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Benchmarking is the major reason for the widespread use of DEA models for efficiency analysis. Determining the closest targets
for DMUs, DEA models play a key role in benchmarking their best performance. In fact, these models help develop certain
performance enhancement plans that need fewer attempts made by DMUs. )erefore, this study proposes a novel method based
on the network DEA to determine the most appropriate target for every stage in addition to benchmarking the DMUs. )e
proposed model differs from those proposed by other studies in the fact that all DEAmodels of benchmarking consider input and
output values to be linear. However, in real-world problems, many DMU inputs and outputs have nonlinear values (values are the
coefficients of inputs or outputs in modeling and can be the price of desirable outputs or the cost of inputs and undesirable
outputs), something which was taken into account in the modeling process in this study. )e proposed model was employed to
benchmark cement factories listed on the Tehran Stock Exchange.

1. Introduction

Data envelopment analysis (DEA) was first proposed by
Charnes et al. [1] and is a mathematical programming tech-
nique for evaluating the relative efficiency of a set of decision-
making units (DMUs) with multi-inputs and multioutputs.
Because of usingmathematical programming, DEAwill be able
to consider a lot of variables and constraints in evaluation, and
consequently, it will decrease obligations posed by selecting a
limited number of inputs and outputs [2]. In conventional
DEA models, DMUs are regarded as black-boxes, whereas the
internal structure and operation of DMUs are ignored.
)erefore, they cannot provide information on the perfor-
mance of internal stages, and the resultant efficiency can be
misleading [2, 3]. Hence, the network DEA (proposed by Färe
and Grosskopf [4]), considering the internal processes of
systems, can determine the relative performance of network
structure systems and yield more meaningful and informative
results than the traditional DEA [5].

One of the most important applications of DEA for
correcting and improving organizational efficiency is
benchmark selection. Benchmarking necessitates an efficient
method for determining the best performance, which is
based on the relative efficiency of all DMUs. Benchmark
selection is among the most important applications of DEA
efficiency correction and enhancement in organizations.
Benchmarking requires an effective method for identifying
the best performance, a process that necessitates evaluating
the relative efficiency of all DMUs. Usually performed
through DEA, a major benchmarking step is to identify the
best performance. )e DEA provides a reference set of
benchmark DMUs for inefficient DMUs and recommends
the extent to which DMUs should be improved in order to
become efficient. Various methods have been proposed for
benchmarking in the literature. In most papers, the DMU
efficiency is mainly measured through different DEA
models, and the distance between efficiency and the efficient
frontier is then determined.
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In the conventional DEA models, the efficiency score of
each unit is determined by projecting the unit on the ef-
ficient frontier, and therefore the projected (virtual) unit
can be considered as the corresponding target. However,
identifying a single efficient unit as a target may be in-
appropriate in practice because it might be very different
from the unit under consideration, or it is too far to reach in
the short term. Evidently, the decision-maker (DM) prefers
a stepwise approach to reach the far efficient benchmark
through a sequence of (intermediate) targets. Most DEA
models for target settings were subject to some constraints.
)ere have been a few studies on benchmark selection and
target setting for network structure. All of them face some
limitations as follows: (1) Network structures were tradi-
tionally thought to have two stages [6–10], whereas most
production processes have more than two stages, while the
two-stage structure widely exists in areas, such as supply
chains and bank productions, which is a basic production
structure [11]. So, the two-stage network DEA models can
be directly applied to industries and regarded as a basis to
solve general network evaluation problems [12]. (2) Nei-
ther of these studies considered the nonlinear behavior of
variables in efficiency evaluation and benchmarking, al-
though the real-world reactions of variables are not linear,
andmodeling them as linear will result in unreliable results.
It may be argued that, in a number of situations, certain
analysis variables (outputs or inputs) behave in a nonlinear
rather than linear manner. Since the DEA models are
intended to increase output, they are unable to distinguish
between desirable and undesirable outputs and will asso-
ciate a higher value to undesirable outputs. For instance,
highly polluted air will make people more allergic; there-
fore, different degrees of importance should be attributed
to different levels of pollution. In efficiency measurements,
it is essential to attribute different levels of importance to
different values of undesirable outputs. Hence, in order to
analyze the effects of undesirable outputs on performance
evaluation and obtain accurate and useful results, the
nonlinear valuation (values are the coefficients of inputs or
outputs in modeling and can be the price of desirable
outputs or the cost of inputs and undesirable outputs) and
behavior of outputs should also be considered in modeling.
In the current study, we assume that, on the inputs and
desirable outputs, all variables have a linear impact on
efficiency. We thus restrict attention to undesirable
outputs.

)us, a benchmarking model that takes into account the
nonlinear values of data must be introduced. )is study
aimed to propose a model capable of considering an ap-
propriate structure (with all stages in the DMUs) and the
nonlinear behavior of the variables for efficiency evaluation
in addition to proposing benchmarks for each inefficient
DMU.

)e rest of the paper consists of the following sections.
Section 2 presents a brief review of literature related to our
work. In Section 3, a novel network SBM-DEA model is
presented along with the piecewise linear to determine the
most appropriate target for every stage in addition to
benchmarking the inefficient DMUs.)emodel is employed

in Section 4 to evaluate the efficiency of 42 cement facilities
in Iran. )e empirical results are also presented in this
section. )e conclusion is finally drawn in Section 5.

2. Literature Review

In this section, a brief introduction to network SBM-DEA,
PLDEA, benchmarking, and target setting is presented so
that the reader becomes familiar with the basic concepts that
will be used in the next section for modeling and solving the
problem under study. Some related studies are presented at
the end of the subsection as a literature review.

2.1. Network Data Envelopment Analysis (NDEA): A Slack-
Based Approach. Charnes et al. developed a fractional
programming model, commonly known as the CCR model.
In this model, the efficiency measure of any DMU is de-
termined as the maximum ratio of weighted outputs to
weighted inputs. )e only restriction is that productivity
ratios of all DMUs must be smaller than or equal to one [1].
A flaw of the radial methods was that they did not differ-
entiate between inefficient and poorly efficient DMUs.
Hence, there were issues with ranking and comparing the
DMUs [13]. One approach to solve these problems is the use
of slacks-based measures. In addition to radial measures of
efficiency, there is the slacks-based measure (SBM) proposed
by Despotis and Sotiros [14]. )e SBM is not based on the
ray from the origin along the DMU being evaluated, so it is
nonradial. )e slacks-based approach uses the slacks to
measure performance and is suitable for measuring effi-
ciencies when inputs and outputs may change
nonproportionally.

In the conventional DEA, DMUs are usually formu-
lated as a single process transforming inputs into outputs.
)ey are treated as a black box in which internal structures
are generally ignored [4]. )erefore, they cannot provide
information on the performance of internal stages, and
the resultant efficiency can be misleading [2, 3]. Hence,
the network DEA (proposed by Fa ̈re and Grosskopf [4]),
considering the internal processes of systems, can de-
termine the relative performance of network structure
systems and yield more meaningful and informative re-
sults than the traditional DEA [5]. )e NDEA consists of
two basic structures, named serial and parallel [15, 16].
For the sake of simplicity, a serial structure is considered
with a two-stage process according to Figure 1. Assume
that there are n DMUj, j � 1, . . ., n, and let DMUO,
O ∈ 1, . . . , n{ }, refer to a unit from a total of n units, the
relative efficiency of which is being evaluated. Define
xo ∈ Rm+ as the inputs, zo ∈ Rd+ as the intermediate
products, and yo ∈ Rs

+ as the outputs of DMUO.)e slacks
associated with the inputs and output are S−

i and S+
r , re-

spectively. If all slack variables have a value of zero, then
the DMU being evaluated is efficient. )e nonzero slacks
show the amount of the corresponding factor that can be
improved to become efficient. )e proposed network SBM
model for measuring the system efficiency can be for-
mulated as follows [17]:
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Every phrase in the objective function’s numerator or
denominator represented the distance between the DMU
and its target. )e objective function can be utilized to
benchmark inefficient DMUs and set the target for them
[18]. S−

i , S+
r are slack variables that represent the gap between

inefficient DMU j and its benchmark point. On the basis of
optimal slacks (S−∗

i , S+∗
r ) obtained from models equation

(1), the target values are defined as follows:

􏽥xi � xi − s
−∗
i

􏽥yr � yr − s
+∗
r

⎧⎨

⎩ , (2)

where 􏽥xi and 􏽥yr as target values applied to improve the
efficiency of the inefficient DMUs and project them on the
efficient frontier [19].

In the existing literature, many models for evaluating
the efficiency of network systems have been proposed
[15, 16]. One of the most important of these is the slacks-
based measure model [15–17, 20, 21]. Tone proposed the
slacks-based measure integrating the data envelopment
analysis (SBM-DEA) [19], which fully takes undesirable
outputs and slack variables into account. )e SBM-DEA
has been widely used to evaluate and optimize the energy
structure [22, 23]. Cecchini et al. employed the SBM-DEA
integrating the life cycle analysis (LCA) to estimate the
environmental efficiency and emission reduction potential
of 10 dairy cattle farms in Italy [24]. Pishgar-Komleh et al.
applied the SBM-DEA to maximize the efficiency of winter
wheat production in Poland [25]. Chang et al. analyzed the
economic and environmental efficiency of 27 global airlines
in 2010 based on the SBM-DEA [26]. In many cases, DMUs

may have network structures. Two- or three-stage slack-
based network DEA has also been applied for performance
evaluation of systems. )ese kinds of DMUs have inputs,
outputs, and also intermediate amounts that flow from one
stage to another. )e stages may also have their own inputs
and outputs.

Tone and Tsutsui proposed a slacks-based NDEA
model that can deal with intermediate products formally.
)e model can measure both individual and network
performances. )ey apply the proposed model to verti-
cally integrated electric power companies as a network
structure. In this model, the generation plants and the
transmission facilities can be taken as Stage 1 and Stage 2,
respectively [17]. Tone and Tsutsui have developed this
model to a dynamic DEA model involving network
structure in each period within the framework of a slacks-
based measure approach [27]. Lozano and Adenso-Diaz
considered a multiproduct supply network, in which
losses (e.g., spoilage of perishable products) can occur at
either the nodes or the arcs. )ey proposed an NDEA to
assess the efficiency of the product flows in varying pe-
riods. )e results indicated that the proposed approach
can identify and remove the inefficiencies in the observed
data and that the potential spoilage reduction increases
with the variability in the losses observed in the different
periods [28]. Mahmoudabadi and Emrouznejad used a
network slacks-based measure (SBM) DEA model in
which the efficiency of the overall system is equal to the
weighted average of the efficiency of the individual stages.
)e main advantage of this model is its ability to provide
better efficiency criteria, calculate the weight of each stage

Stage 1 Stage 2

xij, i=1,2,...,m zdj, d=1,2,...,D yrj, r=1,2,...,s

DMUj, j=1,2,...,n

Figure 1: Two-stage process.
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separately, and simultaneously evaluate the mediator
variables as both input and output [29]. Li et al. evaluated
the environmental performance of Chinese industrial
systems by introducing a new network slacks-based
measure (SBM) DEA model [30]. Yang et al. combined
DEA and multiobjective programming to solve the re-
source allocation and target setting problem in organi-
zations with a centralized decision-making environment
[31]. Badiezadeh et al. evaluated optimistic and pessi-
mistic efficiencies using NDEA in the presence of unde-
sirable outputs [32]. Su and Sun introduced the dual-role
factors into the model of Badiezadeh and evaluated the
sustainability of supply chains [33]. Kao said that NDEA is
a relatively new subject, with a short history of no more
than 20 years since the term first appeared in 2000. In the
last two decades, dozens of models have been proposed,
and new models are still being developed [34]. Keshin
proposed the NDEA-SBMmethod to answer the questions
of whether the OPEC members used their oil wealth ef-
fectively to increase the social prosperity in their countries
[35]. Zhu et al. proposed a Mixed Integer Linear Program
(MILP) to determine the closest efficient targets on the
extended facet production possibility set in data envel-
opment analysis [36]. Zhu et al. measured sustainability
efficiency in terms of energy usage and environmental
impact by using a new generalized equilibrium efficient
frontier DEA (EEFDEA) approach. )e equilibrium ef-
ficient frontier is based on minimum satisfaction degree
maximization, considering both minimum and maximum
adjustment strategy [37]. Chen et al. adopted a four-stage
NDDF-DEA approach with considering undesirable
output and environmental impact factors to measure the
environmental adjusted dynamic energy efficiency of
China’s transportation sector [38]. Shi et al. developed a
network slacks-based DEA model to measure the overall
efficiency of the operational process with undesirable
outputs containing both series and parallel processes [39].
Li et al. evaluated the total factor waste gas treatment
efficiency (TFWGTE) of China’s iron and steel enterprises
and its influencing factors based on a four-stage SBM-
DEA model [40]. We should develop a method to model
the network structure. )e slacks-based measure network
data envelopment analysis model is a nonradial approach,
which could obtain all the slacks of inputs, intermediates,
desirable outputs, and undesirable outputs when opti-
mizing DMU’s efficiency [27, 41, 42].

)e approaches that have so far been proposed to
consider undesirable outputs in efficiency evaluation
through the DEA method can be divided into two main
categories:

(i) )e first category includes the approaches that have
directly analyzed the effects of undesirable outputs
on efficiency measurement through the DEA
method. Some of them are as follows: (1) slack-based
measure (SBM) model, (2) additive model, and (3)
Range-Adjusted Measure (RAM) model

(ii) )e second category includes the approaches that
evaluate efficiency indirectly by converting

undesirable outputs into desirable outputs. Some
of them are as follows: (1) the additive inverse
method, (2) undesirable outputs as inputs, (3)
translation invariance, (4) multiplicative inverse,
(5) nonseparating outputs model, and (6) linear
monotone decreasing transformation [43].

Although indirect methods have been used in the bulk of
studies to consider the undesirable outputs [44], these
studies have faced many limitations [24]. )erefore, the
undesirable outputs are directly considered in the network
SBM-DEA model in this study, and their nonlinear be-
haviors will be modeled through the piecewise linear
function.

)e NDEA modeling technique was also employed in
this paper. In addition, since a large number of real-world
problems entail different inputs and outputs with nonlinear
values, the results will not be accurate, reliable, and useful if
the linear valuation is used in performance evaluation
(values are the coefficients of inputs or outputs in modeling
and can be the price of desirable outputs or the cost of inputs
and undesirable outputs). )e piecewise linear function was
hence employed to distinctly evaluate the variables of a
DMU with those of another [45].

2.2. Piecewise Linear Models in DEA (PLDEA). Cook and
Zhu stated that, in the standard DEA model, the aggregate
output (input) was a pure linear function of each output
(input). )is means that if DMUj1

generates twice as much
of an output as another DMUj2

does, then DMUj1
is

credited with having created twice as much value [45]. In
many situations, however, linear pricing (μryrj) may not
sufficiently show differences in values obtained from one
DMU to another. )erefore, they solved this problem and
proposed the PLDEA. )ey established that certain fac-
tors, previously treated as behaving linearly, should be
looked upon as having a nonlinear effect on efficiency.
)us, they have considered the theory of piecewise linear
programming, when the scale of a variable with nonlinear
behavior could be divided into k segments with each
variable supposed to behave linearly in those segments.
Clearly, the more the segments, the closer the piecewise
linear estimation to the actual nonlinear function. Ac-
cordingly, the scale of the variable indicating the di-
minishing marginal value (DMV) behavior should be
divided into kr ranges [0, L1], (L1, L2], . . ., (Lkr−1, Lkr

]. Let
urk

be the value assigned to the portion of yrj, which lies
within the kth range [46].

If yrj ∈ (Lkj−1, Lkj
], then the parameters yk

rj are defined
as follows:

y
k
rj �

Lk, if k � 1,

Lk − Lk−1, if k � 2, ..., kj − 1,

Yrj − Lk−1, if k � kj,

0, if k> kj.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

)ePLDEAmodel developed by Cook and Zhu [45] is as
follows:
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In model equation (4), R1 and R2 are employed to define
sets of regular and DMV outputs, J� {1, . . ., n}, r1 ∈ R1, and
r2 ∈ R2, respectively. Cook and Zhu showed that f(yrj) �

ur(j)yrj was the linear equivalent of the piecewise linear
function􏽐

K
k�1 urk

yk
rj , where ur(j) is a convex combination of

urk
􏽮 􏽯

K

k�1 [45]. It should be stated that ark
and brk

take values
strictly greater than one for the mentioned variable. )e
parameters ar1r2

and br1r2
are the lower and upper bounds on

the ratios of pairs of regular and mentioned variables, re-
spectively. )e choice of number, width of ranges, and
bounds on the ratios of pairs of variables need to be carefully
determined by an analyst.

In all studies that applied NDEA models, the aggregate
output-input has been supposed as a linear function of each
output-input. But, linear pricing cannot reveal the reality of
situations in which there exist variables that have a nonlinear
impact on measuring the efficiency of complex systems.

Lotfi et al. showed that the model proposed by Cook and
Zhu failed to produce acceptable targets [45, 46]. )us, they
improved the piecewise linear CCR model to facilitate
producing Pareto-efficient targets. )ey also applied non-
radial improvements to fill the lower ranges before filling the
upper ones (see [46]).

Despotis et al. proposed a general modeling approach to
deal with inputs and/or outputs determined by nonlinear
value functions. )ey developed a CCR model with the
nonlinear virtual outputs and/or inputs in a piecewise linear
function that could assess the efficiency of units [13].
Despotis and Sotiros extended the approach originally
proposed by Cook and Zhu and then Despotis et al. and
developed a piecewise linear programming approach for
value-based DEA by employing a data transformation-
variable alteration technique and assurance region con-
straints [13, 14, 45]. Cook et al. proposed a modified DEA
structure capturing certain forms of nonlinear behavior
within the additive DEA model, including those which
exhibit diminishing marginal values [47]. Lotfi et al. stated
that the standard DEA models would provide efficiency
scores and targets for an inefficient unit; however, the
PLDEA model would fail to create acceptable targets [46].
)us, they considered this issue in the piecewise linear CCR

model and improved the model to facilitate the production
of Pareto-efficient targets. Ji et al. combined the DEA al-
gorithm with classification information and presented a
novel DEA-based classifier to construct a piecewise linear
discriminant function. In this classifier, class information is
added, and the nonnegative conditions of the DEA model
are lost [48].

2.3.Benchmarking. Efficiency analysis is performed not only
to estimate the current level of efficiency but also to provide
information on how to remove inefficiency, that is, to obtain
benchmarking information. Data envelopment analysis
(DEA) was developed in order to satisfy both objectives, and
the strength of its benchmarking analysis gives DEA a
unique advantage over other methodologies of efficiency
analysis. )is section gives an overview of a few bench-
marking studies.

)e benchmark, according to Gonzalez and Alvarez, was
the most similar efficient DMU. )ey proposed the concept
of input-specific contractions to determine the shortest path
to efficiency [49]. Baek and Lee calculated the shortest
distance and provided the smallest projection from the
DMU under evaluation [50]. Alirezaee and Afsharian pro-
posed a DEA-based model for evaluating and ranking
DMUs. )e efficiency evaluation in this model was per-
formed in several layers so that the inefficient DMU could be
moved to a better layer. A flaw of this model was that it did
not specify information about the method of selecting ref-
erence DMU in each layer [51]. Estrada et al. proposed the
method of stepwise benchmarking for inefficient DMUs
based on the proximity-based target selection. )ey pro-
vided the best path for obtaining the efficiency frontier of
DMUs based on a self-organizing map (SOM) and rein-
forcement learning. )is method disregarded the set of
DMU references; however, it did emphasize the similarity of
input patterns for the benchmarking path on practical target
DMUs [52]. Park et al. proposed a method for bench-
marking DMU performance levels and clustering them
based on the similarity of input patterns [53]. Lim et al.
proposed selecting the benchmarking path in the DEA based
on DMU clustering, that is, classifying the DMUs as distinct
layers based on their efficiency status and then setting the
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benchmark path in accordance with a layer sequence. )e
resultant benchmark can improve inefficient DMU per-
formance in a real and executable way [54]. Park et al.
introduced a novel stepwise benchmarking method that
relied on three criteria: preference, direction, and similarity
[55]. Ruiz and Sirvent argued that DEA benchmarking
models should be incorporated into their objectives criteria
for the selection of suitable benchmarks, in addition to
considering the setting of appropriate targets [56]. Ramón
et al. extended the popular benchmarkingmethod to identify
the most reasonable practices for planning the learning and
developing improvements [57].

2.4. Target Setting. Generally, the targets are of great im-
portance since they indicate how an inefficient unit could
improve its performance. )e DEA models estimated the
DMU efficiency and provided useful information for re-
solving the DMUs inefficiency by comparing each DMU to
its corresponding target. As a result, since they provide
targets for inefficient DMUs, DEA models are known as
powerful benchmarking tools [52]. )is section gives an
overview of a few target setting studies.

Ravelojaona proposed a CCR model to evaluate the
efficiency of DMUs based on the input-output ratio and
then set targets based on the projecting of the evaluated
DMUs on the efficient frontier. )e distance measure-
ment methods of setting targets include the directional
distance function, slacks-based efficiency measure, and
range-adjusted efficiency measure [58–60]. According to
Portela et al., traditional DEA models are incapable of
revealing the closest target for inefficient DMUs.
)erefore, they sought to find the closest target in two
states: free disposal hull (FDH) and convex [61]. Lozano
and Villa established a sequence of targets, each of which
was closer to the respective DMU than the previous
target. Finally, the last target was placed on the efficient
frontier. )e resultant efficient target would be closer
than in the method in which the DMUs were projected on
the efficient frontier [62]. Aparicio et al. proposed a
method for determining the closest target for DMUs. For
making efficient DMU, this approach used the closest
targets, fewer inputs, and more outputs [63]. Jahan-
shahloo et al. proposed a linear bilevel programming
problem to provide the closest target while minimizing
DMU’s distance from the strong efficient frontier. Ac-
cordingly, the closest targets, fewer inputs, and more
outputs were set for making efficient DMUs [64].
According to a few studies, target setting based on dis-
parate models for measuring DEA efficiency can lead to
optimal responses, for they reflect the greatest im-
provement potential. As a result, Wu proposed the closest
target method, which allows DMUs to gradually improve
their efficiency in accordance with the context-dependent
DEA. Furthermore, Lv et al. proposed a bargaining
method with DEA and acceptable targets for all DMUs.
However, none of these methods considered that the
inputs and outputs weights for each DMU would be
obtained from common DEAmodels by maximizing their

efficiency. )us, DMUs cannot guarantee their results,
although the majority of DMUs are obtained in order to
be efficient. )ey cannot be separated [59]. In the pres-
ence of many efficient DMUs, decision-makers might be
more aware of the constraints of target setting than of the
targets being ideal [65]. Cook et al. employed a common
set of weights DEA to solve this problem. Although this
method reduced the number of DMUs, it required
nonlinear planning, which is difficult to implement [66].
Lozano and Calzada-Infante proposed a new bench-
marking approach based on the concept of efficiency field
potential given by a continuous and differentiable
function [67]. Nasrabadi et al. proposed an algorithm that
results in a path of targets for each inefficient unit. All
units on this path are better than the unit under evalu-
ation in terms of efficiency scores defined for interval
scale data [68].

)e DEA models described in the preceding papers for
target settings were subject to some constraints, one of which
indicated that they failed to consider the internal structure of
DMUs and treated them as a black box. As a result, the sub-
DMU target setting would be ambiguous. Bi et al. proposed a
target setting model for parallel production lines in
manufacturing units. )e proposed model managed to
maximize the performance of the worst production line in
the unit while maintaining total efficiency [69]. Azadi et al.
proposed two DEA models for establishing targets for two-
stage networks. )ese methods were proposed as a way to
provide a feasible response to ensure that the targets ob-
tained from the models could be placed within the current
operational capacity [70]. Sarah and Halili-Damghani
adopted fuzzy de novo programming to find the best re-
sources (inputs) and optimal targets (outputs) for DMUs in
a network DEA [71]. Borgheipour et al. used the DEA to
evaluate the structural efficiency of a five-stage network and
also proposed some formulas for setting targets at each stage
and achieving high efficiency. )e findings indicated the
amount of change that the outputs of each stage had to
undergo in order to achieve an efficient status [72].

)is paper draws attention to the fact that traditional
data envelopment analysis (DEA) models do not provide the
closest possible targets to inefficient units and presents a
procedure to obtain such targets.

Compared to previous studies, this paper has imple-
mented the following innovations:

(i) Proposing a new idea for considering the effects of
undesirable outputs on performance evaluation
while taking different weights into account in order
to justify the nonlinear behavior of undesirable
outputs.

(ii) Developing a network SBM-DEA model with the
piecewise linear function to account for undesirable
outputs in performance evaluation.

(iii) Proposing a general network structure designed
through NDEA modeling for the first time to
evaluate the efficiency of cement companies by
analyzing the nonlinear behavior of undesirable
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outputs in the modeling process since undesirable
outputs (e.g., greenhouse gas emissions) signifi-
cantly impact the efficiency of cement companies in
production and consumption processes.

(iv) Benchmarking inefficient cement companies and
setting a suitable target for each of them by con-
sidering the nonlinear behavior of undesirable
outputs in the modeling process.

3. Methodology

)is section describes steps for the proposed method before
explaining its network structure and modeling.

3.1. Steps of the Proposed Model. Figure 2 demonstrates that
the input and output variables were initially set. )e un-
desirable outputs were then identified, and since the values
of the various undesirable outputs vary, this critical point
must be considered in modeling in order to provide reliable
results for decision-makers. )us, after an appropriate
network structure is designed, the new slack-based network
DEAwill be proposed with nonlinear pricing for undesirable
outputs modeled through the piecewise linear. Following the
resolution of the problem, a model of appropriate bench-
marks for the inefficient DMUs will be introduced. )e
proposed model will provide more supplementary infor-
mation for decision-makers and help them formulate
strategies for improving the efficiency of inefficient DMUs.

Few papers have evaluated the efficiency of a general
network structure with respect to undesirable outputs while
suggesting that considering undesirable outputs in a general
network structure could affect efficiency and make the re-
sults more accurate.)is paper aims to address the following
questions: “Which model can properly account for the ef-
fects of undesirable outputs on a general network structure
and determine efficiency?” What is the best benchmark for
each inefficient DMU to improve the efficiency of them with
multiple stages?

As mentioned earlier, this paper is intended for devel-
oping a DEA-based model to evaluate sustainable

performance in different industries. So, the present study
sought to propose a model capable of considering an ap-
propriate structure (with all targets in DMUs) and the
nonlinear behavior of undesirable variables for efficiency
evaluation as well as proposing targets for each inefficient
DMU.

3.2. Structure of General Network. Assume that there are n
DMUs and j� 1, . . ., n. According to Figure 3,
Xj � (x1j, . . . , xixj)

t is a set of inputs consumed by Stage 1,
whereas Zj � (z1j, . . . , zdzj)

t is a set of intermediate prod-
ucts consumed by Stage 2 and produced by Stage 1. Fur-
thermore, Zj

′ � (z1j
′, ..., zd

z′ j
′)t is a set of intermediate

products consumed by Stage 3 and produced by Stage 1,
whereas Mj � (m1j, . . . , mimj)

t is a set of inputs consumed
by Stage 2, and Fj � (f1j, . . . , fdfj)

t is a set of intermediate
products consumed by Stage 3 and produced by Stage 2. In
addition, Kj

′ � (k1j
′, . . . , kd

k′ j
′)t is a set of intermediate

products consumed by Stage 4 and produced by Stage 2,
whereas Lj � (l1j, . . . , ldlj

)t is a set of intermediate products
consumed by Stage 4 and produced by Stage 3, and Yj �

(y1j, . . . , yryj)
t is a set of outputs produced by Stage 4. Here,

ix and im are the number of independent inputs of x and m
variables, respectively, whereas dl, df, dk′ , dz′ , and dz rep-
resent the number of intermediate variables l, f,K′,Z′, and z,
respectively, and ry is the number of final output y.

3.3. Modeling. )e modeling process to evaluate the effi-
ciency of network-structured systems and benchmarking for
inefficient DMUs is carried out using a piecewise linear
function while considering undesirable outputs in modeling.

)e designed SBM model will then be presented for the
previous section’s design structure. )e undesirable non-
linear behavior will then be added to the model using a
piecewise linear function, and the results from the proposed
model will be used as a benchmark for inefficient DMUs

Select variables for 
evaluating the 

efficiency of DMUs

Designing a 
network structure 
based on inputs, 

outputs and 
production 

processIdentifying 
variables with 

nonlinear 
behaviour 

Identifying 
undesirable 
factors in 
efficiency 
evaluation Considering 

undesirable 
factors with 

nonlinear pricing Determining
Inputs & Outputs 

Considering 
Piecewise linear 

theory

Developing a NDEA model to benchmark 
inefficient DMUs with considering nonlinear 

pricing of undesirable factors 

Considering 
SBM network 

DEA model
Benchmarking 
for inefficient 

DMUs

Figure 2: Steps of methodology.
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with the improved values in the proposed input and output
variables.

3.3.1. Network Slack-Based Measure DEA.

max􏽘
iX
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Figure 3: )e proposed network structure.
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In model equation (5), R and R′ are two sets of ordinary
and nonlinear valuation variables, respectively. )e slacks in
the objective function represent distances of DMUs under
evaluation from the efficient frontier, according to this
model, which is the maximization of the input slacks, that is,
an input-oriented model. Hence, if the above model is
solved, the optimal value of the objective function for the
DMUs under evaluation will be zero, a value that indicates
that DMU is on the efficient frontier and thus efficient.
Furthermore, if the objective function’s value is positive, at
least one of the input slacks is nonzero. As a result, the
DMUs under evaluation are far from the efficiency frontier,
something which implies that they are inefficient. )erefore,
improvements equal to the number of slacks in the re-
spective factor must be implemented in order to achieve an
efficient DMU. As a result, it is possible to determine which
DMUs are efficient and which are inefficient.

In the above model, s−
i and s+

r are the surplus input
variable and shortfall output variable, respectively.

Theorem 1. Model 5 is always feasible.

Proof. Where the value of the objective function is signified
by θ, the following assumptions will be considered as the
feasible response equation (6) for model equation (5):

θ � λ1j � λ2j � λ3j � λ4j � 0,

∀j, j≠ 0, λ1O � λ2O � λ3O � λ4O � 1.
(6)

Relation 6 is a feasible response for model equation (5),
and it is true in all model constraints. In other words, where
θ � 0, all slack variables pertaining to DMU under evalu-
ation will be equal to zero. )us, by placing the values of
relation equation (6) in model equation (5), the under-
evaluation variables will be obtained. )en, without con-
sidering the quantitative value of the inputs, the middle and
output of the model, there is a feasible response for model
equation (5), and it will be identified by θ; therefore, the
model equation (5) is always feasible. □

Definition 1. Using the following formula, the corre-
sponding efficiency of the DMUs under evaluation can be
calculated based on the optimal resultant variables, which
represent the distance of the DMUs under evaluation from
the efficiency frontier.

EF �
1

1 + 􏽐iX
S
∗−
iX

􏼐 􏼑 + 􏽐iM
S
∗−
iM

􏼐 􏼑 + 􏽐dZ
S
∗−
dZ

􏼐 􏼑 + 􏽐d
Z′

S
∗−
d

Z′
􏼒 􏼓 + 􏽐d

K′
S
∗−
d

K′
􏼒 􏼓 + 􏽐dL

S
∗−
dL

􏼐 􏼑 + 􏽐dF
S
∗−
dF

􏼐 􏼑􏼒 􏼓

.
(7)

)e aforementioned formula can be employed to cal-
culate the total efficiency of DMUs under evaluation based
on the input-oriented model.

Definition 2. )e following formula can be adopted to
calculate the corresponding efficiency of each of the stages
DMUs under evaluation based on the optimal resultant
variables, which represent the distance of DMUs under
evaluation from the efficiency frontier.

EF.Stage 1 �
1

1 + 􏽐iX
S
∗−
iX

􏼐 􏼑
. (8)

EF.Stage 1 shows Stage 1 efficiency, which is the reverse
of one plus sum of slacks input into Stage 1.

EF.Stage 2 �
1

1 + 􏽐iM
S
∗−
iM

􏼐 􏼑 + 􏽐dZ
S
∗−
dZ

􏼐 􏼑􏼐 􏼑
. (9)

EF.Stage 2 shows Stage 2 efficiency, which is the reverse
of one plus sum of slacks input into Stage 2.

EF.Stage 3 �
1

1 + 􏽐d
Z′

S
∗−
d

Z′
􏼒 􏼓 + 􏽐dF

S
∗−
dF

􏼐 􏼑􏼒 􏼓

.
(10)

EF.Stage 3 shows Stage 3 efficiency, which is the reverse
of one plus sum of slacks input into Stage 3.

EF.Stage 4 �
1

1 + 􏽐d
K′

S
∗−
d

K′
􏼒 􏼓 + 􏽐dL

S
∗−
dL

􏼐 􏼑􏼒 􏼓

.
(11)

EF.Stage 4 shows Stage 4 efficiency, which is the reverse
of one plus sum of slacks input into Stage 4.

Considering formulas (8)–(11), the efficiency of each
stage can be obtained separately from the input-oriented
aspect for underevaluation DMUs.

Theorem 2. 9e efficiency is always EF ≤ 1.

Proof: . Since EF is a fraction with a numerator of one and a
denominator of 1+ positive sentence, the efficiency obtained
from this formula will always be less than or equal to one.
When the value of the objective function of model equation
(5) is zero, EF� 1. If the value of the objective function is
positive because the numerator is one, the fraction is strictly
greater than zero, and if the denominator is positive, it will
be added to one; therefore, the fraction is strictly smaller
than one. □

3.3.2. Modeling Undesirable Variable with Nonlinear Valuing
Based on Piecewise Linear Function. A piecewise linear
function was employed to determine the intervals of un-
desirable outputs with nonlinear behavior and nonlinear
valuation in the following manner:
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y
4,k
ryj �

Lk if k � 1

Lk − Lk−1 if k � 2, . . . , kj − 1

yryj − Lk−1 if k � kj

0 if k> kj

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

,

yryj ∈ Lkj−1, Lkj
􏼒 􏼕,

z
1 2,k
dzj �

Lk if k � 1

Lk − Lk−1 if k � 2, . . . , kj − 1

zdzj − Lk−1 if k � kj

0 if k> kj

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,

zdzj ∈ Lkj−1, Lkj
􏼒 􏼕,

f
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⎪⎪⎪⎪⎪⎪⎩
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􏼒 􏼕

(12)

In the above model, s−k
i is the surplus input variable

pertinent to the k interval from the piecewise linear
variables.
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(13)

)e model aims to allocate lower values to highly unde-
sirable outputs (if the production rate increases due to
undesirable outputs, the maximization objective function of
production rate will increase the amount of undesirable
outputs, and since larger amounts of raw materials will be
used for producing fewer desirable outputs, an increasing
production rate will lead to a reduced value).

3.3.3. Benchmarking for Inefficient DMUs. Benchmarking is
a process through which every inefficient DMU is assigned a
DMU on the efficient frontier that most closely resembles
that DMU as its benchmark to improve the performance of
the inefficient DMU [1].

)e obtained λ∗j for each inefficient DMU can be
employed to introduce benchmarks for each of them. In
other words, when λ∗j pertaining to each inefficient DMU is
greater than zero, the DMUj can be served as a benchmark to
use the obtained benchmark. Column 2 in Table 1 sum-
marizes the method of benchmark selection for inefficient
DMUs [1].

3.3.4. Target Setting for Inefficient DMUs. To suggest target
values, first of all, it is required to identify the inefficient
DMUs. Let DMUo be an inefficient DMU that can be
identified using. By solving an LP problem, the improvement
in the values of each input and output for DMUo can be
determined [19]. Optimal slacks were obtained from model
equations (5)–(11) to improve the efficiency of the inefficient
DMUs. Table 2 summarizes the method of efficiency im-
provement for inefficient DMUs.
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Theorem 3. According to column 6 in Table 2, target values
for the inputs project the inefficient DMUs on the efficient
frontier.

Proof. If the DMU input under evaluation is reduced to
optimal slack size obtained from themodel and in case DMU
is not placed on the efficiency frontier, there will be a point
on the efficient frontier that has fewer inputs than those
obtained from the above table; that is, the resultant s∗−

i of
model equation (5) is not optimal. Since the responses from
model equation (5) are optimal, the improvements to the
inputs using Table 2 will project the inefficient DMUs on the
efficient frontier. □

4. Results and Discussion

)e proposed model is able to evaluate sustainable per-
formance in different industries. )e cement industry has a
strategic and significant role in a nation’s civil and economic
development and is characterized by the largest production
rate of all other industries in the modern era. Some argue
that cement production is an indicator of growth and de-
velopment for every country and has a key role as a fun-
damental industry in developing Iran’s economic
infrastructures, so the proposedmodel is adopted to evaluate
the cement industry. It was tested by collecting actual data
from 10 Iranian cement companies listed on the Tehran
Stock Exchange in 2016. )e durability and survivability of
the cement industry depend on many operational, executive,
and technical factors, the qualities and effects of which must
thoroughly be analyzed and evaluated. According to Fig-
ures 2 and 3, the input and output variables are classified into

four stages. )e network structure modeling criterion is
based on the same classification:

Variables of Stage 1: these variables are considered the
input entrances or suppliers, the most important ex-
amples of which are introduced as mines, mining,
initial capital, and the status quos of suppliers of usable
instruments. In this stage, processing yields the vari-
ables that are identified as the outputs of this stage.
Preparation of materials and equipment required for
the supply chain stage is among the most important
outputs of the first stage, which are divided into two
classes: (1) the outputs that are used as the inputs of the
second stage and (2) the outputs that will directly be
used as the inputs of the third stage.
Variables of Stage 2: the input variables of this stage are
actually the very outputs of the first stage used in the
process of production and operations. Research and
development activities are used as the input in this
stage. )e output variables of this stage include
products and produced goods that will be transferred to
the next stage along with the undesirable outputs
yielded by the process of production and operations.
)is stage also results in greenhouse gases, particles,
and environmental pollution that endanger the supply
chain. Moreover, this stage generates some outputs that
are transferred directly as the input variables to the
fourth stage. Due to the presence of undesirable outputs
in this stage and the higher probability of generating
these outputs than the national standard (determined
by the Iranian Department of Environment) and ad-
versely affecting the supply chain, certain moderating
variables will be employed. In fact, if a chain has

Table 1: Statistical description of X variable related to DMU1.

Variable
Statistics

Minimum Maximum Std. deviation Variance
X1 3.67 4.67 0.34764 0.121
X2 3743.65 28651.32 6665.90269 44434258.660
X3 55000.00 1400000 410403.06560 168430676300
X4 51418.79 393524.12 92278.87003 8515389854
X5 22461.89 171907.91 40156.70943 1612561312
X6 27920.15 144926.34 40292.41565 1623478759
X7 43976.59 215747.88 48013.78300 2305323358
X8 4318 659846 200278.34510 40111415510
X9 80 1276 337.84908 114142
X10 116312 3648000 1158841.62600 1342913914000

Table 2: Benchmark selection for inefficient DMUs and target setting through the optimal slacks.

DMUs Benchmarks Stages Inputs Slacks Targets

j� 1, . . ., 10 λ∗j > 0

1 Xj � (x1j, . . . , xixj)
t s∗−

iX
, iX � (ix1

, . . . , ix10
) xiX

− s∗−
iX

2 Zj � (z1j, . . . , zdzj)
t s∗−

dz
, iZ � (iz1, . . . , iz12) zdz

− s∗−
dz

Mj � (m1j, . . . , mimj)
t s∗−

iM
, iM � (im1

, . . . , im4
) miM

− s∗−
iM

3 Fj � (f1j, . . . , fdfj)
t s∗−

dF
, iF � (if1

, . . . , if7
) fdF

− s∗−
dF

Zj
′ � (z1j
′, . . . , zd

z′ j
′)t s∗−

d
Z′

, iZ′ � (iz1′, . . . , iz4′) zd
Z′
′ − s∗−

d
Z′

4 Kj
′ � (k1j
′, . . . , kd

k′ j
′)t s∗−

d
K′

, iK′ � (ik1′, . . . , ik5′) kd
K′
′ − s∗−

d
K′

Lj � (l1j, . . . , ldlj
)t s∗−

dL
, iL � (il1, . . . , il6) ldL

− s∗−
dL
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undesirable performance in one index and violates the
determined standard, it will be fined. )e fine is
considered an independent variable in this stage.

Variables of Stage 3: the main activities of this stage of
the four-stage supply chain include preparation of
products for distribution, sale, and inventory.)e input
variables of this stage are divided into two categories:
(1) the inputs that are the very outputs obtained from
the second stage and (2) some output variables of the
first stage that were directly transferred to the third
stage. )e outputs of the internal processes of this stage
are used as the inputs of the fourth stage.

Variables Stage 4: considering the final stage of the
supply chain, this stage yields the final outputs of the
chain. )e main activities of this stage include selling
products, supplying the demands of customers and
consumers, and considering social responsibility. )e
input variables of this stage are the outputs of the third
stage as well as the outputs of the second stage that
entered the fourth stage directly. )e output variables
of this stage are identified as the final outputs of the
supply chain.

)e key performance indicators were selected according
to four important levels, namely, environmental sustain-
ability, strategic, process, and operational. )ey are as fol-
lows: X: (1) quality of suppliers in terms of sustainable supply
of minerals and consumables, (2) cost of green and sus-
tainability education for following relevant rules in the
supply chain, (3) total initial investment inmine exploitation
and factory processes, (4) total salaries and wages, (5) total
costs of purchasing minerals, chemicals, and other con-
sumable substances, (6) the sum of money paid to con-
tractors for mining, (7) total transportation cost, (8) total
financial costs, (9) total number of employees, and (10) total
debts of factories; Z: (1) total available mineral reserves, (2)
total tonnage of extracted minerals, (3) total tonnage of
chemical and mineral raw materials added to the production
process, (4) total mineral raw materials in storage depots for
use in cold seasons, (5) the quality of training programs for
suppliers and employees for sustainable production and
TQM, (6) annual mazut energy fuel consumption in lit/t, (7)
total research and development expenditures, (8) total en-
ergy cost, (9) actual industry capacity, (10) annual power
consumption in kw/h, (11) annual gas consumption in m3/t,
and (12) the environmentally degrading effects of mining;M:
(1) response cost of total dust particles produced in Mg/
Nm3, (2) response cost of average annual greenhouse gas
emissions of NOX in Mg/Nm3, (3) response cost of average
annual greenhouse gas emissions of SO2 inMg/Nm3, and (4)
response cost of average annual greenhouse gas emissions of
CO in Mg/Nm3; K: (1) the factory’s total cement production
tonnage, (2) the factory’s total clinker production tonnage,
(3) the total impact of the permeation of drinking water and
wastewater into groundwater, (4) average annual green-
house gas emissions of NOX in Mg/Nm3, (5) average annual
greenhouse gas emissions of SO2 in Mg/Nm3, (6) average
annual greenhouse gas emissions of CO in Mg/Nm3, and (7)

total dust particles produced in Mg/Nm3; z′: (1) suppliers’
flexibility, (2) improving the relationships in the supply
chain, (3) the total cost of increasing supply chain reliability,
and (4) compliance with legal standards and governmental
rules in the supply chain; L: (1) total marketing costs, (2)
warehouse inventory value in rial (materials and goods), (3)
total tonnage of bagged and bulk cement sold in domestic
and export markets, (4) total tonnage of clinker sold, (5)
number of pp cement bags consumed annually, and (6)
consumer price; K′: (1) inverse procurements, (2) the effect
of factory efficiency on creating negative conditions in the
ecosystem, (3) the costs of environmentally friendly design,
(4) social responsibility, and (5) efforts for using advanced
technologies and substitute rawmaterials; Y: (1) total current
assets, (2) factory brand competitiveness and globalization,
(3) green space development culture, (4) total earnings from
product sales, (5) total profits, (6) annual growth rate
according to performance, (7) return on assets (ROA), (8)
return on equity (ROE), (9) effectiveness of factory in a
particular area of activity, (10) customer satisfaction, (11)
implementing quality working conditions for personnel,
(12) social responsibility, (13) ton of waste (bags) disposed in
the environment, and (14) ton of pollution caused by
emitting unrecyclable substances.

)en we determine inputs and desirable and undesirable
outputs for each stage. )e general network structure in-
cludes 10 homogenous DMUs, all of which consist of four
stages and also have similar internal structures and internal
relations presented in Figure 3.

Table 1 indicates the statistical data for the X variable
pertaining to DMU1.

)e statistical information regarding the variables Z, F, L,
M, K′, Z′, and Y was obtained based on Table 1 for each
DMU under evaluation in SPSS. Due to the large amount of
data and the limited number of pages in papers, their titles
were omitted, and only the statistical information of variable
X pertaining to DMU1 in Table 1 will be discussed.

)e piecewise linear function was used to determine the
intervals of undesirable outputs with nonlinear effect and
nonlinear valuation in the following manner:

y
4,k
rYj �

Lk if k � 1

Lk − Lk−1 if k � 2, ..., kj − 1

yrj − Lk−1 if k � kj

0 if k> kj

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y
4,k
rYj
⟶k�1,...,3

rY�13
[0, 500], (500, 1500], (1500, 2500]

y
4,k
rYj
⟶k�1,...,4

rY�14
[0, 200], (200, 800], (800, 1200] , (1200, 1500].

(14)

Out of 14 variables, the first 12 are considered desirable
outputs, whereas the thirteenth and fourteenth variables are
undesirable. y4,k

rYj, k � 1, . . . , 3, rY � 13, refers to the scale
of the thirteenth variable in the k th interval. Accordingly,
the scale of the thirteenth output was divided into three
intervals (k � 1, 2, 3), in each of which the output indicated
linear behavior and the intervals had a different value.
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Accordingly, the scale of the fourteenth output was divided
into four intervals, in each of which the output indicated
linear behavior and the intervals had a different value.
Similarly, for undesirable intermediate products (f4, f5, f6,
f7, and z12), the amount of the given variable is divided into
intervals in which the behavior of the variable is linear.

z
1 2,k
dZj �

Lk if k � 1

Lk − Lk−1 if k � 2, . . . , kj − 1

zdj − Lk−1 if k � kj

0 if k> kj

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,

z
1 2,k
dZj ⟶

k�1,...,3

dZ�12
[0, 1.5], (1.5, 2.5], (2.5, 3],

f
2 3,k
df

�

Lk if k � 1

Lk − Lk−1 if k � 2, . . . , kj − 1

fdj − Lk−1 if k � kj

0 if k> kj

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,

f
2 3,k
df
⟶k�1,...,3

dF�4
[0, 400], (400, 450], (450, 550],

f
2 3,k
df
⟶k�1,...,3

dF�5
[0, 2060], (2060, 2180], (2180, 2220],

f
2 3,k
df
⟶k�1,...,3

dF�6
[0, 650], (650, 680], (680, 710],

f
2 3,k
dF
⟶k�1,...,3

dF�7
[0, 126], (126, 129], (129, 131].

(15)

According to the indicators presented above and the
general network structure model proposed previously, un-
desirable outputs and their nonlinear behavior were taken
into account and given nonlinear values for the efficiency
evaluation of companies in GAMS. Table 3 presents the
results.

)e efficiency and benchmarks of each stage can be
calculated through the formulas proposed in this study. Due
to the abundance of results, only the efficiency and
benchmarks for Stage 1 were presented in this section.

Table 3 shows the results of applying the proposed model
to data from ten cement-manufacturing companies in
GAMS. Furthermore, the efficiency values of DMUs 4, 5, and
6 are smaller than one, whereas those of the remaining
DMUs are equal to one.

Based on Table 4, Since the sum of slack variables values
resulting from model equation (5) for DMUs 4, 5, and 6 was
not zero, these three DMUs were inefficient, and a bench-
mark for each of themmust be introduced to improve them.
As a result, the appropriate benchmarks for inefficient
DMUs will be presented here.

According to Table 5, the obtained nonzero λ∗ can be
employed to select an appropriate benchmark for each of the
inefficient DMUs. In other words, the resultant nonzero λ∗
corresponding to each efficient DMU was selected as a
benchmark for the inefficient DMUs. For DMU4, nonzero
λ∗1 and λ∗9 were obtained. )erefore, the DMUs corre-
sponding to λ∗ include DMU1 and DMU9 that can be

introduced as a benchmark to improve and modify the
efficiency of DMU4.

According to Table 2, in order to improve the efficiency
of inefficient DMUs, the values of input variables pertaining
to them can be changed based on the obtained benchmarks.
)erefore, the respective DMU is placed on the efficient
frontier. As a result, the optimal slacks will be utilized to
specify the reduction of the values of the input variables or
the increase of the values of the output variables. Due to the
abundance of data, this section only discussed the table of X
input modification and improvement for each inefficient
DMU (Table 6). For instance, for DMU4, x1 � 4 and
s∗−

x1
� 0.333; thus, in order to increase the efficiency of

Table 3: Efficiency measurement using model equation (8) for 10
cement companies.

DMU Efficiency DMU Efficiency
1 1 6 0.7517
2 1 7 1
3 1 8 1
4 0.9987 9 1
5 0.9946 10 1

Table 4: Results of objective function from model equation (5) for
DMUs.

DMU Sum of slacks
1 0
2 0
3 0
4 309260.8
5 787765.7
6 4136733
7 0
8 0
9 0

Table 5: )e benchmarks obtained for inefficient DMUs.

DMU λ∗ > 0 )e benchmarks
4 λ∗1 , λ∗9 > 0 DMU1; DMU9
5 λ∗1 , λ∗9 > 0 DMU1; DMU9
6 λ∗1 , λ∗9 , λ∗10 > 0 DMU1; DMU9; DMU10

Table 6: Target values of inefficient DMUs for achieving the
benchmark.

x
DMUs

4 5 6
x∗1 3.67 3.67 3.67
x∗2 3743.649 3743.649 3743.649
x∗3 88000 88000 88000
x∗4 51418.79 51418.79 51418.79
x∗5 22461.89 22461.89 22461.89
x∗6 27920.15 27920.15 27920.15
x∗7 43976.6 43976.6 43976.6
x∗8 12004 12004 12004
x∗9 80 80 80
x∗10 351205 351205 351205
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DMU4, the first input (x1) should be reduced to 0.333, so
x∗1 � 3.67 will then be obtained. All modifications such as
reducing input consumption or increasing output produc-
tion can increase efficiency and transform inefficient DMUs
into efficient ones.

5. Conclusion

Since managers and decision-makers are seeking ways to
improve the performance of their companies, complete
information about corporate efficiency is required. )e
undesirable outputs are among the factors that have
negative impacts on the efficiency of a company; thus,
decision-makers are attempting to measure efficiency by
considering the effect of the undesirable factors in order to
identify DMUs with better performance under the same
conditions and regard them as a benchmark for inefficient
DMUs. )erefore, this study proposed the SBM network
DEA model to analyze the performance of cement-
manufacturing companies with a 4-stage structure while
considering undesirable outputs. )e piecewise linear
theory was employed to consider fewer values for
quantities greater than the undesirable outputs. Conse-
quently, the DMUs that produced fewer undesirable
outputs were distinguished from DMUs that produced
more undesirable outputs. Finally, the proposed model
was solved to introduce an appropriate benchmark for
inefficient DMUs.

)e current study faces the following limitations:

(i) Structural complexity of the analyzed supply chain
and development of mathematical equations and
constraints.

(ii) Inaccessibility of exclusive websites and databanks
in the cement industry of Iran.

(iii) Lengthy bureaucratic procedures for acquiring
permits or relative information.

(iv) Unavailability of sufficient classified information on
undesirable outputs in the Iranian Department of
Environment.

(v) Presence of certain constraints on the proposed
mathematical modeling framework for the research
problem, including the use of binary values or the
large-scale M variable.

Future studies can use the proposed method for more
accurate ranking of units under evaluation, examining
density, and evaluating of progress, regression, and effi-
ciency, as well as pricing appropriate to the amount of
production in different areas.
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