
Research Article
Influential Nodes in the OBOR Fossil Energy Trade Network
Based on D-S Theory: Detection and Evolution Analysis

Cuixia Gao ,1,2,3 Simin Tao,2 Kehu Li,2 and Yuyang He4

1School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
3Center for Energy Development and Environmental Protection, Jiangsu University, Zhenjiang, Jiangsu, China
4School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China

Correspondence should be addressed to Cuixia Gao; cxgao@ujs.edu.cn

Received 10 September 2021; Revised 18 November 2021; Accepted 30 November 2021; Published 10 January 2022

Academic Editor: Gonzalo Farias

Copyright © 2022 Cuixia Gao et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

)e structure formed by fossil energy trade among countries can be divided into multiple subcommodity networks. However, the
difference of coupling mode and transmission mechanism between layers of the multirelationship network will affect the
measurement of node importance. In this paper, a framework of multisource information fusion by considering data uncertainty
and the classical network centrality measures is build. )en, the evidential centrality (EVC) indicator is proposed, by integrating
Dempster–Shafer evidence theory and network theory, to empirically identify influential nodes of fossil energy trade along the Belt
and Road Initiative. )e initial result of the heterogeneity characteristics of the constructed network drives us to explore the core
node issue further. )e main detected evidential nodes include Russia, Kazakhstan, Czechia, Slovakia, Egypt, Romania, China,
Saudi Arabia, and Singapore, which also have higher impact on network efficiency. In addition, cluster analysis discovered that
resource endowment is an essential factor influencing country’s position, followed by geographical distance, economic level, and
economic growth potential. )erefore, the above aspects should be considered when ensuring national trade security. At last, the
rationality and comprehensiveness of EVC are verified by comparing with some benchmark centralities.

1. Introduction

Fossil fuel is an essential resource for economic and social
development. It has a vital bearing on the national economy
and human survival. Although more and more voices are
emphasizing low-carbon fuels, in particular, solar PV and
wind, the dominant position of fossil energy cannot be
eliminated over a short period, due to the fact that 100%
renewable energy must go through a process [1, 2].
)erefore, the issue of fossil energy-related carbon emission
reduction is still rigorous towards the current carbon
neutrality target. In 2019, for instance, global energy-related
CO2 emissions reached 33.4 Gt, with 14,798Mt in coal,
11,344Mt in oil, and 7,250Mt in natural gas, respectively [3].

As the embodiment of international division of labor,
trade is a significant factor in explaining the change in
carbon emissions in many countries [4]. Especially for

developing countries, international trade is an important
way to achieve their energy supply-demand balance and
supply security. As the world’s largest carbon emitter,
China’s continued dependence on imported crude oil and
natural gas as well as its growing fossil energy demand is also
expanding its influence on world energy markets. Simul-
taneously, China’s pivotal role in international fossil energy
trade market has only increased since the Belt and Road
Initiative (BRI) in 2013.

Fossil energy trade is at the core of the BRI due to
unevenly distributed resources. After seven years of con-
struction, the initiative has become new solutions to im-
prove global governance in the new era [5]. “China’s Trade
and Investment Cooperation under the Belt and Road
Initiative” published by the Shanghai Academy of Social
Sciences showed that exported-oriented fuel and mineral
resources are the most common trading type along the “One
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Belt One Road” (OBOR) nations which accounts for nearly
40 percent [6]. )e remaining proved reserves for oil and gas
under OBOR account for 58.7% and 77.7%, respectively.)e
production of oil and gas exceeds 50% of the world’s [7]. In
addition, seven of the world’s top 10 oil and gas exporters are
concentrated in the OBOR. As a result, it is beneficial for
China to promote the construction of the initiative by
clarifying the fossil energy trade patterns. Furthermore, it is
necessary to better understand the pattern changes of fossil
energy trade in OBOR countries to achieve national energy
transition and carbon neutrality targets.

)e trade relationship of fossil energy among the OBOR
countries is firstly a system, involving a large number of
countries and intricate links between countries. Secondly,
each country plays a different role in trade, such as oil
exporter, gas importer, coal net exporter, and oil and gas net
importer. )irdly, due to the influence of uncertainties
including multienergy complementarity, energy structure
adjustment, clean energy transitions, limitation by in-
creasing aggregate demand, and renewable energy substi-
tutability, countries in various roles or relationships are
expected to interact with each other and evolve over time.
Importantly, the participators are likely been influenced
heterogeneously owing to their unique energy structure and
trade structure. )us, a comprehensively and systemic study
by considering uncertainties is needed. Ultimately, the
potential impact of uncertainties on fossil energy trade
among OBOR countries is embedded into the model as
“cognitive uncertainty” in this paper, because it is difficult
and sometimes proves impossible to accurately judge what
the impacts of these uncertainties are.

)e primary contributions of this study can be sum-
marized as follows:

(i) First, the constructed network is the first such
measure to consider uncertainty in modeling fossil
energy trade relationships.

(ii) Second, the proposed evidential centrality has
benefits in terms of measurement, which allow it to
provide a more comprehensively calculation from
the perspective of local, global, and uncertainty.

(iii) )ird, the top-ranked countries for fossil energy
trade under OBOR are identified, and the possible
underlying driving forces are exposed empirically.

)e rest of this paper is organized as follows: Section 2
reviews the literature on fossil energy trade network and
uncertainty analysis methods. Section 3 introduces a trace of
preliminaries and describes the details of the proposed
evidence-based method for identifying the influential nodes.
Section 4 presents the data sources. Section 5 illustrates the
empirical results. Finally, Section 6 draws the conclusions.

2. Literature Review

Most of the existing studies related to fossil energy trade are
focusing on the world level and most developing countries.
Moreover, developing countries are the main consumers,
who have obvious contradiction between resource shortage

and economic development, while the OBOR is an im-
portant group in global trade. With the increasing impor-
tance of regional trade, literature studies on OBOR countries
and their trade relations is not rare. Exemplarily, Zhang
revealed the status and prospects of the oil and gas trade
among the OBOR countries and discovered that the general
trading relationship between China and the other partici-
pating countries was closely related to their gas and oil trade
[8].

On the other hand, complex network analysis has been
proposed for exploring the patterns of fossil energy trade.
Table 1 lists the recent ones that used complex network
theory in the study of international fossil energy trade. In all,
the existing studies typically addressed single-layer networks
in fossil energy trade, such as separate oil network, natural
gas network, or coal network. Certainly, a few researchers
consider fossil fuels as a whole, but the data used represent a
linear sum of the observed values between countries. For
example, Gao et al. [17] constructed the international coal,
oil, and natural gas network models by gathering nodes into
a single plane, without considering the influence of un-
certainty factors. )at is, most literature studies just provide
an intuitive description of the volume between two coun-
tries’ trade. Few scholars have paid attention to incorpo-
rating uncertainties as parameters when constructing the
network model formed by all three (coal, oil, and natural
gas) layers. In addition, research on the OBOR energy trade
using complex network analysis is scarce.

Researchers have demonstrated that both global and
local information of the fossil energy trade relations can fully
unfold in influential nodes. Hence, influential node detec-
tion has become the focus of existing literature. It can be seen
from Table 1 that the commonly adopted centrality indi-
cators include degree centrality (DC), betweenness centrality
(BC), and closeness centrality (CC). However, these eval-
uation methods are based on node’s structural character-
istics; that is, their importance is evaluated based on the
structural parameters of nodes themselves. For example,
degree centrality only considers node’s influence capability
from local information. It does not make an in-depth
quantification of their surrounding environment, such as
target node’s position and neighborhood attributes within
multisteps [21–23]. BC and CC are both based on the
shortest distance between node pairs, reflecting the control
force of network flow. But, they have high time complexity of
O(N3) which is not suitable for large-scale networks [24, 25].
As mentioned above, it is still an open issue providing a new
and comprehensive method, to identify influential nodes
with high accuracy and low time complexity [26] .

However, in the existing networkmodels of energy trade,
the influence of uncertainty factors, such as trade strategy,
policy implementation, and data uncertainty, is still not
adequately taken into account [27]. )e impact of uncer-
tainty can be roughly divided into two categories: one is
external, such as financial crisis and geopolitics, and the
other is the linkage effect of trade structure within different
kinds of fossil energy caused by substitution and price. How
do we evaluate the influential nodes integrally as well as the
complexed interactions among them? How will the
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influential nodes affect the efficiency of network operation?
Of course, it is not straightforward to incorporate these
factors into the model. In this paper, we will introduce the
multisource information fusion technology that has an
extensive practicality, effectiveness, and applicability, to
solve the uncertainty problem mentioned above. As an ef-
fective uncertain information processing method, it has been
well developed, such as GIQ [28], CaFtR [29], evidence
theory [30], D numbers theory [31], Z numbers [32], and
entropy-based approaches [33].

As one of the most effective tools of uncertainty rea-
soning, Dempster–Shafer (D-S) evidence theory uses mul-
tievent hypothesis to express a nondetermination state
directly [34]. Besides, the D-S evidence theory has the ad-
vantages of expressing “uncertain” and “unknown” directly
and has great application value in classification and infor-
mation fusion, which provides strong support for the
evaluation of complex uncertain systems. Furthermore, it
has been widely applied in lots of fields, including but not
limited to reliability analysis, classification, quantum in-
formation decision, and fault diagnosis [35, 36]. Moreover, it
has the ability to combine observations from different
sources, so as to reduce system uncertainty effectively.

In this paper, the trade data for coal, oil, and natural gas
can be seen as multisource information. Due to the factors
such as multienergy complementarity and energy structure
adjustment, the existing energy trade networks are insuffi-
cient to consider these kinds of information, so that some
information would be lost during the modeling and pro-
cessing of data. )erefore, the fusion method of evidence
theory can be used in multirelationship energy trade net-
work studies.

3. Methodology

3.1. Preliminaries

3.1.1. D-S Evidence (eory. )e D-S evidence theory-based
method is among the alternative algorithmic approach to

multisensor data fusion that tries to achieve refined estimates
of “uncertainty” [37–39]. It employs a reliability function
rather than probability to measure uncertainty, and it is
widely used in the field of information and decision-making.
It provides a favorable Dempster combination rule for in-
formation fusion, which has the superiority such as the
commutative law and the associative law and can realize
fusion between evidence without the support of prior
probability. )e basic framework of multisource information
fusion based on D-S theory is shown in Figure 1. )e basic
concepts and definitions used in this paper are shown as
follows. Much more detail is provided in references [40–42].

Definition 1 (frame of discernment). Let Θ � θ1, θ2,􏼈

. . . , θN} be a finite nonempty set, and let 2Θ be the power set
of Θ; thus, 2Θ � ∅, θ1, . . . , θN, θ1, θ2􏼈 􏼉, θ1, θ3􏼈 􏼉, . . . ,Θ􏼈 􏼉.

Definition 2 (basic probability assignment (BPA)). For a
frame of discernmentΘ, BPA is a mappingm: 2Θ ⟶ [0, 1],
satisfying

m(∅) � 0 (1)

and

􏽘
∅⊆2Θ

m(θ) � 1, (2)

where ∅ is an empty set and θ is any element of 2Θ. m(θ)

reflects the exact degree of trust in the proposition θ, namely,
the probability assigned. Condition (1) reflects no confi-
dence in the null set; condition (2) reflects the sum of the
basic probability assignment of all propositions equal to 1.

Definition 3 (Dempster combination rule). Suppose m1 and
m2 are independent BPAs from different evidence resources,
respectively. )e fusion result of m1 and m2, denoted by
m � m1⊕m2, under Dempster’s rule of combination is de-
fined as follows:

Table 1: List of fossil energy trade network studies in recent years.

Authors (year) Modeling Type of network Category Scope and time Evaluation indexes
Peng et al. (2021) [9] G � (V, E, W) Transportation LNG World, 2013–2017 DC, L, CC, C,
Bu et al. (2020) [10] G � (V, E, W) Consumption Gas China, 2005–2017 DC, BC, CC, LMDI
Wang and Li (2019) [11] G � (V, E, W) Transportation Coal China, 1997–2016 DC, BC,L, CC,
Wang et al. (2019) [12] G � (V, E, W) Trade Coal World, 1996–2015 DC, BC, C
Xi et al. (2019) [13] G � (V, E, W) Trade Oil OBOR, 2009–2016 DC, BC, CC
An et al. (2018) [14] G � (V, E, W) Trade Oil World, 2014–2017 PMI, C
Guan and An (2017) [15] G � (V, E) Trade Oil, coal, gas, PV World, 2014 BC, ND, RankS, LP
Zhong et al. (2017) [16] G � (V, E) Trade Coal, oil, gas World, 2000–2013 C, NMI
Gao et al. (2015) [17] G � (V, E, W) Trade Coal, oil, gas World, 2002–2013 DC, C, NMI
Ji et al. (2014) [18] G � (V, E) Trade Oil World, 2010 EI, DC, CC, C, NMI
Zhong et al. (2014) [19] G � (V, E, W) Trade Oil World, 2002–2011 C, NMI
An et al. (2014) [20] G � (V, E, W) Trade Oil World, 1993–2012 DC, CC, C, stability
Note. DC: degree centrality, L: shortest path length, CC: closeness centrality, C: community structure, BC: betweenness centrality, NMI: normalized mutual
information, LMDI: logarithmic mean Divisia index, PMI: pointwise mutual information, ND: network density, RankS: ranking score, LP: link prediction,
and EI: export intensity.
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m(θ) � m1⊕m2􏼂 􏼃(θ) �

0, θ � ∅

􏽐B∩C�0m1(B)m2(C)

1 − 􏽐B∩C�∅m1(B)m2(C)
, θ≠∅

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

,

(3)

where θ, B, and C are the elements of 2Θ. )ereinto, ⊕ is an
orthogonal operator.

3.1.2. Benchmark Centrality Measures for Influential Nodes

Definition 4 (degree centrality (DC)). )e DC of node i,
denoted as di, is defined as

di � 􏽘
N

j�1
aij, (4)

where N is the total number of nodes in the network and
aij � 1 if node i is connected to node j and aij � 0 otherwise
[43, 44].

Definition 5 (betweenness centrality (BC)). )e BC of node
i, denoted as bi, is defined as

bi � 􏽘
j,k≠ i

gjk(i)

gjk

, (5)

where gjk denotes the total number of shortest paths be-
tween nodes j and k and gjk(i) is the number of those paths
that go through node i [45, 46].

Definition 6 (closeness centrality (CC)). )e CC of node i,
denoted as ci, is defined as the reciprocal of the sum of
geodesic distances to all other nodes and calculated by the
following formula:

ci � 􏽘
j�1,j≠ i

dij
⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1

, (6)

where dij is the geodesic distance between nodes i and j

[47, 48].

Definition 7 (eigenvector centrality (EC)). )e EC of node i,
denoted as ei, is defined as

ei � λ− 1
max 􏽘

N

j�1
aijej, (7)

where λ− 1
max is the maximum eigenvalue of the adjacent

matrix and its corresponding eigenvector is
e � [e1, e2, . . . , eN]T. aij � 1 if node i is connected with node
j, and aij � 0, otherwise [49, 50].

Definition 8 (PageRank centrality (PC)). Let E(u) be some
vector over the Web pages that corresponds to a source of
rank. )en, the PageRank of a set of Web pages is an as-
signment R′ to the Web pages which satisfies

R′(u) � c 􏽘
v∈Bu

R′(v)

Nv

+ cE(u), (8)

such that c is maximized and R1′ � 1 [51, 52].

3.2. A Relevance Matrix-Based BPA Method. )e relevance
matrix can be obtained by converting the multiproduct trade
matrixes with certain processing approaches. )e correla-
tion among nodes in the network can be fully reflected in the
construction of BPA. )e primary question is how to build
an effective BPA, which is also the critical step. )e detailed
subsequent steps are as follows (see Figure 2).

Step 1. )e representation of evidence. Firstly, we build a
weighted matrix for each fossil energy trade
Wk ≡ (wk

ij)n×n(i � 1, 2, . . . , n; j � 1, 2, . . . , n) with elements
of wk

ij, where k � 1, 2, 3 represents coal, oil, and natural gas,
respectively. wk

ij represents the trade volume from node i to
node j (unit in USD). )en, we can build the relevance
matrix for each energy Sk ≡ (sk

ij)n×n, where sk
ij � wk

ij/wk
max is

Representation of
evidence

Evidence
decision-making

model

Data 2

Data n

Data 1

......

BPA 2

BPA n

BPA 1

......

Combination of
evidence

Dempster
combination rule

BPA

Decision-making

Figure 1: Framework of multisource information fusion based on D-S theory.
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proportional to node strength and wk
max is the maximum of

elements in Wk. However, existing studies have verified that
the distribution of fossil energy trade displayed power-law
characteristics [9]. In order to avoid toomany small values to
reflect variability, we adopt sk

ij � wk
ij/w

k
local− max, where

wk
local− max is the maximum in the local connected networks of

node i and j.

Step 2. Estimation of the BPA function. Each element in the
relevance matrix Sk can be transformed to the elements in
the BPA matrix of MBPA ≡ (mij(Y), mij(N), mij(Y, N))n×n.
)e elements in the BPAmatrix MBPA are defined as follows:

mij(Y) �
sij − min(S)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

summ
,

mij(N) �
sij − max(S)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

summ
,

mij(Y, N) �
sij − (max(S) + min(S))/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

summ
,

(9)

where summ � |sij − max(S)| + |sij − min(S)| + |sij−

(max(S) + min(S))/2| and mij(Y) + mij(N) + mij(Y, N) �

1. In this paper, each single-layer matrix of coal, oil, and

Data Collection and Preprocessing

Data 
Collection

Data Cleaning Data
Analysis

Weighted edge distribution

Construct the evidential networks

Generate the relevance
matrix based on BPA

(SBPA)

Node strength distribution

Step 1

Step 2

Step 3

Step 4

Construct the trade matrix series for
each fossil fuels (Wk)

Construct the relevance matrix for
each fuels (Sk)

Estimation of the BPA function 
(MBPA(k))

Dempster’s rule of
combination

(MBPA)

Calculate node influence

• Top-ranked Influential nodes
• Efficiency evaluation
• Cluster analysis
• Comparison with benchmark centralities

Results analysis and comparison

Rank EVCin EVCout EVCtotal
1
2
3
...

0.15
0.0
0.1
...

0.15
0.2
0.0
...

0.3
0.2
0.1
...

Coal Matrix

Oil Matrix

Gas Matrix

Figure 2: Flowchart of the proposed D-S based network method.
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natural gas corresponds to a BPA matrix, defined as
MBPA(c) ≡ (cij)n×n, MBPA(o) ≡ (oij)n×n, and MBPA(g) ≡
(gij)n×n, respectively.

Step 3. Dempster’s rule of combination. Let MBPA ≡ (lij)n×n

be the BPA matrix of total fossil energy, where

lij � lij(Y), lij(N), lij(Y, N)􏽨 􏽩

� cij⊕oij⊕gij.
(10)

If tij � cij⊕oij, then lij � tij⊕gij.

tij � tij(Y), tij(N), tij(Y, N)􏽨 􏽩, (11)

where

tij(Y) �
cij(Y)∗ oij(Y) + cij(Y)∗ oij(Y, N) + cij(Y, N)∗ oij(Y)

1 − cij(Y)∗ oij(N) + cij(N)∗ oij(Y)􏼐 􏼑
,

tij(N) �
cij(N)∗ oij(N) + cij(N)∗ oij(Y, N) + cij(Y, N)∗ oij(N)

1 − cij(Y)∗ oij(N) + cij(N)∗ oij(Y)􏼐 􏼑
,

tij(Y, N) �
1

1 − cij(Y)∗ oij(N) + cij(N)∗ oij(Y)􏼐 􏼑
cij(Y, N)∗ oij(Y, N)􏼐 􏼑.

(12)

Step 4. Probabilistic conversion and decision-making. We
transform the BPA matrix for total fossil energy into the
relevance matrix again and make final decision judgement.
Let the relevance matrix for total fossil energy be
SBPA ≡ (sBPAij )n×n, and

s
BPA
ij � lij(Y) +

lij(Y, N)

|Y, N|
≡ BetPlij

(Y),

|Y, N| � 2,

BetPm(Y) � m(Y) +
m(Y, N)

|(Y, N)|
.

(13)

3.3. Network Construction andNode Influence. In this paper,
the network can be constructed as a directed weighted
network. )e model of the directed weighted network is
given as a triple G � (V, E, W), where V � (v1, v2, . . . , vn)

represents the set of nodes and E � (e1, e2, . . . , vm) repre-
sents the set of edges. Here, each link of a graph has an
associated numerical value, called a weight. W � (wij)n×n �

(sBPAij )n×n is the weighted matrix of connected edges, where
wii � 0 and wij ≥ 0 and wij(i≠ j) represents the weight of
edge from node vi to node vj. )en, a time series of the
influence network, which is called evidential network (EN),
among OBOR countries is build.

Normally, when two nodes have high relevance, then
nodes’ influences will increase automatically. Given a net-
work G � (V, E, W), for any node i ∈ V, the incoming and
outgoing influence capability of node i, denoted as EVCin(i)

and EVCout(i), are given by

EVCin(i) � 􏽘
j∈Φ(i)

wji,

EVCout(i) � 􏽘
j∈Φ(i)

wij,
(14)

where Φ(i) is the set of nearest neighbors of node i.
)e total evidence centrality (EVCtotal) measures the sum

of the total incoming influence of all inlinks and the total
outgoing influence by all outlinks, which can be calculated as
follows:

EVCtotal(i) � EVCin(i) + EVCout(i), (15)

where EVCtotal(i) is the total influence of node i. )e greater
the total evidence centrality value of a node, the more in-
fluential the node.

4. Data Description

)e data for the three kinds of fossil energy trade were
downloaded from the United Nations Commodity Trade
Statistics Database (UN COMTRADE). HS codes are
270100, 270900, 271111, and 271121, respectively. In the
original data sources, natural gas consists of two categories:
gasified natural gas and liquefied natural gas. In addition, the
data presented in the UN COMTRADE are unit in both US
dollars (trade value) and kilograms (trade volume). We fi-
nally select the data for trade value due to serious data lack of
trade volume.

More importantly, the statistical data are from both
importing and exporting countries. However, there exist
data errors between them, as shown in Figure 3. Due to space
constraints, only part of the country names is marked in
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Figure 3. Consistent with most existing studies, we use the
trade data released by exporting counties ultimately. In fact,
the errors existing here can be seen as one kind of data
uncertainty.

Nest, we conducted statistical analysis on the evolution
and proportion of fossil energy trade within the countries
under OBOR, as shown in Figure 4. Although the trade
volume of OBOR countries accounted for less than 20
percent, its proportion has been increasing since the BRI was
put forward, from 8 percent in 2013 to 14 percent in 2018.
)is indicates that the status of fossil energy trade for
countries in the OBOR route has increased in the inter-
national market. )is also proves the necessity of studying
such issues.

5. Result Analysis

5.1. Topological Structure Analysis of Evidential Networks.
According to Sections 3.2 and 3.3, we can obtain the fossil
energy trade evidential networks during 2013–2018. )en,
the network structure is drawn by using Gephi, a general
network analysis visualization software tool, as depicted in
Figure 5. In Figure 5, node size is proportional to node
degree− the number of links incident to the node. )e

thickness of link indicates the connection weight between
the two counties, and the thicker the link, the greater the
connection, and vice versa.
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Figure 3: Data uncertainty example of oil export in 2013.
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From Figure 5, firstly, Russia dominated the system in
terms of node degree. In other words, Russia has the largest
number of partners owing to its abundant energy resources.
Russia’s top three trading partners are concentrated in

Kazakhstan, China, and Azerbaijan. It can be seen that
resource advantage dominates a country’s position. Sec-
ondly, as the world’s largest energy consumer, China’s top
five trading partners include the United Arab Emirates,

2013 2014

2015 2016

2017 2018

Figure 5: Structure of the evidential networks during 2013–2018.
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Kazakhstan, Azerbaijan, Iran, Singapore, and Indonesia. Of
course, Russia is also an important trading partner for
China. With the construction or undergoing construction of
oil and gas pipelines in the Far East, the energy relation
between China and Russia has become increasingly close.
Both countries are committed to build an energy security
system conducive to each other and expected to form an
energy community with a shared future. )ere are also some
notable countries, namely, Ukraine, United Arab Emirates,
Kazakhstan, Azerbaijan, Singapore, Indonesia, and Turkey,
whose positions were not very much changed over time.

Furthermore, Figure 5 shows that the connecting links
between most countries are thin, while those between a few
country pairs are thick. )at is, the weights gather on a very
few connections, which can be depicted from the weighted
edge distribution (Figure 6(a)). Figure 6(a) shows that the
distribution of weighted links in all years presents similar
power-law heterogeneity, which is similar to the results of
most existing studies. Namely, the proposed method in this
paper does not change system heterogeneity when consid-
ering uncertainty.

In addition, we further analyze how strength is dis-
tributed across nodes in a similar way to the weighted edge
distribution, as shown in Figure 6(b). Node strength is the
total of the edge weights in the network incident to the node.
In fact, node strength is the measure of total EVC proposed
in Section 3.3. Similar to the result of Figure 6(a), hetero-
geneity exists in node strength distribution. In other words,
the distribution of strength values across nodes is based on
power-law; many nodes have a lower EVC while a smaller
number of key nodes take the lion’s share of centrality,
making them as hubs that facilitate integration across the
network. In the following sections, we will explore these
critical nodes in detail.

5.2. Influential Nodes Identification. Figure 7 depicts the
time evolution of the ranking of various countries during the
study period according to nodes’ total EVC.)e results show
that countries’ rankings have changed markedly since the
BRI. In 2013, for example, Russia, )ailand, and Ukraine
were the top three countries according to their total EVC,
while in 2018, Czechia, Slovakia, and Bulgaria were the top
three. Meanwhile, affected by the development of global
trade internationalization, the total influence value of each
country is also changing which makes the analysis con-
siderably more complicated.

)us, the average EVC for all countries and standard
deviation (SD) are used to present the ranking character-
istics of sample countries in the evidential networks. Figure 8
scatters all OBOR countries and their corresponding total
EVC, incoming EVC, and outgoing EVC values. In
Figure 8(a), for instance, the abscissa represents the average
EVC value for each of the 65 countries, the ordinate rep-
resents their SD during 2013–2018, and the imaginary lines
represent the means of EVC and SD for all countries, re-
spectively. Countries with larger values along the abscissa
but smaller values along the ordinate indicate stabilized
higher influence.

It can be seen from Figure 8(a) that Russia and
Kazakhstan in the lower right corner dominate the cen-
trality. Of course, the total EVC values for Czechia and
Slovakia are larger than those for Russia and Kazakhstan.
But, the SD values for Czechia and Slovakia are also higher.
)at is, these may only be the values in a particular year
supporting this result, which cannot be considered as
influencer roles. For resource exporters of Russia and
Kazakhstan, their positions are firmly in the top 10 with little
volatility (see Figure 7). It can be seen that resource ad-
vantages play an absolute role in the influence of a country’s
trade. Energy dependence is central to Russia’s economic
structure. According to the data of the Russian State Sta-
tistics Bureau, in the export commodity structure from 2015
to 2017, the proportion of raw materials such as oil and
natural gas has always remained at about 60%. )erefore, it
can be seen that energy export is still the main driving force
of Russia’s economic recovery. Besides, Kazakhstan, Turk-
menistan, and Uzbekistan are major oil producers in Central
Asia. Kazakhstan has the largest crude oil reserves (about
1.7% of the world’s total). Turkmenistan has the largest
natural gas reserves (about 9.9% of the world’s total), but the
country’s natural gas resources are far from being fully
exploited. )is is also why Turkmenistan’s centrality in the
export structure is not obvious (see Figure 8(b)).

In addition, Ukraine, Egypt, Romania, China, Singapore,
Qatar, Saudi Arabia, and Indonesia are also essential
countries due to their lower SD and higher EVC values
(Figure 8(a)). Another possible reason is that these countries
have a high export influence, or a high import influence,
such as China, )ailand, Egypt, and Saudi Arabia
(Figures 8(b) and 8(c)).

After the BRI, China’s influence rose briefly in 2014 and
then increased sharply since 2017 after a period of stability.
In 2017, China’s oil import volume from countries along the
Belt and Road Initiative was 141.71 billion US dollars, nearly
ten times of its export. )at is, China runs a large oil trade
deficit, accounting for 77% of its total import. Although
China is the proposer of the BRI, it can be seen that its
influence in fossil energy trade is at a medium level. Possible
reasons are as follows: first, China is focusing on developing
renewable energy; second, Kazakhstan, Russia, and other
countries are important fossil energy resource exporters.
However, China’s EVC value (0.608) surpassed Russia’s
(0.60) in 2017, indicating that the increasingly active oil and
gas activities of Chinese companies in Central Asia will
challenge Russia’s energy monopoly.

5.3. Evaluating the Impact of Top-Ranked Influential Nodes.
In this section, the impact of the identified top-ranked in-
fluential is evaluated by comparing their efficiency. Damage
resistance is to evaluate the variation of network efficiency at
risk nodes to observe the system’s ability to maintain sta-
bility in the face of risk disturbance. In this paper, the value
of network efficiency when a node disappears is used as a
quantitative evaluation index to measure the efficiency of the
removed node. Efficiency refers to the aggregation degree of
paths within the system [53, 54]. It can measure the ability of
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nodes to transfer information in the network after the oc-
currence of risks, using the information theory-based net-
work flow analysis. Here, we adopt the average mutual
information to define the efficiency of weighted network G:

E[G] � 􏽘
i,j

Tij

T..

log
TijT..

Ti.T.j

. (16)

Here, Tij represents a flow from node i to node j, Ti. �

􏽐jTij represents the total flow leaving node i, T.j � 􏽐iTij

represents the total flow entering node j, and T.. represents
the sum of all flows in the system.

)e efficiency for node k in a weighted network is de-
fined as

EffC(k) �
ΔE
E

�
E[G] − E G′(k)􏼂 􏼃

E[G]
, k � 1, . . . , N, (17)

where G′(k) is a subgraph of G with N-1 nodes and P-Q
edges obtained by removing node k and its neighbor edges.
)e greater the efficiency value, the higher the influence of a
node.

Table 2 shows the effect of removing the top fifteen
countries on the network efficiency when using the EVC
ranking. According to Table 2, the influences of the top-15
listed countries are different and vary with ongoing time. To
sum up, however, most of them have relatively high effi-
ciency values, such as Russia, China, and )ailand. Without
these nodes, the network efficiency will decline obviously.
)e efficiency value of Russia is the maximum of all nodes,
although its ranking dropped significantly from 2014. In fact,
it is intuitional that Russia is a pivotal node in the network

because it connects to most nodes. )e results show that the
node evaluation index proposed in this paper has a greater
impact on network performance. In other words, the failure
of these nodes will make the network show more fragile
damage resistance or robustness.

5.4. Hierarchical Cluster Analysis. In this section, we also
conduct hierarchical clusters further, as shown in Figure 9.
)e clusters, depicted by the dendrogram, result from the
Unweighted Pair Group Method with Arithmetic Mean
(UPGMA). UPGMA is a generally used clustering technique
that uses the arithmetic average approach to construct a
phylogenetic tree from a distance matrix. It has been used
most frequently in ecology and systematics [55] and in
numerical taxonomy [56]. For detailed algorithm, please see
reference [57].

According to Figure 9, the OBOR countries can be
roughly divided into the following five categories: Cluster 1
contains the largest number of countries, but most of them
are from underdeveloped regions although their annual
GDP growth has increased in recent years. Besides, those
countries are relatively concentrated geographically, such as
Tajikistan, Kyrgyzstan, Kazakhstan, Afghanistan, Pakistan,
and other Central Asian countries. It can be seen that
geographical distance is one of the factors affecting fossil
energy trade, which involves the cost of transportation.
Cluster 2 includes resource countries such as Iraq, Qatar,
and Saudi Arabia. )is category has typical characteristics,
that is, except Bahrain and Maldives, and the GDP of all
countries in this category was higher than the average level

Table 2: Influences of removing the top nodes on the network efficiency when using the EVC ranking.

2013 2014 2015 2016 2017 2018
Removed
node

EffC
(k)

Removed
node

EffC
(k)

Removed
node

EffC
(k)

Removed
node

EffC
(k)

Removed
node

EffC
(k)

Removed
node

EffC
(k)

Russia 0.134 Ukraine − 0.042 )ailand 0.052 Czechia − 0.025 Serbia − 0.048 Czechia 0.044

)ailand 0.038 Czechia − 0.030 Czechia − 0.008 North
Macedonia − 0.054 Slovakia − 0.022 Slovakia 0.037

Ukraine − 0.044 Slovakia − 0.032 Georgia − 0.047 )ailand 0.036 Czechia − 0.016 Bulgaria 0.022

Czechia − 0.041 Egypt − 0.055 North
Macedonia − 0.057 Slovakia − 0.022 Bulgaria − 0.037 Serbia 0.012

Slovakia − 0.036 Kazakhstan − 0.015 Bulgaria − 0.048 Bulgaria − 0.038 )ailand 0.041 Bosnia
herzegovina 0.017

Egypt − 0.064 Russia 0.058 Armenia − 0.056 Serbia − 0.053 North
Macedonia − 0.049 China 0.104

Kazakhstan − 0.016 Serbia − 0.060 Slovakia − 0.011 Kazakhstan − 0.032 Bosnia
herzegovina − 0.049 Russia 0.185

Myanmar − 0.017 China 0.132 Kazakhstan − 0.012 Russia 0.133 Kazakhstan − 0.049 Kazakhstan 0.034

Serbia − 0.066 Uzbekistan − 0.060 Russia 0.055 Romania − 0.036 Russia 0.111 North
Macedonia 0.012

Lebanon − 0.067 Lebanon − 0.061 Azerbaijan − 0.010 Bosnia
herzegovina − 0.054 Ukraine − 0.025 Romania 0.032

Moldova − 0.066 )ailand 0.011 Viet Nam − 0.034 Egypt − 0.034 Uzbekistan − 0.017 Uzbekistan 0.050

Azerbaijan − 0.013 Saudi
Arabia − 0.069 Romania − 0.035 Lithuania − 0.044 Singapore 0.026 Greece 0.025

Saudi
Arabia − 0.081 Azerbaijan − 0.024 Serbia − 0.057 Singapore − 0.003 Romania − 0.031 Indonesia 0.072

Romania − 0.043 Kyrgyzstan − 0.060 Egypt − 0.049 Estonia − 0.054 Montenegro − 0.049 )ailand 0.088
Turkey − 0.057 Bulgaria − 0.059 Ukraine − 0.039 Qatar − 0.024 Qatar − 0.008 Croatia 0.017
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of the OBOR countries in the year of 2018. Cluster 3 includes
Turkey, Greece, Iran, Poland, Singapore, Hungary, and other
emerging economies with relatively high annual GDP growth
and GDP per capita simultaneously. Cluster 4, represented by
China, has a high level of GDP income and annual GDP
growth. However, the GDP per capita of these countries is

lower than the average level. Cluster 5 includes Russia,
Kazakhstan, Czechia, Slovakia, and Serbia with highGDP level,
but their annual GDP growth andGDP per capita are not high.

By comparing the sorting results of the above EVC
scatter plot with the classification results of cluster analysis,
it can be seen that the classification of most countries is
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Figure 9: Dendrogram of cluster analysis.
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consistent. In all, in addition to geographical distance,
economic development level, economic growth potential,
and per capita national income are all potential influencing
factors of fossil energy trade.

5.5. Comparison with Benchmark Centralities. Finally, in
order to evaluate the performance of the proposed method,
we pay attention to the correlation between EVC ranking list
and five classical centrality measures, i.e., degree centrality,
PageRank centrality, eigenvector centrality, closeness cen-
trality, and betweenness centrality, as depicted in Figure 10.
It is obvious that each node’s EVC are highly correlated with

other centrality indicators. )is shows that the method
proposed is reasonable and comprehensive in identifying
influential nodes.

6. Conclusions

In this paper, we propose a novel evidential ranking method
based on complex network analysis and evidence theory.)e
combination of local structure, global structure, and un-
certainty is taken into consideration in the construction of
evidence centrality. )en, a performance analysis is con-
ducted on fossil energy trade along the OBOR.We utilize the
network efficiency to simulate the influence of top-ranked
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Figure 10: Scatterplots of EVC values against another centrality measure. EVC against (a) degree centrality, (b) PageRank centrality,
(c) eigencentrality, (d) closeness centrality, and (e) betweenness centrality.
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nodes and demonstrate the superiority of EVC. At last,
various classical centrality measures are also analyzed to
identify the advantages of the proposed method.

)e results of node centrality based on D-S theory show
that the distribution of weighted edges has obvious het-
erogeneity which is superior to node strength distribution.
)at is, only a few pairs of countries have high relevance
relationships, while most pairs of countries have low rele-
vance relationships. For influential countries, along with the
increase of average EVC values, the volatility also increases.
But, some countries with higher average EVC tend to be
driven by one or two specific years, such as Czechia and
Slovakia. Relative to these countries, Russia, Kazakhstan,
and other resource-based and export-oriented countries
maintain the core positions. Finally, the clustering results
show that geographical distance, income level, GDP per
capita, and GDP growth rate are the potential driving forces
of fossil energy trade.
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