≤ ‖u‖≤ 1 for any

t ∈ I∗. Hence, by (A3), we have

f t, δ(t)u(t), δ(t)u
− 1

(t) ≤ u
σ2(t)f(t, δ(t), δ(t))

≤ ‖u‖
σ2f t, δM, δm( , ∀t ∈ I

∗
.

(41)

So,

‖Qu‖≤ max
t∈I∗


1

0
G(t, s)δ− 1

(s)τ(s)‖u‖
σ2f t, δM, δm( ds

≤ β∗‖τ‖p‖u‖
σ2 

1

0
δ− 1

(s)f t, δM, δm( ds � A‖u‖
σ2 ,

(42)

where A � β∗‖τ‖p 
1
0 δ

− 1(s)f(t, δM, δm)ds.
If A> 1, set r � (1A)1/(σ2− 1) < 1; when u ∈ P∩ zΩr, we

have

‖Qu‖≤A‖u‖
σ2 � A

1− σ2/ σ2− 1( )( ) � r � ‖u‖. (43)

If A≤ 1, set r � 1; when u ∈ P∩ zΩr, we have

‖Qu‖≤A‖u‖
σ2 � A≤ 1 � r � ‖u‖. (44)

+ird, we prove that there exists a constant R> r, such
that

‖Qu‖≥ ‖u‖,∀u ∈ P∩ zΩR, (45)

where ΩR � u ∈ E: ‖u‖<R{ } and zΩR � u ∈ E: ‖u‖ � R{ }.

For u ∈ P with u(t)≥ 1 for t ∈ I∗, we have

δ(t)u(t) ≥ δm, δ(t)u
− 1

(t)≤ δ(t)≤ δM. (46)

It follows that

f t, δ(t)u(t), δ(t)u
− 1

(t) ≥ u
σ2(t)f(t, δ(t), δ(t))

≥ q
σ2(t)‖u‖

σ2f t, δm, δM( , ∀t ∈ I
∗
.

(47)

Hence, by the definition of operator Q and cone P, for
any t ∈ I∗, we have

(Qu)(t)≥ α∗ξ 
1

0
δ− 1

(s)q
σ2(s)‖u‖

σ2f(s, δ(s), δ(s))ds

≥ α∗ξ‖u‖
σ2 

1− ]

]
δ− 1

(s)q
σ2(s)f(s, δ(s), δ(s))ds

≥ ‖u‖
σ2α∗ξησ2 

1− ]

]
δ− 1

(s)f s, δm, δM( ds � B‖u‖
σ2 ,

(48)

where B � α∗ξησ2 
1− ]
] δ− 1(s)f(s, δm, δM)ds and

η � min
t∈I0

q(t).

If B< 1, setting R � (1/B)1/(σ2− 1), R> 1≥ r. For
u ∈ P∩ zΩR, we have

‖Qu‖≥ (Qu)(t)≥B‖u‖
σ2 � B

1− σ2/σ2− 1( ) � R � ‖u‖. (49)

If B≥ 1, setting R � B + 1, R> 1≥ r. For u ∈ P∩ zΩR, we
have

‖Qu‖≥ (Qu)(t)≥B‖u‖
σ2 ≥B‖u‖≥ ‖u‖. (50)

By Lemma 4, Q has at least one fixed point
u∗ ∈ P∩ (ΩR∖Ωr) satisfying 0< r≤ ‖u∗‖≤R. Hence,
mint∈I0u

∗(t)≥ η‖u∗‖> 0, and it is a positive solution of the
BVP (2).

Finally, we prove u∗ ∈ C1[0, 1]. Since u∗ ∈ P, there exists
a constant ζ1 ≥ 1, such that u∗(s)≤ ζ1G(s, s) for s ∈ I∗. +en,
by Remark 1, one has
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1

0
u
∗

( ″(s)


ds � 
1

0
δ− 1

(s)τ(s)f s, δ(s)u
∗
(s), δ(s) u

∗
( 

− 1
(s) ds

≤ 
1

0
δ− 1

(s)τ(s)f s, ζ1δ(s)G(s, s),
1
ζ1

δ(s)G
− 1

(s, s) ds

≤ ζ1( 
σ1 

1

0
δ− 1

(s)τ(s)f s, δ(s)G(s, s), δ(s)G
− 1

(s, s) ds< +∞.

(51)

Hence, u∗ is absolutely integrable on I∗. So, (u∗)′(0+)

and (u∗)′(1− ) exist and are finite.+en, u∗ ∈ C1[0, 1], and it
is a positive solution of the BVP (2). By Lemma 1, x∗(t) �

δ(t)u∗(t),∀t ∈ I∗ belongs to C1[0, 1], and it is a positive
solution of the BVP (1). □

Theorem 2. Assume that τ and f satisfy the conditions
(A1), (A2), (A4), and (A5)f(t, δm, δM)> 0, t ∈ I, and
there exist constants 0< σ3 ≤ σ4 < 1, such that for every
ℓ ∈ (0, 1],

ℓσ4f(t, x, y)≤f t, ℓx, ℓ− 1
y ≤ ℓσ3f(t, x, y), (52)

for any t ∈ I, x, y ∈ (0, +∞).

+en, the BVP (1) has at least one positive solution
x ∈ C1[0, 1] if and only if (23) holds.

Proof. If the condition (A3) is replaced by (A5), we can also
obtain the conclusion of Lemma 3.+e proof of this theorem
is the same as the one of +eorem 1. So, we omit the details
here. □

Remark 4. Condition (52) is equivalent to

ℓσ3f(t, x, y)≤f t, ℓx, ℓ− 1
y ≤ ℓσ4f(t, x, y), ℓ ≥ 1. (53)

If f(t, x, y) satisfies (A5), then f(t, x, y) is nonde-
creasing with respect to x and nonincreasing with respect to
y for every t ∈ I.

Remark 5. In [10], the authors assumed that f(t, x) must be
nondecreasing with respect to x. In the present work, we
assume that f(t, x, y) is nondecreasing with respect to x and
nonincreasing with respect to y. But f(t, x, y) is not mo-
notonous with respect to both x and y. +erefore, our results
extend the ones of [10].

Remark 6. If τ ∈ L∞[0, 1], the results in +eorems 1 and 2
are still true.

4. Examples

Example 1. Consider the second-order impulsive boundary
value problem (IBVP):

− x″(t) � (3 + sin t) e
t2

x
3

+ e
t
x

− 3
 , t ∈ (0, 1), t≠ tk,

Δx|t�tk
� x tk( , k � 1, 2, . . . , n,

αx(0) − βx′(0) � 0, cx(1) + ωx′(1) � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(54)

where α, β, c,ω≥ 0 satisfy (α + β)c + αω> 0.

Theorem 3. *e IBVP (7) has at least one positive solution
x ∈ C1[0, 1] if and only if

0< 
1

0
(3 + sin s)f s, 2n

G(s, s), G
− 1

(s, s) ds< +∞, (55)

where

G(s, s) �
(c + ω − cs)(β + αs)

(α + β)c + αω
, 0≤ s≤ 1. (56)

Proof. Let f(t, x, y) � et2x3 + ety− 3. Obviously, f(t, x, x) �

et2x3 + etx− 3 and τ(t) � 3 + sin t. +en, the condition (A1)

holds with ξ � 2. Since δk � 1, it follows that the condition
(A2) holds with δ(t) � Π0<tk<t2 and δm � 1, δM � 2n. +en,
f(t, δm, δM) � et2 + 2− 3net > 0,∀t ∈ (0, 1), and for ℓ ∈ (0, 1],
we have

f t, ℓx, ℓ− 1
y  � e

t2
(ℓx)

3
+ e

t ℓ− 1
y 

− 3

� ℓ3et2
x
3

+ ℓ4et
y

− 3
,

(57)

which implies that

ℓ5f(t, x, y)≤f t, ℓx, ℓ− 1
y ≤ ℓ2f(t, x, y), ∀t ∈ (0, 1).

(58)

Clearly, 
1
0 2

3net2 + etdt< +∞. Hence, the conditions
(A3) and (A4) are satisfied. +erefore, by +eorem 1, the
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IBVP (7) has at least one positive solution x ∈ C1[0, 1] if and
only if (55) holds. □

Example 2. Consider the second-order impulsive boundary
value problem (IBVP):

− x″(t) � 2 − cos t
2

  t
2
x
1/3

+ t
3
x

− (1/3)
 , t ∈ (0, 1), t≠ tk,

Δx|t�tk
� x tk( , k � 1, 2, . . . , n,

αx(0) − βx′(0) � 0, cx(1) + ωx′(1) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(59)

where α, β, c,ω≥ 0 satisfy (α + β)c + αω> 0.

Theorem 4. *e IBVP (10) has at least one positive solution
x ∈ C1[0, 1] if and only if

0< 
1

0
2 − cos s

2
 f s, 2n

G(s, s), G
− 1

(s, s) ds< +∞, (60)

where G(s, s) is given in (56).

Proof. Let f(t, x, y) � t2x1/3 + t3y− 1/3. Obviously,
f(t, x, x) � t2x1/3 + t3x− (1/3) and τ(t) � 2 − cos t2. +en,
for ℓ ∈ (0, 1], we have

f t, ℓx, ℓ− 1
y  � t

2
(ℓx)

1/3
+ t

3 ℓ− 1
y 

− 1/3

� ℓ1/3t2x1/3
+ ℓ1/4t3y− 1/3

,
(61)

which implies that

ℓ1/2f(t, x, y)≤f t, ℓx, ℓ− 1
y ≤ ℓ1/5f(t, x, y), ∀t ∈ (0, 1).

(62)

+e remain proof is similar to the one of+eorem 3, and
we omit the details here. □

Remark 7. If f(t, x, x) � t2x1/3 + t3x− 1/3 or
f(t, x, x) � t2x1/3 + t3x− 1/3, it is clear that
F(t, x) � f(t, x, x) does not have monotonicity with respect
to both x. Hence, the results in [10] are not valid to Examples
1 and 2.

5. Conclusions

+is study deals with the existence of C1-positive solutions
for a class of second-order impulsive differential equations.
By using the fixed-point theorem of cone mapping, we
establish the necessary and sufficient conditions for the
existence of C1-positive solutions of the BVP (1) Two ex-
amples are given at last to illustrate the application of the
obtained abstract results.
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