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(e epidemic spreading is closely related to the spread of information, and it will coevolve with the information transmission.
Considering that the network structure has a significant impact on network dynamics and the virtual contact networks have
obvious community structures in reality, in this article, we built a multiplex network, which contains a community structure to
explore the interplay of the coupled spread dynamics. We first use a microscopic Markov chain approach to characterize the
coupled disease-awareness dynamics and then analyze the effect of different factors on the coevolution of information dis-
semination and epidemic spreading based on the Monte Carlo simulation. (e simulation results show that promoting the
dissemination of information is indeed conducive to suppressing the spread of disease, but changing the process of disease
transmission has no obvious effect on the information dissemination. (e analysis also reveals that increasing the information
transmission rate or decreasing the information recovery rate can promote the spread of information and inhibit the spread of
diseases. In addition, taking preventive behaviors or decreasing the long-distance jump also helps slow the epidemic spreading.

1. Introduction

Every outbreak of infectious diseases will cause immea-
surable losses, especially, the outbreak of coronavirus disease
2019 (COVID-19); as of May 15, 2021, it has infected more
than 160 million people and has caused more than 3.3
million deaths worldwide. In order to control the spread of
the disease, it is important to understand themechanism and
influencing factors of the epidemic spreading. (e spread of
disease is not an independent process, and it is closely related
to information dissemination about the disease and human
preventive behavior [1–3]. For instance, when information
about the disease spreads through various communication
platforms, individuals who are aware of this information will
take certain preventive actions, such as wearing masks,
washing hands, and maintaining physical distancing, to
protect themselves.(ese preventive behaviors can affect the
dynamics of disease transmission and suppress the outbreak
of the epidemic. At present, exploring the interaction be-
tween information transmission and disease transmission
has become a novel research topic [4–7].

Compartmental models, such as susceptible-infected-
susceptible (SIS) model, susceptible-infectious-recovered
(SIR) model, and susceptible-exposed-infected-recovered
(SEIR) model, are originally used to describe the dynamics of
disease transmission [8]. But these traditional models need
to assume that the population is homogeneous and well
mixed. With the rapid development of network science,
complex network models of epidemics break the above
limitations and provide a new perspective for exploring the
dynamics of disease transmission [9]. (ese complex net-
work models can represent heterogeneous population
structure and interaction patterns among individuals to a
certain extent. Researchers have explored various dynamic
processes of disease transmission on different types of
complex networks (e.g., random networks, small-world
networks, scale-free networks, weighted networks, adapta-
tive networks) [10–15]. Most previous studies only focus on
the epidemic spreading and do not consider more other
dynamic processes. At present, some studies have explored
the coevolution of awareness and epidemics on single and
multiplex networks, where the information about the disease
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is called awareness [3]. For the coevolution of awareness and
epidemic on single networks, Funk et al. link the infor-
mation dissemination model with an epidemiological SIR
model to study how the spread of awareness affects the
spread of a disease [4]. (ey find that spreading the
awareness of the disease can result in a lower epidemic size.
On the basis of this study, Funk et al. then overlay the SIS
model of information dissemination with the epidemio-
logical susceptible-infected-recovered-susceptible (SIRS)
model to study the interaction between local behavioral
response and endemic disease [16]. Ruan et al. link the
epidemiological SIR model with the information dissemi-
nationmodel to study the coevolution of the crisis awareness
and epidemic spreading [17]. (ey find that the epidemic
spreading can be suppressed when the information creation
rate and the sensitivity to information are large.

Disease transmission usually takes place in the physical
contact networks, and information dissemination takes
place in the virtual contact networks, which can be built
through different communication platforms, such as phone
calls, Facebook, Twitter, and WeChat. (e structure of
physical contact networks and virtual contact networks is
usually very different. (erefore, it is inappropriate to
simulate the coevolution of awareness and epidemics on a
single network. Some scientists have paid attention to this
issue and they use multiplex networks to simulate the spread
of diseases and information [18–29]. For instance, Granell
et al. study the interplay between awareness and epidemic
spreading based on a multiplex network, which contains two
layers: the virtual contact layer and the physical contact layer
[18]. (ey use the unaware-aware-unaware (UAU) model to
describe the process of disease transmission, which takes
place in the virtual contact layer and uses the SIS model in
the physical layer to simulate the epidemic spreading. (ey
find that the onset of the epidemics has a critical value. Many
previous studies assume that the time scale of multiplex
network evolution is much longer than the spreading dy-
namics; therefore, multiplex networks are often regarded as
static networks [3]. But in reality, individuals may move at
any time, so the physical contact work is a dynamic network.
Some studies have explored the dynamical interaction be-
tween disease transmission and information dissemination
by constructing dynamic multiplex networks [30, 31]. For
example, Xia et al. construct a double-layer network to
explore the coevolution of information and epidemic
spreading, where the top layer is a static communication
network and the bottom layer is a dynamical physical
contact network [30]. Yang et al. construct an epidemic
spread-information dissemination coupling network con-
sidering the movements of individuals across regions to
analyze the dynamic evolution of the spreading process [31].
In addition, many studies have shown that the topology of
the network can significantly affect the dynamics of disease
transmission [32, 33]. Previous studies assume that the
virtual contact network is a power-law degree distribution
network and analyze the impact of this network structure on
disease and information dissemination. In reality, virtual
contact networks often contain community structures,
which has a significant impact on the spread of information

[34]. (erefore, when investigating the coevolution of in-
formation and disease, the virtual contact network with
community structure should not be ignored.

Considering the influence of community structure on
information dissemination, in this article, we first build a
multiplex virtual-physical network, where the virtual
contact network has a community structure and the
physical contact network is a dynamic network. We then
use an unaware-aware-recovered + susceptible-infected-
recovered (UAR+ SIR) model on this multiplex network to
reveal the interplay between information and disease
spreading. We perform Monte Carlo (MC) simulation to
show the coevolution of information and epidemic
spreading and investigate the effect of different factors on
the spreading dynamics. (e results show that the in-
creasing information transmission rate or the probability of
taking preventive behaviors and decreasing the long-dis-
tance jump probability or information recovery rate can
reduce the scope of disease transmission. We also find that
the dynamic of information dissemination is only sensitive
to the information transmission rate and the information
recovery rate, and it is not sensitive to other model
parameters.

2. Model

2.1. Multiplex Virtual-Physical Contact Network. To un-
derstand the interplay between information and epidemic
spreading process, we simulate these two processes in a
multiplex network. (is multiplex network consists of two
layers. (e top layer is a communication network with a
community structure, and the bottom layer is a physical
contact network with moving agents and regional structure
presented in Figure 1(a). (e top layer can be called the
virtual layer, and the information is diffused upon this layer
through virtual contact between individuals. (e bottom
layer can be called the physical layer, and the diffusion of
infectious diseases takes place in this layer through physical
contact between individuals.

(e communication network is an undirected graph,
where nodes represent individuals and links represent their
relationships of information transmission. In the real world,
communication networks often display a community
structure, where the contacts between individuals in the
same community are more frequent, whereas the contacts
between individuals in different communities are relatively
few. In order to make our model closer to the characteristics
of the empirical communication networks, we make the
communication network in the virtual layer also have a
community structure. In addition, since the contacts be-
tween individuals in a short period of time is relatively stable,
we assume that the links in the communication network will
remain unchanged in the short term. (at is to say, the
communication network in the virtual layer is a static
network in the short term.

(e physical contact network is also an undirected
network, where nodes are individuals and the link between
two nodes indicates that these two individuals are inter-
acting within a certain radius. Since each individual can
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move, the link between the two individuals in the physical
contact network may disappear at the next moment.
(erefore, the structure of the physical contact network
changes dynamically over time. Based on the existing dy-
namical networkmodel [35–37], we assume that the physical
contact network contains N individuals and these moving
individuals are distributed in a planar space
Γ � (x, y) ∈ R2: 0⩽ x⩽L, 0⩽y⩽ L􏼈 􏼉. Individuals are rep-
resented as point particles. In particular, we consider that
people in real life tend to move within fixed areas and rarely
move across areas. In order to simulate this phenomenon in
the model, we divide the planar space Γ into four equal parts
and in the initial state N, individuals are uniformly dis-
tributed in these places shown in Figure 1(b).(e position of
i-th individual in the planar space at time t is denoted as
Pi(t) � (xi(t), yi(t)), and its velocity Vi(t) � (vi (t) cos θi

(t), vi(t)sin θi(t)), i � 1, 2, . . . , N. We assume that the in-
dividual’s moving speed is a constant in time and each
individual has the same speed, that is, vi(t) � v,
∀i � 1, 2, . . . , N and ∀t. At each time step, the i-th individual
will stochastically change the moving direction angles θi(t).
(en, the positions and the orientations of node i at time
t + 1 are updated based on the following rule:

xi(t + 1) � xi(t) + vi(t)cos θi(t),

yi(t + 1) � yi(t) + vi(t)sin θi(t),

θi(t + 1) � ξi(t + 1),

(1)

where ξi(t + 1) is a random variable and it is chosen from a
uniform probability distribution in the interval [−π, π]. In
addition, we assume that each individual has its own inter-
action radius and the interaction radius of the i-th individual
is denoted by ri. In this article, we assume that all individuals
have equal interaction radius r. (en, the distance between
two nodes i and j in the physical layer at time t can be
measured by the Euclidean distance, and it is defined as

dij(t) �

����������������������������

xi(t) − xj(t)􏼐 􏼑
2

+ yi(t) − yj(t)􏼐 􏼑
2

􏽲

, i, j � 1, 2, . . . , N.

(2)

Whenwe know the distance between any two nodes in the
physical layer and their radius, we can build a physical contact
network. For any two nodes i and j in the physical layer, if
their distance dij(t)⩽ r, an edge will be established between

node i and node. In addition, considering that the individual
can travel with time scales much shorter than those related to
epidemic dynamics such as traveling by flights, we allow
individuals to perform long-distance jumps in the physical
layer. (e probability of an individual making a long-distance
jump is denoted by pjump ∈ [0, 1], which quantifies the
probability of an individual jumping from the current region
to other regions. To sum up, at each time step, any individual
in the physical layer can have two choices: it moves either
following (1) with probability 1 − pjump or performing a long-
distance jump from the current region to another region with
probability pjump. After the individuals have moved, we then
compare the distance between individuals with interaction
radius and establish the edges between nodes. So at each time
step, we can obtain a physical contact network.

2.2. Diffusion of Information and Disease. (e spread of
disease takes place on the physical layer, and we use the
classic SIR model to simulate the epidemic spreading. (e
SIR model divides N individuals into three disjoint groups:
susceptible (S), infected (I), and recovered I. (e individuals
in state S have not contracted the disease, but they can be
infected. (e individuals in state I have contracted the
disease, and they can transmit the disease to the susceptible
individuals. Besides, the infected individuals can also recover
after treatment. Once the individuals are in the recovery
state, they will no longer be infected or spread disease. We
define S(t), I(t), R(t) as the fractions of susceptible, in-
fected, and recovered individuals at time t, where
S(t) + I(t) + R(t) � 1. We assume that when a susceptible
individual comes into contact with an infected individual, its
state becomes state I with probability β1 and maintains the
original state with probability 1 − β1. We call the probability
β1 the disease transmission rate. For each infected indi-
vidual, at each time step, their state can become recovered
state with probability c1 and stay in the infected state with
probability 1 − c1. (e probability c1 is called disease re-
covery rate. When we simulate the spread of disease in the
physical contact network, at the initial time t � 0, some
nodes will be randomly selected as infected nodes and all
other nodes are in a susceptible state. After that, the nodes in
the infected state will infect its neighbors at each step, the
number of nodes in the susceptible state will decrease, while
the number of nodes in the recovered state will increase.

Virtual layer

Physical layer

(a)

r

(b)

Figure 1: Illustration of multiplex virtual-physical contact network. (a) Virtual contact network with community structure and dynamic
physical contact network. (b) Individuals perform random walk in a planar space.
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We simulate the spread of information in the virtual layer,
and this diffusion process is also modeled based on the SIR
model.(eN individuals in the virtual network are also divided
into three groups: unaware (U), aware (A), and recoverI(R).
When an epidemic breaks out, the individuals in stateU do not
have the information about the disease. (e individuals in state
A know the information about the disease and pass it to other
people with a certain probability. (e individuals in state R also
receive the information about the disease, but they do not want
to tell other people. For an unaware individual, there are two
paths to transform from state U to state A: either the com-
municationwith neighbors in stateA or the individual is already
sick (i.e., the individual at the physical layer is in state I). When
an unaware individual contacts an aware individual, we assume
that its state becomes state A with probability β2 and maintains
the original state with probability 1 − β2. For each aware in-
dividual, at each time step, their state can become recovered
state with probability c2 and stay in the aware state with
probability 1 − c2. We call the probability β2 and probability c2
the information transmission rate and information recovery
rate. In addition, we also assume that when a healthy individual
is aware of the information about the epidemic, the individual
will take preventive actions with the probability pprevent. (ese
preventive behaviors can reduce the probability of being in-
fected andmake the disease transmission rate with a probability
(1 − ω)β1. (e parameter ω represents the effect of taking
protective actions on disease prevention. In all simulation ex-
periments, we fix c1 � 0.2 and c2 � 0.2.(erefore, the effective
disease transmission rate can be defined as β1/0.2, and the
effective information transmission rate can be defined as β2/0.2.

(e virtual contact network and the physical contact
network can be described by the adjacencymatrices (aij)N×N

and (bij)N×N, respectively, where aij � 1 represents there is
virtual contact between node i and node j and aij � 0
otherwise, and bij � 1 indicates there is physical contact
between node i and node j and bij � 0 otherwise. It needs to

be pointed out that the adjacency matrix (bij)N×N changes
dynamically over time, because the physical contact network
is a dynamic network. (en, we use the microscopic Markov
chain approach (MMCA) to describe the coevolution of
disease transmission and information transmission. During
the spread of information and disease, an individual can
have seven possible states: unaware and susceptible (US),
aware and susceptible (AS), aware and infected (AI), aware
and recovered (ARP), recovered and susceptible (RVS),
recovered and infected (RVI), and recovered and recovered
(RVRP), where RV and RP represent the individual is in a
state of recovery at the virtual layer or physical layer, re-
spectively.(e probability of node i being in one of the above
states at time t is denoted by pUS

i (t), pAS
i (t), pAI

i (t), p
ARP

i (t),
p

RVS
i (t), p

RVI
i (t), and p

RVRP

i (t). We assume that the prob-
ability of node i in state U not being informed by any
neighbors is θi(t), the probability of node i not being in-
fected by any neighbors if node i is aware of the information
of disease is qA

i (t), and the probability of node i not being
infected by any neighbors if node i is in the unaware state is
qU

i (t). (e above probabilities are described as follows:

θi(t) � 􏽙
j

1 − ajip
A
j (t)β2􏽨 􏽩,

q
A
i (t) � pprevent 􏽙

j

1 − bjip
I
j(t)0.4β1􏽨 􏽩

+ 1 − pprevent􏼐 􏼑 􏽙
j

1 − bjip
I
j(t)β1􏽨 􏽩,

q
U
i (t) � 􏽙

j

1 − bjip
I
j(t)β1􏽨 􏽩,

(3)

where pA
j (t) � pAS

j (t) + pAI
j (t) + p

ARP

j (t) and pI
j(t) �

pAI
j (t) + p

RVI
j (t). Based on the transition probability trees

presented in Figure 2, the MMCA equations of the coevo-
lution dynamic for each node i are as follows:

p
US
i (t + 1) � p

US
i (t)θi(t)q

U
i (t),

p
AS
i (t + 1) � p

US
i (t) 1 − θi(t)( 􏼁q

A
i (t) + p

AS
i (t) 1 − c2( 􏼁q

A
i (t),

p
AI
i (t + 1) � p

US
i (t)θi(t) 1 − q

U
i (t)􏼐 􏼑 + p

US
i (t) 1 − θi(t)( 􏼁 1 − q

A
i (t)􏼐 􏼑

+ p
AS
i (t) 1 − c2( 􏼁 1 − q

A
i (t)􏼐 􏼑 + p

AI
i (t) 1 − c2( 􏼁 1 − c1( 􏼁,

p
ARP

i (t + 1) � p
AI
i (t) 1 − c2( 􏼁c1 + p

ARP

i (t) 1 − c2( 􏼁,

p
RVS
i (t + 1)p

AS
i (t)c2q

A
i (t) + p

RVS
i (t)q

A
i (t),

p
RVI
i (t + 1) � p

AS
i (t)c2 + p

RVS
i (t)􏼐 􏼑 1 − q

A
i (t)􏼐 􏼑 + p

AI
i (t)c2 + p

RVI
i (t)􏼐 􏼑(1 − c1),

p
RVRP

i (t + 1) � p
AI
i (t)c2c1 + p

ARP

i (t)c2 + p
RVI
i (t)c1 + p

RVRP

i (t).

(4)

When the coevolution dynamic reaches the stationary state,
we can obtainpUS

i (t + 1) � pUS
i (t) � pUS

i and, equivalently, for
other states.

3. Results

Before simulating the spread of disease and information, we
first construct the virtual-physical contact network. Con-
sidering that the virtual contact network has a community

structure, we adopt the artificial benchmark [38] designed by
Girvan and Newman to build a virtual contact network with
1000 nodes. (ese nodes are assigned to four communities
with different nodes each: 50, 150, 300, and 500 nodes. (e
link density within a community and the link density be-
tween communities are tuned by two parameters pin and
pout, respectively. If two nodes belong to the same com-
munity, they are connected with probability pin; if two nodes
belong to different communities, they are connected with
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probability pout. By setting these two parameters and the
number of nodes, we can get a static virtual contact network.
In this article, the two parameters pin and pout are set to
0.0193 and 0.0016, respectively, which makes the expected
degree of each node equal to 6. (e nodes in the virtual
contact network correspond to the nodes in the physical
contact network. To construct a physical contact network,
we simulate the movement of individuals on a planar space.
(e width of the planar space L is set to

����
1000

√
, which makes

the density of individuals in the plane space equal to 1. (is
flat space is equally divided into four areas, and the width of
each areas is equal to L/2. (e individual’s moving speed v is
set to 0.03, and the interaction radius of each individual is set
to 1. At the initial time t � 0, nodes belonging to the same
community in the virtual contact network are randomly
placed in the same area in the plane space. As long as the
distance between two nodes in the plane space is less than the
interaction radius r, an edge is added between these two
nodes and, finally, we can get the physical contact network.
Since nodes move at each time step, the physical contact
relationship between nodes will change. (erefore, the
physical contact network is a dynamic network and its
network structure changes over time. When the virtual-
physical contact network has been built, we simulate the
spread of information and disease on this network. (en, we
will analyze the factors that influence the interaction be-
tween information and disease. In addition, we generate the
virtual contact networks without community structure by
randomly rewiring the above virtual contact networks. In
this article, we compare the coupled spread dynamics in the
two scenarios—virtual contact networks with or without
community structure.

Before the simulations with different initial conditions
start, we assume that there are 2% of infected nodes in each
area. (en, the disease and information follow the SIR dy-
namic model to spread. (e entire spreading process will end
until there are no more infected nodes and aware nodes in the
virtual-physical contact network. All simulation results below
are averaged over 30 experiments. Firstly, in Figure 3, we give
a case to show the evolution process of information diffusion
and disease diffusion. (e relevant parameters are set as
follows: β1 � 0.2, β2 � 0.3, pprevent � 0.8,ω � 0.6, pjump � 0.2.
Figure 3(a) shows the evolution of the density of nodes with

different states in the physical layer. One can find that the
density of susceptible individuals gradually decreases with
time and then reaches the steady state. (e density of infected
individuals first increases rapidly to reach a peak and then
gradually decreases to zero over time. (e density of re-
covered individuals gradually increases over time and then
reaches the steady state. We observe that the density of in-
dividuals in different states can reach a steady state after about
80 steps and finally the density of recovered individuals is
greater than the density of susceptible individuals. (e evo-
lution of the density of nodes with different states in the
virtual layer is shown in Figure 3(b). We can observe that the
density of unaware individuals drops rapidly and then reaches
a steady state. (e density of aware individuals first increases
rapidly, then decreases rapidly, and finally gradually decreases
to zero. (e density of recovered individuals in the virtual
layer increases rapidly with time and then gradually reaches a
steady state.(e final density of recovered individuals is much
greater than the final density of unaware individuals. In
addition, compared with the process of epidemic spreading,
we can see that information dissemination can reach a steady
state faster.

(e classic SIR model contains multiple parameters such
as transmission rate and recovery rate.(ese parameters will
affect the spread of disease or information. (en, we in-
vestigate how the parameters in our model affect infor-
mation and disease transmission.We first explore the impact
of epidemic transmission rate β1 on disease and information
dissemination. (e result is shown in Figure 4, and we fix
some parameters: β2 � 0.3, pprevent � 0.8, pjump � 0.2, and
ω � 0.6 and consider different epidemic transmission rates:
β1 � 0.1, 0.3, 0.5. In Figures 4(a) and 4(b), we observe that
the peak value of the density of the infected nodes and the
final density of recovered nodes in the physical layer increase
obviously as the parameter β1 becomes larger. Besides, when
the parameter β1 changes from 0.1 to 0.3, the final density of
recovered nodes in the physical layer changes greatly
compared to the parameter β1 from 0.3 to 0.5. In Figures 4(c)
and 4(d), although we can see that the aware population and
recovered population in the virtual layer also increase as β1
becomes larger, this increase is not very obvious. (e
simulation results indicate that the disease transmission
process is more sensitive to the parameter β1 than the
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Figure 2: Transition probability trees for the seven possible states in the UAR-SIR model.
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Figure 3: Temporal progress of epidemic spreading and information dissemination. (a)(e evolution of epidemic spreading over time. (b)(e
evolution of information dissemination over time.
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Figure 4: Continued.
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information dissemination. Figure 4(e) shows the final
density of recovered individuals in the physical layer under
different disease transmission rates. When 0.1≤ β1 ≤ 0.2, the
final density of the recovered individuals is growing rapidly
with parameter β1. When β1 > 0.5, the final density of the
recovered individuals remains stable and it is close to 1. We
also find that the community structure of virtual contact
network does not significantly affect the spread of disease.

To explore whether there is a disease transmission
threshold, we observe the changes in the density of infected
individuals in the physical layer over time under different
disease transmission rate. We fix some parameters: β2 � 0.3,
pprevent � 0.8, pjump � 0.2, ω � 0.6. (e result is shown in
Figure 5. We can find that when the parameter β1 is greater
than 0.1, the peak values of the density of the infected nodes
are increasing as the parameter β1 becomes larger. But when
the parameter β1 is less than 0.1, the density of the infected
nodes in the physical layer decreases with time and ap-
proaches 0. So the threshold for disease transmission is
between 0.1 and 0.15.

Next, in Figure 6, we investigate the influence of the
information transmission rate β2 on information dissem-
ination and disease transmission. In Figure 6, the fixed
parameters are as follows: β1 � 0.2, pprevent � 0.8,
pjump � 0.2, ω � 0.6. When the value of the parameter β2 is
increased, it makes the aware people pass the epidemic
information to others with a greater probability. At this
time, more unaware individuals are converted to aware
individuals and they will take defensive actions to slow the
epidemic spreading. As shown in Figures 6(a) and 6(b),
with the increase in information transmission rate β2, the
peak value of the density of infected individuals decreases
and the final density of recovered individuals will be
slightly smaller. (is indicates that increasing the infor-
mation dissemination rate β2 can slow down the spread of
diseases to a certain extent. (e increase of parameter β2
significantly accelerates the information dissemination

shown in Figures 6(c) and 6(d). It can be clearly observed
that as the parameter β2 changes from 0.1 to 0.5, the peak
value of the density of aware individuals increases obvi-
ously. (e final density of recovered individuals in the
virtual layer also increases. In addition, in Figure 6(e), we
also explore the final density of the recovered individuals in
the physical layer under different information transmission
rate β2. We can observe that the increase in the rate of
information dissemination can indeed curb the spread of
diseases. But when the parameter β2 is greater than 0.2, the
increase of β2 will no longer reduce the final density of
recovered individuals in the virtual layer.

If susceptible individual adopts protective behaviors, it
will reduce the probability of turning him or her into an
infected individual. (en, we explore the impact of the
probability of individuals taking preventive behaviors
pprevent on disease and information dissemination, and the
results are shown in Figure 7. (e fixed parameters are as
follows: β1 � 0.2, β2 � 0.3, pjump � 0.2, ω � 0.6. In
Figures 7(a) and 7(b), we can observe that the peak value of
the density of infected individuals and the final density of
recovered individuals decrease as the parameter pprevent
increases. When the parameter pprevent increases from 0.4 to
0.8, the peak value of the density of infected individuals
decreases. Compared with Figures 7(a) and 7(b), it can also
be clearly seen that parameter pprevent has a greater impact on
disease transmission than parameter β2. However, in-
creasing the probability of taking preventive behavior has
little impact on information dissemination shown in
Figures 7(c) and 7(d). We can see that the density evolution
curves of aware and recovered individuals in the virtual layer
under different pprevent are basically similar. We also in-
vestigate the final density of the recovered individuals in the
physical layer under different parameters pprevent, and the
result is shown in Figure 7(e). We find that the final density
of recovered individuals in the physical layer decreases with
the increase of probability pprevent.
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Figure 4: (e influence of epidemic transmission rate on the coupled disease-awareness model. (a) Density of infected individuals in the
physical layer as a function of time. (b) Density of recovered individuals in the physical layer as a function of time. (c) Density of aware
individuals in the virtual layer as a function of time. (d) Density of recovered individuals in the virtual layer as a function of time. (e)(e final
density of recovered individuals in the physical layer under different disease transmission rates for the virtual contact networks with or
without community structure.
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Physical layer

20 40 60 80 1000
t

0

0.05

0.1

0.15

I (
t)

β2=0.1
β2=0.3
β2=0.5

(a)

Physical layer

20 40 60 80 1000
t

0

0.2

0.4

0.6

0.8

1

R 
(t)

β2=0.1
β2=0.3
β2=0.5

(b)

Virtual layer

20 40 60 80 1000
t

0

0.2

0.4

0.6

0.8

1

A
 (t

)

β2=0.1
β2=0.3
β2=0.5

(c)

Virtual layer

20 40 60 80 1000
t

0

0.2

0.4

0.6

0.8

1

R 
(t)

β2=0.1
β2=0.3
β2=0.5

(d)

Figure 6: Continued.
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Figure 6:(e influence of information transmission rate on the coupled disease-awareness model. (a) Density of infected individuals in the
physical layer as a function of time. (b) Density of recovered individuals in the physical layer as a function of time. (c) Density of aware
individuals in the virtual layer as a function of time. (d) Density of recovered individuals in the virtual layer as a function of time. (e)(e final
density of recovered individuals in the physical layer under different information transmission rates for the virtual contact networks with or
without community structure.
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Figure 7: Continued.
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We investigate the impact of the parameter ω on the
disease transmission, and the result is shown in Figure 8.
We fixed the following parameters: β1 � 0.2, β2 � 0.3,
pjump � 0.2, pprevent � 0.8. (e results in the two scenar-
ios—virtual contact network with or without community
structure—are similar. We can find that the stronger the
effect of taking protective actions, the smaller the scale of
disease transmission. When the parameter ω ∈ [0, 0.35],
the final density of recovered individuals in the physical
layer slowly decreases as ω increases. But when the pa-
rameter ω is greater than 0.35, the final density of recovered
individuals in the physical layer will decrease rapidly as ω
increases.

Finally, we analyze the impact of changing long-distance
jump probability pjump on the spread of disease and in-
formation shown in Figure 9. We fixed the following pa-
rameters: β1 � 0.2, β2 � 0.3, pprevent � 0.8. In Figure 9(a), we
can find that increasing the value of pjump can increase the
peak value of the density of infected individuals. (e

evolution processes of information dissemination with
pjump � 0.4 is closer to the performance of pjump � 0.6, but it
is quite different from the results of pjump � 0.2. When the
parameter pjump is increased from 0.2 to 0.6, the peak value
of the density of infected individuals rises. We observe that
the final density of recovered individuals in the physical layer
increases as pjump increases in Figure 9(b). Infected indi-
viduals accelerate the global spread of the disease through
long-distance jumping.We also see that the peak value of the
density of aware individuals and the final density of re-
covered individuals in the virtual layer increase as the pa-
rameter pjump increases in Figures 9(c) and 9(d), but this
growth trend is not very obvious. In addition, in Figure 9(e),
we also investigate the final density of the recovered indi-
viduals in the physical layer under different probabilities
pjump. We can observe that the increase of pjump can ac-
celerate the spread of disease. But when the parameter pjump
is greater than 0.4, the final density of recovered individuals
in the virtual layer basically remains stable.
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Figure 7: (e influence of taking preventive behaviors on the coupled disease-awareness model. (a) Density of infected individuals in the
physical layer as a function of time. (b) Density of recovered individuals in the physical layer as a function of time. (c) Density of aware
individuals in the virtual layer as a function of time. (d) Density of recovered individuals in the virtual layer as a function of time. (e)(e final
density of recovered individuals in the physical layer under different probabilities of taking preventive behaviors for the virtual contact
networks with or without community structure.
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Figure 8: (e final density of recovered individuals in the physical layer under different parameters ω for the virtual contact networks with
or without community structure.
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4. Conclusions

Based on the idea that the network structure can have a
significant impact on network dynamics, in this article, we
investigate how a multiplex virtual-physical contact network
with a community structure affects the spread of diseases

and information. (e multiplex network we built contains
two layers: virtual layer and physical layer. We assume that
the virtual layer is a static communication network with a
community structure and the physical layer is a dynamic
physical contact network, which contains individuals. In our
model, we assume that the individuals often choose to move
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Figure 9: (e influence of long-distance jump on the coupled disease-awareness model. (a) Density of infected individuals in the physical
layer as a function of time. (b) Density of recovered individuals in the physical layer as a function of time. (c) Density of aware individuals in
the virtual layer as a function of time. (d) Density of recovered individuals in the virtual layer as a function of time. (e) (e final density of
recovered individuals in the physical layer under different probabilities of jumping for the virtual contact networks with or without
community structure.
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in a fixed area, and they move across regions with a small
probability through a long-distance jump. It indicates that in
the physical contact network, nodes belonging to the same
area have more edges, whereas nodes belonging to different
areas have fewer edges. (erefore, the physical contact
network we built actually has a community structure. When
the multiplex virtual-physical contact network has been
constructed, we simulate the spread of diseases and infor-
mation on this multiplex network based on the SIR model
and analyze the factors affecting the coupled spreading
dynamics. (e simulation results show that in this multiplex
network with a community structure, promoting the in-
formation dissemination can inhibit the epidemic spreading,
but changing the epidemic spreading has no obvious impact
on information dissemination. We find that increasing the
information transmission rate or the probability of taking
preventive behaviors and decreasing the long-distance jump
probability can reduce the peak value of the density of in-
fected individuals. Compared with information transmis-
sion rate, we also observe that the effect of taking preventive
behaviors or decreasing the long-distance jump on sup-
pressing the spread of disease is more obvious. However,
changing the epidemic transmission rate does not signifi-
cantly affect the information dissemination. By comparing
the simulation results under the two scenarios—virtual layer
with or without community structure—the community
structure of virtual contact network has no significant im-
pact on disease transmission. (is research deepens our
understanding of the interaction between disease trans-
mission and information transmission.

(rough this research, we realize that taking preventive
behaviors or decreasing the long-distance jump has a sig-
nificant impact on the control epidemic spreading. (ere-
fore, in reality we should raise awareness of prevention and
minimize unnecessary trips. Considering that promoting the
dissemination of information about the disease can slow
down the spread of the disease; therefore, when an epidemic
breaks out, we should use various platforms to promote
information dissemination. Although this article has ana-
lyzed the factors affecting the evolution of coupling dy-
namics, we still do not know the relationship between these
factors and the epidemic outbreak threshold. In the future,
we will try to use theoretical analysis to explain how other
factors affect the epidemic outbreak threshold.
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