
Research Article
Optimal Algorithms for Nonlinear Equations with Applications
and Their Dynamics

Amir Naseem ,1 M. A. Rehman ,1 and Nasr Al Din Ide 2

1Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
2Department of Mathematics, Faculty of Science, Aleppo University, Aleppo, Syria

Correspondence should be addressed to Amir Naseem; amir.kasuri89@gmail.com and Nasr Al Din Ide; ide1112002@yahoo.ca

Received 16 May 2022; Accepted 18 August 2022; Published 27 September 2022

Academic Editor: Shanmugam Lakshmanan

Copyright © 2022 Amir Naseem et al.*is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the present work, we introduce two novel root-finding algorithms for nonlinear scalar equations. Among these algorithms, the
second one is optimal according to Kung-Traub’s conjecture. It is established that the newly proposed algorithms bear the fourth-
and sixth-order of convergence. To show the effectiveness of the suggested methods, we provide several real-life problems
associated with engineering sciences. *ese problems have been solved through the suggested methods, and their numerical
results proved the superiority of these methods over the other ones. Finally, we study the dynamics of the proposed methods using
polynomiographs created with the help of a computer program using six cubic-degree polynomials and then give a detailed
graphical comparison with similar existing methods which shows the supremacy of the presented iteration schemes with respect
to convergence speed and other dynamical aspects.

1. Introduction

A huge number of complicated problems in mathematics
and engineering disciplines are directly connected to the
solution of transcendental and algebraic nonlinear equations
of the form:

φ(x) � 0, (1)

where the real-valued function φ is defined on the open
connected set. Mostly, the direct solution of these problems
is not possible to find via analytical methods, and ultimately,
we have to move towards the iterative algorithms. By an
algorithm, we mean a sequence of finite number of steps to
achieve the required goal (solution) of the given problem.
*e repetition of these steps is called iterations. In the
process of iterative algorithms, we always need a starting
point to initialize the iteration process. *is starting point is
usually called the initial guess that is rectified after each
iteration till the required accuracy is gained.

In literature, there is a plethora of root-finding iterative
algorithms for the problems related to the nonlinear equa-
tions. *e oldest, classical, and most widely used algorithm

was suggested by Newton–Raphson in 1690 [1]. Geometri-
cally, the derivation of Newton’s algorithm was purely based
on the concept of slope of the line. *is method requires two
evaluations per iteration and possesses the quadratic con-
vergence order. For many years, Newton’s method has been
implemented successfully for root-finding of nonlinear
problems. After that, Gutierrez and Hernández [2] presented
a new family of Chebyshev–Halley type methods in Banach
spaces which were utilized for root-finding of nonlinear
problems. In 1993, Argyros et al. [3] discussed the applica-
tions of Halley method in Banach space. After few years,
Chun [4] constructed Newton-like iteration methods which
were purely designed for finding one-dimensional nonlinear
equations’ solution. After the construction of one step
Newton-like iterative algorithms, a huge class of researchers
tried to modify it and suggested a broad range of root-finding
algorithms with the help of different mathematical techniques
and established a class of multistep algorithm. For further
details of the multistep algorithm, one can see Amiri et al. [5],
Behl et al. [6], Naseem et al. [7], and Ozyapici [8]. *e
motivation behind these modifications is to attain higher-
order and more efficient algorithms.

Hindawi
Complexity
Volume 2022, Article ID 9705690, 19 pages
https://doi.org/10.1155/2022/9705690

mailto:amir.kasuri89@gmail.com
mailto:ide1112002@yahoo.ca
https://orcid.org/0000-0001-7010-6810
https://orcid.org/0000-0002-8042-1619
https://orcid.org/0000-0003-2562-4277
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9705690

Ostrowski [9] and Traub [10] in the twentieth century
introduced the concept of multistep iteration schemes and
proposed two-step fourth-order iteration schemes with
Newton’s iteration method as a predictor. In 2006, Aslam
Noor and Inayat Noor [11] introduced some new three-step
iterative schemes and proved their third-order conver-
gence. After that, Golbabi and Javidi [12] in 2007 presented
a new cubically convergent method whose derivation is
totally based on the homotopy-perturbation method. By
utilizing the new series expansion of the nonlinear func-
tion, Noor et al. [13], in 2012, constructed and then ana-
lyzed some novel two-step iteration methods and discussed
some special cases. *ese suggested schemes possessed the
convergence of quadratic and cubic orders and were ac-
tually the modified form of Newton’s algorithm. Kumar
et al. [14] presented a novel class of sixth-order parameter-
based methods for finding zeros of one-dimensional
nonlinear equations in 2018. In 2019, Said Solaiman et al.
[15] proposed derivative free optimal fourth-order and
eighth-order versions of King’s approach by combining the
composition technique with rational interpolation, as well
as the Pade’s concept of approximation. In 2020, Chand
et al. [16] developed some novel PotraPtak type optimal
sixth- and eighth-order iteration methods by utilizing the
idea of weight functions on the PotraPtak method for
determining the approximate zeros of nonlinear models
and applied them on some real-life engineering problems.
*e authors also analyzed the stability of the suggested
schemes via basins of attraction for some cubic and qua-
dratic polynomials. Naseem et al. [17] recently constructed
and analyzed some novel ninth-order iteration schemes by
implementing the idea of variational iteration and then
investigated the dynamical behaviour via polynomiographs
of different complex polynomials.

*e main contributions of the present research are given
as follows:

(i) We developed and examined two novel predictor
corrector type iterative techniques, namely, Algo-
rithm 1 and Algorithm 2, in which Newton’s
method is used in the predictor step.

(ii) We demonstrated that these newly created ap-
proaches have fourth- and sixth-order of conver-
gence and are more efficient than the other well-
known iterative methods of the same type.

(iii) *e suggested approaches were used to solve several
test cases in order to evaluate their validity and
accuracy.

(iv) We compare the polynomiographs of newly pro-
posed techniques to those of existing methods of the
same category in terms of time and other dynamical
aspects. *e exhibited polynomiographs contain
highly fascinating and attractive patterns that rep-
resent many polynomial characteristics.

*e remaining sections of the paper are arranged as
follows:

In Section 2, we have constructed two novel algorithms.
*e convergence criteria for the constructed algorithms have

been discussed in Section 3. In Section 4, we solved different
test problems for assuring the validity of the constructed
methods. Section 5 includes the graphical properties of the
constructed algorithms, and Section 6 contains the
conclusion.

2. Construction of New Optimal Root-
Finding Algorithms

By employing the technique of modified homotopy per-
turbation, Golbabai and Javidi [12] introduced the following
iteration formula:

xp+1 � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
−

φ2
xp􏼐 􏼑φ″ xp􏼐 􏼑

2 φ′
3

xp􏼐 􏼑 − φ xp􏼐 􏼑φ′ xp􏼐 􏼑φ″ xp􏼐 􏼑􏼔 􏼕
,

(2)

which is a third-order iteration method, usually known as
Javidi’s method. In [18], Rafiq and Rafiullah considered
Newton’s iteration method in the predictor step and pre-
sented a new two-step Javidi’s iteration method given as

yp � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
,p � 0,1,2, . . . ,

xp+1 � yp −
φ yp􏼐 􏼑

φ′ yp􏼐 􏼑
−

φ2
yp􏼐 􏼑φ″ yp􏼐 􏼑

2 φ′3 yp􏼐 􏼑 −φ yp􏼐 􏼑φ′ yp􏼐 􏼑φ″ yp􏼐 􏼑􏼔 􏼕
.

(3)

To make it optimal, we consider the following approx-
imations of first and second derivatives:

φ′ yp􏼐 􏼑 ≈ φ′ xp􏼐 􏼑,

φ″ yp􏼐 􏼑 ≈
4φ xp􏼐 􏼑 + 10φ yp􏼐 􏼑

yp − xp

,

� η xp, yp􏼐 􏼑.

(4)

Using the above approximations in (3), we gain new
optimal root-finding algorithms having the following iter-
ative form:

Algorithm 1.For a given x0, compute the approximate
solution xp+1 by the following iterative schemes:

yp � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
, p � 0, 1, 2, . . . ,

xp+1 � yp −
φ yp􏼐 􏼑

φ′ yp􏼐 􏼑
−

φ2
yp􏼐 􏼑η xp, yp􏼐 􏼑

2 φ′3 yp􏼐 􏼑 − φ yp􏼐 􏼑φ′ yp􏼐 􏼑η xp, yp􏼐 􏼑􏼔 􏼕
,

(5)

which is fourth-order optimal root-finding algorithm for
nonlinear scalar equations and it utilizes three functional
evaluations per iteration. It should be noted that all the terms
that appeared in the denominator of Algorithm 1 must not

2 Complexity

be zero; otherwise, the method will fail to find the ap-
proximate solution to the given problem. To achieve better
convergence, we utilize the same idea as described above and
add one more step as Newton’s method which results in the
following iterative method:

yp � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
, p � 0, 1, 2, . . . ,

zp � yp −
φ yp􏼐 􏼑

φ′ xp􏼐 􏼑
−

φ2
yp􏼐 􏼑η xp, yp􏼐 􏼑

2 φ′3 xp􏼐 􏼑 − φ yp􏼐 􏼑φ′ xp􏼐 􏼑η xp, yp􏼐 􏼑􏼔 􏼕
,

xp+1 � zp −
φ zp􏼐 􏼑

φ′ zp􏼐 􏼑
.

(6)

*e above iteration scheme gains optimal order but does
not fulfill the Kung and Traub’s conjecture [19]; to fulfill this
conjecture, we consider the following approximations:

φ′ zp􏼐 􏼑 ≈
φ′ xp􏼐 􏼑

G up, vp, wp􏼐 􏼑
, (7)

where

G � G up, vp, wp􏼐 􏼑,

� 1 + 2up 1 + 3up + 3u
2
p􏼐 􏼑 + vp + 4wp,

up �
φ yp􏼐 􏼑

φ xp􏼐 􏼑
, vp �

φ zp􏼐 􏼑

φ yp􏼐 􏼑
, wp �

φ zp􏼐 􏼑

φ xp􏼐 􏼑
.

(8)

With the help of the above approximations in (6), we are
able to suggest the following algorithm:

Algorithm 2.For a given x0, compute the approximate
solution xp+1 by the following iterative schemes:

yp � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
, p � 0, 1, 2, . . . ,

zp � yp −
φ yp􏼐 􏼑

φ′ xp􏼐 􏼑
−

φ2
yp􏼐 􏼑η xp, yp􏼐 􏼑

2 φ′3 xp􏼐 􏼑 − φ yp􏼐 􏼑φ′ xp􏼐 􏼑η xp, yp􏼐 􏼑􏼔 􏼕
,

xp+1 � zp − G
φ zp􏼐 􏼑

φ′ xp􏼐 􏼑
,

whereG � G up, vp, wp􏼐 􏼑 � 1 + 2up 1 + 3up + 3u
2
p􏼐 􏼑 + vp + 4wp,

(9)

which is a three-step optimal root-finding algorithm, having
sixth convergence order and utilizing only four functional
evaluations per iteration. One must keep in mind that all the
terms that appeared in the denominator of Algorithm 2must
not be vanished at the initial guess in the given domain;
otherwise, the method will not work properly to find the
approximate solution of the given problem.

3. Convergence Analysis

*is section of the paper contains the convergence analysis
of the suggested iteration methods.

Theorem 1. Suppose α be the actual root of equation
φ(x) � 0. If φ(x) is differentiable near α, Algorithm 1 is of
fourth-order convergence.

Proof. To prove the theorem, suppose α be the exact root of
the equation φ(x) � 0 and ep be p th-iteration’s error, where
ep � xp − α, and with the help of Taylor’s series expansion
around x � α, we obtain

φ xp􏼐 􏼑 � φ′(α)ep +
1
2!
φ″(a)e

2
p +

1
3!
φ″′(a)e

3
p +

1
4!
φ(vi)

(a)e
4
p +

1
5!
φ(v)

(a)e
5
p

+
1
6!
φ(vi)

(α)e
6
p + O e

7
p􏼐 􏼑,

φ xp􏼐 􏼑 � φ′(a) ep + d2e
2
p + d3e

3
p + d4e

4
p + d5e

5
p + d6e

6
p + O e

7
p􏼐 􏼑􏽨 􏽩,

(10)

φ′ xp􏼐 􏼑 � φ′(α) 1 + 2d2ep + 3d3e
2
p + 4d4e

3
p + 5d5e

4
p + 6d6e

5
p + 7d7e

6
p + O e

7
p􏼐 􏼑􏽨 􏽩, (11)

where

dp �
1
p!

φ(p)
(α)

φ′(α)
. (12)

With the help of (10) and (11), we get

Complexity 3

yp � φ′(α) α + d2e
2
p + 2d3 − 2d

2
2􏼐 􏼑e

3
p + 3d4 − 7d2d3 + 4d

3
2􏼐 􏼑e

4
p + −6d

2
3 + 20d3d

2
2􏼐􏽨

−10d2d4 + 4d5 − 8d
4
2􏼑e

5
p + −17d4d3 + 28d4d

2
2 − 13d2d5 + 5d6 + 33d2d

2
3 − 52d3d

3
2􏼐

+16d
5
2􏼑e

6
p + O e

7
p􏼐 􏼑􏽩.

(13)

φ yp􏼐 􏼑 � φ′(α) d2e
2
p + 2d3 − 2d

2
2􏼐 􏼑e

3
p + 5d

3
2 − 7d2d3 + 4d4􏼐 􏼑e

4
p + −24d

2
3 + 12d3d

4
2􏽨􏽨

−10d2d4 + 4d5 − 6d
2
3􏼑e

5
p + −73d4d

3
2 + 34d4d

2
2 − 28d

5
2 + 37d2d

2
3 + 17d4d3􏼐

13d2d5 + 5d6􏼁e
6
p + O e

7
p􏼐 􏼑􏽩.

(14)

With the help of (10), (13), and (14), we get

η xp, yp􏼐 􏼑 � φ′(α) 4e
− 1

+ 22d2 + 40d3 + 4d
2
2􏼐 􏼑ep + 26d2d3 − 4d

3
2 + 58d4􏼐 􏼑e

2
p􏽨

+ 76d5 + 44d2d4 + 36d
2
3 − 40d3d

2
2 + 4d

4
2􏼐 􏼑e

3
p + 94d6 + 62d2d5 + 118d4d3(

− 58d4d
2
2 − 102d2d

2
3 + 64d3d

3
2 − 4d

5
2􏼑e

4
p + 112d7t + n80qd2hd6+x1647d5Cd3(􏼁

− 76d5d
2
2 + 96d

2
4 + 72d4d

3
2 + 252d

2
3d

2
2 − 108d3d

4
2 − 288d4d2d3 − 76d

3
3

+4d
6
2􏼑e

5
p + 130d8 + 98d2d7 − 314d4d

2
3 + 378d2d

3
3 − 596d

2
3d

3
2 + 192d3d

5
2􏼐

− 200d2d
2
4 + 266d4d5 − 76d4d

4
2 + 90d5d

3
2 − 94d6d

2
2 − 372d3d2d5 + 596d3d4d

2
2

−4d
7
2210d3d6􏼑e

6
p + O e

7
p􏼐 􏼑􏽩.

(15)

Using equations (10)–(15) in Algorithm 1, we obtain

xp+1 � α − 8d
3
2 + d2d3􏼐 􏼑e

4
p + O e

5
􏼐 􏼑, (16)

which implies that

ep+1 � α − 8d
3
2 + d2d3􏼐 􏼑e

4
p + O e

5
􏼐 􏼑. (17)

*e above equations confirms that Algorithm 1 is of
fourth-order convergence. □

Theorem 2. Suppose α be the actual root of φ(x) � 0. If φ(x)

is differentiable near α, Algorithm 2 is of sixth-order
convergence.

Proof. From equations (10)–(15) with the same assumptions
of the previous theorem, we have

η xp, yp􏼐 􏼑 � φ′(α) 2d2 + 6d2d3 − 2d4(􏼁e
2
p + 12d

2
3 − 12d3d

2
2 + 4d2d4 − 4d5􏼐 􏼑e

3
p + 2d2d5(􏽨

−26d3d4 − 42d2d
2
3 + 24d3d

3
2 + 2d4d

2
2 − 6d6􏼑e

4
p + −48d4d2d3 + 12d

2
4 − 24d4d

3
2􏼐

+28d5d3 + 4d5d
2
2 + 120d

2
3d

2
2 − 48d3d

4
2 − 8d7 − 36d

3
3􏼑e

5
p + −60d5d2d3 + 28d4d3d

2
2􏼐

− 2d2d7 + 22d5d4 − 10d5d
3
2 + 30d6d3 + 6d6d

2
2 + 20d2d

2
4 − 86d4d

2
3 + 88d4d

4
2

+198d2d
3
3 − 312d

2
3d

3
2 + 96d3d

5
2 − 10d8􏼑e

6
p + O e

7
p􏼐 􏼑􏽩.

whereG � G up, vp, wp􏼐 􏼑

� 1 + 2up 1 + 3up + 3u
2
p􏼐 􏼑 + vp + 4wp,

(18)

4 Complexity

zp � φ′(α) α + −8d
3
2 − c2d3􏼐 􏼑e

4
p + −2d2d4 − 46d3d

2
2 + 22d

4
2 − 2d

2
3􏼐 􏼑e

5
p + −3d2d5 − 7d4d3(􏽨

−69d4d
2
2 − 90d2d

2
3 + 124d3d

3
2 − 118d

5
2􏼑e

6
p + −272d4d2d3 − 4d2d6 − 10d5d3 − 92d5d

2
2􏼐

+164d4d
3
2 + 220d

2
3d

2
2 − 1028d3d

4
2 − 6d

2
4 − 60d

3
3 + 388d

6
2􏼑e

7
p + −364d3d2d5 + 529d3d4d

2
2􏼐

− 5d2d7 − 274d4d
2
3 + 93d2d

3
3 − 3681d

2
3d

3
2 + 3586d3d

5
2 − 206d2d

2
4 − 17d4d5 − 1502d4d

4
2

+203d5d
3
2 − 115d6d

2
2 − 13d3d6 − 1743d

7
2􏼑e

8
p + O e

9
p􏼐 􏼑􏽩,

(19)

φ zp􏼐 􏼑 � φ′(α) −8d
3
2 − c2d3􏼐 􏼑e

4
p + −2d2d4 − 46d3d

2
2 + 22d

4
2 − 2d

2
3􏼐 􏼑e

5
p + −3d2d5 − 7d4d3(􏽨

−69d4d
2
2 − 90d2d

2
3 + 124d3d

3
2 − 118d

5
2􏼑e

6
p + −272d4d2d3 − 4d2d6 − 10d5d3 − 92d5d

2
2􏼐

+164d4d
3
2 + 220d

2
3d

2
2 − 1028d3d

4
2 − 6d

2
4 − 60d

3
3 + 388d

6
2􏼑e

7
p + −364d3d2d5 + 529d3d4d

2
2􏼐

− 5d2d7 − 274d4d
2
3 + 93d2d

3
3 − 3681d

2
3d

3
2 + 3586d3d

5
2 − 206d2d

2
4 − 17d4d5 − 1502d4d

4
2

+203d5d
3
2 − 115d6d

2
2 − 13d3d6 − 1743d

7
2􏼑e

8
p + O e

9
p􏼐 􏼑􏽩,

(20)

up � φ′(α) α + 2d3 − 3d
2
2􏼐 􏼑e

4
p + 8d

3
2 − 10d2d3 + 3d4􏼐 􏼑e

5
p + 37d3d

2
2 − 20d

4
2 − 14d2d4􏼐􏽨

+4d5 − 8d
2
3􏼑e

6
p + −118d3d

3
2 + 51d4d

2
2 + 48d

5
2 + 55d2d

2
3 − 18d2d5 + 5d622d4d3􏼐 􏼑e

5
p

+ 150d4d2d3 + 6d7 − 22d2d6 − 28d5d3 + 65d5d
2
2 − 163d4d

3
2 − 252d

2
3d

2
2 + 344d3d

4
2􏼐

−15d
2
4 + 26d

3
3 − 112d

6
2􏼑e

6
p + 190d3d2d5 − 693d3d4d

2
2 + 7d8 − 26d2d7 + 105d4d

2
3􏼐

− 228d2d
3
3 + 952d

2
3d

3
2 − 944d3d

5
2 + 102d2d

2
4 − 38d4d5 + 480d4d

4
2 − 207d5d

3
2 + 79d6d

2
2

−34d3d6 + 256d
7
2􏼑e

7
p + 258d4d2d5 − 936d4d2d

2
3 + 2660d4d3d

3
2 − 876d5d3d

2
2 + 230d6d2d3􏼐

+ 8d9 − 30d2d8 − 46d4d6 + 141d
2
4d3 − 477d

2
4d

2
2 − 1336d4d

5
2 + 132d5d

2
3 + 607d5d

4
2 − 40d7d3

+93d7d
2
2 − 251d6d

3
2 + 1254d

3
3d

2
2 − 3200d

2
3d

4
2 + 2480d3d

6
2 − 24d

2
5 − 72d

4
3 − 576d

8
2􏼑e

8
p

+O e
9
p􏼐 􏼑􏽩,

(21)

vp � φ′(α) −8d
2
2 − c3􏼐 􏼑e

4
p + −2d4 − 32d2d3 + 6d

3
2􏼐 􏼑e

5
p + −66d

4
2 − 3d3d

2
2 − 49d2d4􏼐􏽨

−33d
2
3 − 3d5􏼑e

6
p + −102d4d3 − 4d6 − 66d2d5 − 22d4d

2
2 − 88d2d

2
3 − 520d3d

3
2 + 130d

5
2􏼐 􏼑e

5
p

+ −138d5d3 − 339d4d2d3 − 5d7 − 117d
3
3 − 1645d

2
3d

2
2771d3d

4
2 − 79d

2
4 − 795d4d

3
2 − 42d5d

2
2􏼐

−83d2d6 − 793d
6
2􏼑e

6
p + −214d4d5 − 608d4d

2
3 − 5138d3d4d

2
2 − 506d3d2d5 − 174d3d6 − 6d8􏼐

+ 312d2d
2
4 + 914d4d

4
2 − 1066d5d

3
2 − 100d2d7 − 62d6d

2
2 − 2464d2d

3
3 + 828d

2
3d

3
2 − 8702d3d

5
2

+2686d
7
2􏼑e

7
p + −915d4d2d5 − 869d5d

2
3 − 6964d5d3d

2
2 − 210d7d3 − 270d4d6 − 673d6d2d3􏼐

− 1038d
2
4d3 − 11738d4d2d

2
3 + 347d4d3d

3
2 − 7d9 + 28970d3d

6
2 − 145d

2
5 + 1030d5d

4
2 − 117d2d8

− 82d7d
2
2 − 1338d6d

3
2 − 4034d

2
4d

2
2 − 12825d4d

5
2 − 1453d

4
3 − 3392d

3
3d

2
2 − 41833d

2
3d

4
2

−13161d
8
2􏼑e

8
p + O e

9
p􏼐 􏼑􏽩,

(22)

wp � φ′(α) −8d
3
2 − c2d3􏼐 􏼑e

4
p + −2d2d4 − 45d3d

2
2 + 30d

4
2 − 2d

2
3􏼐 􏼑e

5
p + 177d3d

3
2 − 87d2d

2
3 − 3d2d5􏼐􏽨

−7d4d3 − 67d4d
2
2 − 148d

5
2􏼑e

6
p + 239d4d

3
2 − 262d4d2d3 − 4d2d6 − 10d5d3 − 89d5d

2
2 + 352d

2
3d

2
2􏼐 e

5
p

+1235d3d
4
2 − 6d

2
4 − 58d

3
3 + 536d

6
2􏼑e

6
p + −350d3d2d5 + 903d3d4d

2
2 − 5d2d7 − 265d4d

2
3 + 238d2d

3
3􏼐

− 4209d
2
3d

3
2 + 4985d3d

5
2 − 198d2d

2
4 − 17d4d5 − 1771d4d

4
2 + 300d5d

3
2 − 111d6d

2
2 − 13d3d6 − 2215d

7
2􏼑e

7
p

+ −530d4d2d5 + 768d4d2d
2
3 − 12203d4d3d

3
2 + 1096d5d3d

2
2 − 438d6d2d3 − 6d2d8 − 22d4d6 − 405d

2
4d3􏼐

+ 563d
2
4d

2
2 + 6931d4d

5
2 − 356d5d

2
3 − 2300d5d

4
2 − 16d7d3 − 133d7d

2
2 + 361d6d

3
2 − 7436d

3
3d

2
2

+18656d
2
3d

4
2 − 25327d3d

6
2 − 12d

2
5 + 4d

4
3 + 8609d

8
2􏼑e

8
p + O e

9
p􏼐 􏼑􏽩,

(23)

Complexity 5

G up, vp, wp􏼐 􏼑 � φ′(α) 1 + 2d2ep + 3d3 − 8d
2
2􏼐 􏼑e

4
p + −40d

3
2 − 32d2d3 + 4d4􏼐 􏼑e

5
p + 5d5 − 49d2d(􏽨

−265d3d
2
2 + 33d

2
3 + 110d

4
2􏼑e

6
p + 6d6 − 66d2d5 − 102d4d3 − 410d4d

2
2 − 590d2d

2
3􏼐

+552d3d
3
2 − 588d

5
2􏼑e

6
p + −1831d4d2d3 + 7d7 − 83d2d6 − 138d5d3 − 556d5d

2
2􏼐

+ 663d4d
3
2 + 615d

2
3d

2
2 − 5023d3d

4
2 − 79d

2
4 − 441d

3
3 + 1421d

6
2􏼑e

7
p + −2486d3d2d5(

+ 784d3d4d
2
2 + 8d8 − 100d2d7 − 2058d4d

2
3 − 672d2d

3
3 − 18094d

2
3d

3
2 + 11042d3d

5
2

−1422d2d
2
4 − 214d4d5 − 7286d4d

4
2 + 776d5d

3
2 − 702d6d

2
2 − 174d3d6 − 5182d

7
2􏼑e

7
p

+ −3863d4d2d5 − 5330d4d2d
2
3 − 53693d4d3d

3
2 + 348d5d3d

2
2 − 3141d6d2d3 + 9d9􏼐

− 117d2d8 − 270d4d6 − 3204d
2
4d3 − 228d

2
4d

2
2 + 14345d4d

5
2 − 2797d5d

2
3 − 9554d5d

4
2

− 210d7d3 − 848d7d
2
2 + 888d6d

3
2 − 35200d

3
3d

2
2 + 28233d

2
3d

4
2 − 58240d3d

6
2 − 145d

2
5

−1149d
4
3 + 14579d

8
2􏼑e

8
p + O e

9
p􏼐 􏼑􏽩.

(24)

Using equations (10)–(24) in Algorithm 2, we get

xp+1 � α + −8d3d
3
2 − 64d

5
2􏼐 􏼑e

6
p + O e

7
􏼐 􏼑, (25)

which implies that

ep+1 � α + −8d3d
3
2 − 64d

5
2􏼐 􏼑e

6
p + O e

7
􏼐 􏼑. (26)

*e above equations confirm that Algorithm 2 is of
sixth-order convergence. □

4. Numerical Comparisons and Applications

To demonstrate the applicability and effectiveness of our
newly devised iterative approaches, we present five real-
world engineering problems and one very important and
well-known nonlinear problem in this section. *e devised
iterative approaches are compared to the following existing
two-step iterative algorithms:

4.1.Noor’sMethodOne (NM1). For the given initial guess x0,
calculate the approximate solution xp+1 using the iteration
schemes as follows:

xp+1 � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
, p � 0, 1, 2, 3, . . . ,

xp+1 � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
+

φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦

φ′ yp􏼐 􏼑

φ′ xp􏼐 􏼑
,

(27)

which is the second-order convergent method, known as
Noor’s method one [11] for solving nonlinear scalar
equations.

4.2. Chun’s Method (CM). For a given initial guess x0, de-
termine the approximate root xp+1 with the iteration
schemes:

yp � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
, p � 0, 1, 2, 3, . . . ,

xp+1 � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
+ 1 +

φ yp􏼐 􏼑

φ xp􏼐 􏼑
+ 2

φ yp􏼐 􏼑

φ xp􏼐 􏼑
⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(28)

which is the fourth-order convergent Chun’s method [20]
for solving nonlinear scalar equations.

4.3. Chand’s Method (CHM). For the given initial guess x0,
calculate the approximate solution xp+1 using the iteration
schemes:

yp � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
, p � 0, 1, 2, 3, . . . ,

xp+1 � xp −
φ xp􏼐 􏼑 + φ yp􏼐 􏼑

φ′ xp􏼐 􏼑
+ 1 + 2

φ yp􏼐 􏼑

φ xp􏼐 􏼑
⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(29)

which is the fourth-order two-step Chand’s method [16] for
solving nonlinear scalar equations.

4.4. Noor’s Method Two (NM2). For the given initial guess
x0, calculate the approximate solution xp+1 using the iter-
ation schemes:

yp � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
, p � 0, 1, 2, 3, . . . ,

zp � −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
,

xp+1 � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
+ 1 +

φ yp + zp􏼐 􏼑

φ xp􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦,

(30)

6 Complexity

which is three-step cubic-order Noor’s method two [13] for
solving nonlinear scalar equations.

4.5. Yun’s Method (YM). For the given initial guess x0,
calculate the approximate solution xp+1 using the iteration
schemes:

yp � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
, p � 0, 1, 2, 3, . . . ,

zp � −
φ yp􏼐 􏼑

φ′ xp􏼐 􏼑
,

xp+1 � xp −
φ xp􏼐 􏼑

φ′ xp􏼐 􏼑
+ −

φ yp􏼐 􏼑

φ′ xp􏼐 􏼑
−
φ yp + zp􏼐 􏼑

φ xp􏼐 􏼑
,

(31)

which is the three-step Yun’s method [21] for solving
nonlinear scalar equations, having the convergence of fourth
order. We evaluate the following test examples to conduct a
numerical comparison of the above-described methods with
our proposed algorithms:

Example 1. Kinetic problem equation.
*e equation of kinetic problem has the following form:

e
21000/T

� 1.11 × 1011T2
, (32)

Where Trepresents the temperature of the given system. (32)
has been derived from the stirred reactor with the cooling
coils [22]. By taking T � x, (32) may be rewritten in form of
the following nonlinear function:

φ1(x) � x
− 2

e
21000/x

− 1.11 × 1011, (33)

which can be used to find the temperature of the system. We
start the iteration process with the initial guess x0 � 430, and
the related results from various iteration techniques are
shown in Table 1.

Example 2. Planck’s radiation law.
*e Planck’s radiation law [23] is used to compute the

energy density within an isothermal black body with the
standard form as

φ(σ) �
8πcP

σ5 e
cP/σkT

− 1􏼐 􏼑
. (34)

Assume that we want to determine the wavelength
sigma1 that corresponds to maximal energy density φ(σ1).
We use x � cP/σkT to turn the aforementioned problem
into a nonlinear equation, which has the following nonlinear
equation:

1 −
x

5
� e

− x
, (35)

which can be converted into the form of nonlinear function
as follows:

φ2(x) � e
− x

+
x

5
− 1. (36)

*e maximal wavelength of the radiation is represented
by the estimated root of the aforementioned function φ2. To
begin the iteration process, we take the starting guess
x0 � 0.2, and the relevant results from various iteration
methods are shown in Table 2.

Example 3. Adiabatic flame temperature equation.
*e equation of adiabatic flame temperature has the

following form:

φ3(x) � ΔH − a1(298 − x) −
a2

2
2982 − x

2
􏼐 􏼑 −

a3

3
2983 − x

3
􏼐 􏼑,

(37)

where we take ΔH � −57798, a1 � 7.256, a2 � 0.002298,

and a3 � 0.00000283. For more information, one may see
[24, 25] and the references are cited therein. *e afore-
mentioned function φ3 is actually a third-degree polynomial,
and according to algebra’s fundamental theorem, it must
have three unique roots (zeros) and
α � 4305.30991366612556304019892945 is a simple one
among them that we estimated using the proposed algo-
rithms with the starting guess x0 � 2000, and the numerical
results are presented in Table 3.

Example 4. Beam designing model.
We consider the problem of beam positioning from [26],

which yields a nonlinear function as

φ4(x) � x
4

+ 4x
3

− 24x
2

+ 16x + 16. (38)

*e given function φ4 is actually a four-degree poly-
nomial, and it must have precisely four roots (zeros) in the
light of fundamental theorem of algebra. We choose the
starting guess x0 � −0.75 to approximate the required root
using the proposed algorithms, and the numerical results are
shown in Table 4.

Example 5. Open channel flow problem.
In fluid dynamics, Manning’s equation (27) deals with

the water flow with the following standard form:

water flow � F �

���
sar

√ 2/3

N
. (39)

In (39), the symbol s stands for the slope, a stands for the
area, r stands for the hydraulic radius, and n stands for
Manning’s roughness coefficient. For a channel with the
rectangular-shape of width w and depth x, we may have

a � wx,& r �
wx

w + 2x
. (40)

Using these values in (39), we obtain

F �

�
s

√
wx

N

wx

w + 2x
􏼒 􏼓

2/3
. (41)

In order to compute water’s depth in a channel, we
rewrite (41) in the following nonlinear form:

Complexity 7

φ5(x) �

����
swx

√

N

wx

w + 2x
􏼒 􏼓

2/3
− F. (42)

In (42), the parameters haven been chosen as
w � 4.572m, s � 0.017, F � 14.15m3/s, and N � 0.0015. We
start the iteration process with the initial guess x0 � 0.1, and
the related results from various iteration techniques are
shown in Table 5.

Example 6. A well-known nonlinear problem.
To analyze the proposed methods, we consider the fol-

lowing very important and well-known nonlinear problem:

x � tan x. (43)

*e above equation in the form of nonlinear function φ6
can be rewritten as

φ6(x) � x − tan x. (44)

Table 1: Numerical comparison of various root-finding algorithms for the problem φ1.

Method N xp+1 |φ(xp+1)| σ � |xp+1 − xp| CPU time
φ1(x), x0 � 430.000

NM1 12 551.773824930326599636215866007540 7.093691e − 23 4.808708e − 16 3.065
CM 10 551.773824930326599636215866007312 1.837158e − 18 9.899467e − 07 3.128
CHM 10 551.773824930326599636215866007540 2.258490e − 46 1.218702e − 13 3.190
NM2 15 551.773824930326599636215866007540 2.913370e − 27 3.081698e − 18 3.253
YM 10 551.773824930326599636215865875416 1.064742e − 15 4.946704e − 06 3.331
Algorithm 1 9 551.773824930326599636215866007540 1.608420e − 26 1.509462e − 08 2.626
Algorithm 2 8 551.773824930326599636215866007540 8.779657e − 72 2.409901e − 13 2.704

Table 2: Numerical comparison of various root-finding algorithms for the problem φ2.

Method N xp+1 |φ(xp+1)| σ � |xp+1 − xp| CPU time
φ2(x), x0 � 0.20

NM1 5 0.000000000000000000000003947489 3.157991e − 24 2.513162e − 12 3.521
CM 3 −0.000000000000000000000000000000 1.571613e − 40 1.158532e − 10 3.600
CHM 3 −0.000000000000000000000000000000 1.750456e − 48 1.380631e − 12 3.663
NM2 5 −0.000000000000000000000000019832 1.586544e − 26 1.781316e − 13 3.707
YM 3 −0.000000000000000000000000000000 2.329495e − 42 4.155449e − 11 3.403
Algorithm 1 3 0.000000000000000000000000000000 2.160782e − 52 2.134128e − 13 2.934
Algorithm 2 2 0.000000000000000000000232846266 1.862770e − 22 1.814949e − 04 2.986

Table 3: Numerical comparison of various root-finding algorithms for the problem φ3.

Method N xp+1 |φ(xp+1)| σ � |xp+1 − xp| CPU time
φ3(x), x0 � 2000.00

NM1 11 4305.309913666125563020922754179909 4.316939e − 16 4.270236e − 07 3.281
CM 4 4305.309913666125563040198929446342 2.174776e − 55 6.493737e − 12 3.329
CHM 3 4305.309913666125563040198929446342 5.855416e − 30 1.704358e − 05 3.391
NM2 6 4305.309913666125563040199102978796 3.886295e − 21 1.281244e − 09 3.322
YM 4 4305.309913666125563040198929446342 5.772631e − 71 8.594129e − 16 3.468
Algorithm 1 4 4305.309913666125563040198928972873 1.060344e − 23 1.332626e − 05 2.516
Algorithm 2 3 4305.309913666125563040116005825452 1.857091e − 18 6.740210e − 01 2.547

Table 4: Numerical comparison of various root-finding algorithms for the problem φ4.

Method N xp+1 |φ(xp+1)| σ � |xp+1 − xp| CPU time
φ4(x), x0 � −0.75

NM1 4 −0.535898384862245344805625149808 3.035870e − 15 1.028354e − 08 3.650
CM 3 −0.535898384862245412945107316988 4.071744e − 45 2.889668e − 12 3.712
CHM 3 −0.535898384862245412945107316988 1.105351e − 48 4.228953e − 13 3.743
NM2 5 −0.535898384862245412945107316989 2.255247e − 29 8.863356e − 16 3.808
YM 3 −0.535898384862245412945107316988 1.563471e − 46 1.345709e − 12 3.854
Algorithm 1 3 −0.535898384862245412945838932746 3.259623e − 20 9.586839e − 08 2.670
Algorithm 2 2 −0.535898384862245404466362113905 3.777599e − 16 1.027830e − 03 2.732

8 Complexity

We start the iteration process with the initial guess
x0 � 1.0, and the related results from various iteration
techniques are shown in Table 6.

*e machine used for computing numerical results has
the following specifications:

(i) 64 bit operating system
(ii) x64-based processor with Core(TM) m3-7Y30

CPU@1.00 GHz 1.61GHz
(iii) 8GB of memory

We use the accuracy ε � 10− 15 in the stopping criteria
|xp+1 − xp|< ε for the all aforementioned problems. We used
the computer application Maple 13 to compute all of the
numerical results and can be observed in Tables 1–6.

Tables 1–6 represent the detailed comparison of the
suggested root-finding methods with the other above-de-
scribed methods for the engineering and arbitrary problems
φ1–φ6. In the columns of the above-presented tables, N
stands for the consumption of the iterations for different
methods, |φ(x)| stands for the modulus value of φ(x), xp+1
represents the final estimation, |xp+1 − xp| stands for the
positive distance between the two consecutive estimations,
and the last columns gives us the information about the CPU
time consumption in seconds for different methods in
comparison.

*e careful examination of the obtained results in
Tables 1–6 certifies that the proposed root-finding algo-
rithms are showing better efficiency and performance which
justified the supremacy of the suggested root-finding algo-
rithms with respect to CPU-time consumption, accuracy,
convergence-speed, no. of iterations, and computational
order of convergence against the other comparable methods.

5. Dynamical Representation

In this section, we investigate the dynamical aspects of
different algorithms with the aid of polynomiographs cre-
ated through different algorithms for complex polynomials
of different degrees. To generate polynomiographs of dif-
ferent complex polynomials by means of a computer pro-
gram, we have to choose an initial rectangle R which
contains the polynomial’s roots. *en, corresponding to
each starting point w0 in the region, we execute an iterative
process and then colour the point corresponding to w0 that
relies on the approximate convergence of the truncated orbit
to a root. *e discretization of R is completely responsible
for the image’s resolution quality. For instance, if we

discretize R into a 2000 by 2000 grid, the output is a high-
resolution picture.

We know that any complex polynomial q having degree
n has exactly n-roots, and from the fundamental theorem of
algebra, it may be uniquely defined as

q(w) � cnw
n

+ cn−1w
n− 1

+ · · · + c1w + c0. (45)

or by its zeros (roots) w1, w2, . . . , wn−1, wp􏽮 􏽯:

q(w) � w − w1(􏼁 w − w2(􏼁 · · · w − wp􏼐 􏼑. (46)

where cn, cn−1, . . . , c1, c0􏼈 􏼉 are the complex coefficients.
*e iterative algorithms can be easily applied to the both

representations of the complex polynomial q. *e polyno-
mial’s degree depicts the number of basins of attraction. *e
location of basins can be managed by changing the position
of roots in the complex plane manually. *e polynomio-
graphs’ colours depends upon the no. of iterations needed to
attain the approximate solution of some polynomial with a
given accuracy and a chosen scheme of iteration.

*e main algorithm for drawing polynomiographs is
given in Algorithm.

In Algorithm 3, the convergence test (wp + 1, wp, ϵ)
would be considered true in case of convergence and vice
versa. *e following is the standard form of the widely used
convergence test:

wp+1 − wp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ϵ. (47)

In (47), wp and wp+1 are the consecutive estimations in
the iteration procedure, and the symbol ε> 0 stands for the
accuracy. In this article, we also use the stopping criteria
(47). We created visually appealing and intriguing poly-
nomiographs using newly developed root-finding methods
and compared them with the polynomiographs of the other
similar methods. *e colour of polynomiographs is deter-
mined by the no. of iterations required to estimate the roots
of a polynomial with a certain precision ε. A huge number of
similar graphics may be made by changing the value of the
parameter k, where k specifies the maximum no. of itera-
tions. *e work on polynomiography was first initiated by
Kalantri [28–30] who described its artistic applications in
different fields of science and arts. Gdawiec et al. [31, 32] put
forward the work of Kalantri and presented fractal patterns
of polynomial root-finding methods. Scott et al. [33], in
2011, worked on the basis of attraction for different existing
methods and compared them with respect to their basis. In

Table 5: Numerical comparison among different algorithms for the problem φ5.

Method N xp+1 |φ(xp+1)| σ � |xp+1 − xp| CPU time
φ5(x), x0 � 0.10

NM1 7 1.465091220295824642376020731453 2.422027e − 24 1.334423e − 12 2.943
CM 4 1.465091220295824642376021092486 2.481534e − 24 2.175366e − 06 3.391
CHM 4 1.465091220295824642376024509842 4.889610e − 23 4.918775e − 06 3.468
NM2 6 1.465091220295824642383819255359 1.059172e − 19 2.790535e − 10 3.431
YM 4 1.465091220295824642376020909779 4.475999e − 35 5.351749e − 09 3.593
Algorithm 1 4 1.465091220295824642376020909825 6.277761e − 28 3.483992e − 07 2.826
Algorithm 2 3 1.465091220295824642376020909779 8.454782e − 89 5.011500e − 15 2.920

Complexity 9

this sense, the polynomiography gives us a new way to
analyze the graphical behaviors of different existing methods
in the literature.

We investigate the following complex polynomials for
the aim of generating polynomiographs using the suggested
methods, and we compare them with other well-known two-
step iteration methods.

q1(w) � w
3

− 1, q2(w) � w
3

− w.i − 1, q3(w),

� w
3

+ w.i + 1, q4(w) � w
3

− w
2

+ w − 1,

q5(w) � w
3

+ w
2

+ w + 1, q6(w) � w
3
.i − w

2
+ i.

(48)

*e colormap that has been used for the coloring of
iterations in the generation of polynomiographs is presented
in Figure 1:

Example 7. Polynomiographs corresponding to polynomial
q1(w) through various numerical algorithms.

In this example, we investigate and compare the dy-
namical results obtained through different iteration schemes
with our presented algorithms by considering the cubic
polynomial w3 − 1 which possesses three distinct simple
zeros: 1, −1/2 −

�
3

√
/2i, and −1/2 +

�
3

√
/2i. We executed all the

algorithms to achieve the simple zeros of the considered
polynomials, and the results can be visualized in Figures 2–8.

Example 8. Polynomiographs corresponding to polynomial
q2(w) through various numerical algorithms.

*is example includes the dynamical comparison of the
suggested iteration schemes with different similar-nature
iterative algorithms by taking the cubic complex polynomial

w3 − w.i − 1.*e degree of this complex polynomial is three,
and according to the fundamental theorem of algebra, it has
exactly three roots which are all simple and given as
(1/6)3[4 + (4/9)

�������
81 + 12i

√
]2/3 + 4i/4 + (4/9)

�������
81 + 12i

√ 1/3,
(1/12)[3i(4 + (4/9)

�������
81 + 12i

√
)2/3 + 4]

�
3

√
− 3[4 + (4/9)

�������
81 + 12i

√
]2/3 − 4i/4 + (4/9)

�������
81 + 12i

√ 1/3, and (1/12)[3i(4+

(4/9)
�������
81 + 12i

√
)2/3 − 4]

�
3

√
− 3[4 + (4/9)

�������
81 + 12i

√
]2/3−

4i/4 + (4/9)
�������
81 + 12i

√ 1/3. Using computer program, we ex-
ecuted all the iteration processes, and the corresponding
results can be seen in Figures 9–15.

Example 9. Polynomiographs corresponding to polynomial
q3(w) through various numerical algorithms.

We consider the complex polynomial w3 + w.i + 1 in this
experiment for analyzing the behaviors of different iteration
schemes graphically. For this purpose, we generated the
polynomiographs of the considered polynomials whose simple
zeros are (1/6)3[4 + (4/9)

�������
81 + 12i

√
]2/3+ 4i/4 + (4/9)

�������
81 + 12i

√ 1/3 and (1/12)[3i(4 + (4/9)
�������
81 + 12i

√
)2/3 + 4]

�
3

√
−

3[4 + (4/9)
�������
81 + 12i

√
]2/3 − 4i/4 + (4/9)

��
81

√
+12i1/3(1/12)

[3i(4 + (4/9)
�������
81 + 12i

√
)2/3 − 4]

�
3

√
− 3[4 + (4/9)

�������
81 + 12i

√
]2/3 −4i/4 + (4/9)

�������
81 + 12i

√ 1/3, and the corre-
sponding dynamic results are presented in Figures 16–22.

Example 10. Polynomiographs corresponding to polyno-
mial q4(w) through various numerical algorithms.

In this example, we show the dynamics of different it-
eration schemes in the form of polynomiographs by taking
the complex polynomial w3 − w2 + w − 1, whose simple
zeros are 1, i, and −i that can be visualized easily on the
complex planes of the corresponding polynomiographs that
are shown in Figures 23–29.

Example 11. Polynomiographs corresponding to polyno-
mial q5(w) through various numerical algorithms.

In the eleventh example, we take the polynomial
w3 + w2 + w + 1, having simple zeros −1, i, and −i. To draw
the polynomiographs, we executed all the iteration schemes
with the help of computer program, and the corresponding
graphical objects can be visualized in Figures 30–36.

Example 12. Polynomiographs corresponding to polyno-
mial q6(w) through various numerical algorithms.

In the last and final experiment, we show the graphical
representations of different iteration schemes by generating

Table 6: Numerical comparison among different algorithms for the problem φ6.

Method N xp+1 |φ(xp+1)| σ � |xp+1 − xp| CPU time
φ6(x), x0 � 0.10

NM1 15 0.000026088766469984658988685903 5.918878e − 15 2.809559e − 05 2.728
CM 16 0.000028182936395409818132474046 7.461695e − 15 2.714568e − 05 2.791
CHM 16 0.000016015226087560491752529952 1.369235e − 15 1.653393e − 05 2.822
NM2 22 0.000021820703118494586097939226 3.463259e − 15 1.420995e − 05 2.460
YM 16 0.000026554978603020850530134645 6.241897e − 15 2.583725e − 05 2.907
Algorithm 1 15 0.000018770775287209488126085980 2.204578e − 15 2.149290e − 05 2.600
Algorithm 2 8 0.000018199898518907055092293023 2.009489e − 15 6.032757e − 05 2.663

Input: q ∈ C—polynomial, A ⊂ C—area, k—max. no. of
iterations, I—iteration method, ϵ—accuracy, colormap
[0 . . . C − 1]—colormap with C colors.
Output: polynomiograph corresponding to polynomial q.
for w0 ∈ A do

i � 0
while i≤ k do

wp+1 � I(wp)

if |wp+1 − wp|< ϵ, then
break

i � i + 1
Colour w0 by means of colormap.

ALGORITHM 3: Polynomiograph’s generation.

10 Complexity

Figure 4: Polynomiograph for q1(w) using CHM.

Figure 1: *e colormap used for generating polynomiographs.

Figure 7: Polynomiograph for q1(w) using Algorithm 1.

Figure 3: Polynomiograph for q1(w) using CM.

Figure 2: Polynomiograph for q1(w) using NM1. Figure 5: Polynomiograph for q1(w) using NM2.

Figure 6: Polynomiograph for q1(w) using YM.

Complexity 11

the polynomiographs of the complex polynomialw3.i − w2 +

i whose simple zeros are [−108+8i +12
�������
81−12i

√
]2/3 −4 −

2i[−108+8i +12
�������
81−12i

√
]1/ 3/6[−108+8i +

12
�������
81−12i

√
]1/3, [−108+8i +12

�������
81−12i

√
]2/3 +4+4i [−108+

8i +12
�������
81−12i

√
]1/3 + i

�
3

√
[−108+8i + 12

�������
81−12i

√
]2/3 +4i�

3
√

/−12[−108+8i +12
�������
81−12i

√
]1/3, and [−108+8i +

Figure 10: Polynomiograph for q2(w) using CM. Figure 13: Polynomiograph for q2(w) using YM.

Figure 9: Polynomiograph for q2(w) using NM1.

Figure 8: Polynomiograph for q1(w) using Algorithm 2. Figure 11: Polynomiograph for q2(w) using CHM.

Figure 12: Polynomiograph for q2(w) using NM2.

12 Complexity

12
�������
81−12i

√
]2/3 −4 + 4i[−108+8i +12

�������
81−12i

√
]1/3 + i

�
3

√

[−108+8i +12
�������
81−12i

√
]2/3 + 4i

�
3

√
/−12[−108+8i +12�������

81−12i
√

]1/3. For this purpose, we ran all the iteration
schemes with the aid of computer program and the cor-
responding graphs can be seen in Figures 37–43.

In all six experiments, we considered the different cubic
complex polynomials for examining the graphical aspects of
the suggested iteration schemes. In all the obtained images,
the regions of convergence for the suggested iteration
schemes possess the larger convergence areas than the other

Figure 16: Polynomiograph for q3(w) using NM1. Figure 19: Polynomiograph for q3(w) using NM2.

Figure 15: Polynomiograph for q2(w) using Algorithm 2.

Figure 14: Polynomiograph for q2(w) using Algorithm 1. Figure 17: Polynomiograph for q3(w) using CM.

Figure 18: Polynomiograph for q3(w) using CHM.

Complexity 13

comparable methods which certified the efficiency and better
convergence of our proposed algorithms. *e colour tones
represent the performance and efficiency of the considered

algorithm used to build the polynomiograph. *e two im-
portant aspects which can be exhibited by these graphical
objects are the convergence-speed and the dynamics of the

Figure 22: Polynomiograph for q3(w) using Algorithm 2. Figure 25: Polynomiograph for q4(w) using CHM.

Figure 21: Polynomiograph for q3(w) using Algorithm 1.

Figure 20: Polynomiograph for q3(w) using YM. Figure 23: Polynomiograph for q4(w) using NM1.

Figure 24: Polynomiograph for q4(w) using CM.

14 Complexity

considered iteration techniques used to build these graphs.
*e first may be shown by examining the image’s colour
tones. *e darkness of the colours in the presented images

demonstrates fast convergence with less number of itera-
tions, i.e., the darker the image, the more efficient the ap-
proach, and the given images demonstrate the superiority of

Figure 28: Polynomiograph for q4(w) using Algorithm 1. Figure 31: Polynomiograph for q5(w) using CM.

Figure 27: Polynomiograph for q4(w) using YM.

Figure 26: Polynomiograph for q4(w) using NM2. Figure 29: Polynomiograph for q4(w) using Algorithm 2.

Figure 30: Polynomiograph for q5(w) using NM1.

Complexity 15

the suggested methods. *e second aspect may be examined
by observing the colour fluctuation of the drawn poly-
nomiographs. *e regions with a limited variety of colours

have low dynamics, whereas the regions with a great di-
versity of colours have high dynamics. *e black colour in
the displayed graphical representations demonstrates the

Figure 34: Polynomiograph for q5(w) using YM. Figure 37: Polynomiograph for q6(w) using NM1.

Figure 33: Polynomiograph for q5(w) using NM2.

Figure 32: Polynomiograph for q5(w) using CHM. Figure 35: Polynomiograph for q5(w) using Algorithm 1.

Figure 36: Polynomiograph for q5(w) using Algorithm 2.

16 Complexity

method’s deficiency by locating those precise locations
where the solution cannot be obtained for the specified no. of
iterations with the defined precision. *e same-coloured

regions in the figures show the same amount of iterations
spent by different iteration strategies to approximate the
answer and provide a comparable perspective of the contour

Figure 40: Polynomiograph for q6(w) using NM2. Figure 43: Polynomiograph for q6(w) using Algorithm 2.

Figure 39: Polynomiograph for q6(w) using CHM.

Figure 38: Polynomiograph for q6(w) using CM. Figure 41: Polynomiograph for q6(w) using YM.

Figure 42: Polynomiograph for q6(w) using Algorithm 1.

Complexity 17

lines on the map. All of the graphics were created using the
computer program Mathematica 12.0 with the accuracy
ϵ � 0.01, and the upper bound of the no. of iterations
m � 15.

6. Conclusions

In this study, we have established and analyzed two novel
optimal root-finding algorithms for nonlinear functions.*e
convergence criterion of the presented algorithms has been
discussed and verified that the suggested iterative algorithms
bear fourth- and sixth-order convergence. To exhibit the
applicability of the suggested algorithms, some real-life
engineering applications have also been added and solved
whose numerical results confirmed that the proposed al-
gorithms are time-efficient and consumed less iterations to
achieve the required solution and more accurate to the exact
solution. *e dynamics of the provided methods demon-
strating the greater convergence area in comparison with the
other comparable methods.*ese dynamics also highlighted
the proposed algorithms’ quicker convergence speed and
other dynamical properties, proving their superiority over
the others in comparison.

Data Availability

All data required for this paper are included within this
paper.

Conflicts of Interest

*e authors do not have any conflicts of interest.

Authors’ Contributions

All authors contributed equally in this paper.

References

[1] R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/
Cole Publishing Company, Monterey, CA, USA, 6th edition,
1997.

[2] J. M. Gutiérrez and M. A. Hernández, “A family of Cheby-
shev-Halley type methods in Banach spaces,” Bulletin of the
Australian Mathematical Society, vol. 55, no. 1, pp. 113–130,
1997.

[3] I. Argyros, D. Chen, and Q. Qian, “A note on the Halley
method in Banach spaces,” Applied Mathematics and Com-
putation, vol. 58, no. 2-3, pp. 215–224, 1993.

[4] C. Chun, “Construction of Newton-like iteration methods for
solving nonlinear equations,” Numerische Mathematik,
vol. 104, no. 3, pp. 297–315, 2006.

[5] A. Amiri, A. Cordero, M. T. Darvishi, and J. R. Torregrosa, “A
fast algorithm to solve systems of nonlinear equations,”
Journal of Computational and Applied Mathematics, vol. 354,
pp. 242–258, 2019.

[6] R. Behl, M. Salimi, M. Ferrara, S. Sharifi, and S. K. Alharbi,
“Some real-life applications of a newly constructed derivative
free iterative scheme,” Symmetry, vol. 11, no. 2, p. 239, 2019.

[7] A. Naseem,M. A. Rehman, and T. Abdeljawad, “Higher-order
root-finding algorithms and their basins of attraction,”

Journal of Mathematics, vol. 2020, Article ID 5070363,
11 pages, 2020.

[8] A. Özyapıcı, “Effective numerical methods for non-linear
equations,” International Journal of Applied and Computa-
tional Mathematics, vol. 6, no. 2, p. 35, 2020.

[9] A. M. Ostrowski, Solution of Equations and Systems of
Equations, Academic Press, Cambridge, MA, USA, 1966.

[10] J. F. Traub, Iterative Methods for the Solution of Equations,
Chelsea Publishing Company, New York, NY, USA, 1982.

[11] M. Aslam Noor and K. Inayat Noor, “*ree-step iterative
methods for nonlinear equations,” Applied Mathematics and
Computation, vol. 183, no. 1, pp. 322–327, 2006.

[12] A. Golbabai and M. Javidi, “A third-order Newton type
method for nonlinear equations based on modified homotopy
perturbation method,” Applied Mathematics and Computa-
tion, vol. 191, no. 1, pp. 199–205, 2007.

[13] M. A. Noor, K. I. Noor, and K. Aftab, “Some new iterative
methods for solving nonlinear equations,” World Applied
Sciences Journal, vol. 20, no. 6, pp. 870–874, 2012.

[14] A. Kumar, P. Maroju, R. Behl, D. K. Gupta, and S. S. Motsa, “A
family of higher order iterations free from second derivative
for nonlinear equations in R,” Journal of Computational and
Applied Mathematics, vol. 330, pp. 215–224, 2018.

[15] O. Said Solaiman, S. A. Abdul Karim, and I. Hashim, “Op-
timal fourth- and eighth-order of convergence derivative-free
modifications of King’s method,” Journal of King Saud
University - Science, vol. 31, no. 4, pp. 1499–1504, 2019.

[16] P. B. Chand, F. I. Chicharro, N. Garrido, and P. Jain, “Design
and complex dynamics of potra-pták-type optimal methods
for solving nonlinear equations and its applications,” Math-
ematics, vol. 7, no. 10, p. 942, 2019.

[17] A. Naseem, M. A. Rehman, and T. Abdeljawad, “Some new
iterative algorithms for solving one-dimensional non-linear
equations and their graphical representation,” IEEE Access,
vol. 9, pp. 8615–8624, 2021.

[18] A. Rafiq andM. Rafiullah, “Some multi-step iterative methods
for solving nonlinear equations,” Computers & Mathematics
with Applications, vol. 58, no. 8, pp. 1589–1597, 2009.

[19] H. T. Kung and J. F. Traub, “Optimal order of one-point and
multipoint iteration,” Journal of the ACM, vol. 21, no. 4,
pp. 643–651, 1974.

[20] C. Chun, “Some variants of King’s fourth-order family of
methods for nonlinear equations,” Applied Mathematics and
Computation, vol. 190, no. 1, pp. 57–62, 2007.

[21] J. H. Yun, “A note on three-step iterative method for non-
linear equations,” Applied Mathematics and Computation,
vol. 202, no. 1, pp. 401–405, 2008.

[22] M. ShachamShacham and E. Kehat, “An iteration method
with memory for the solution of a non-linear equation,”
Chemical Engineering Science, vol. 27, no. 11, pp. 2099–2101,
1972.

[23] M. Planck, Fe Feory of Heat Radiation. Translated by
Masius, M, Blakiston’s Son & Co, Philadelphia, PA, USA, 2nd
edition, 1914.

[24] M. Shacham, “An improved memory method for the solution
of a nonlinear equation,” Chemical Engineering Science,
vol. 44, no. 7, pp. 1495–1501, 1989.

[25] M. Shacham and E. Kehat, “Converging interval methods for
the iterative solution of a non-linear equation,” Chemical
Engineering Science, vol. 28, no. 12, pp. 2187–2193, 1973.

[26] C. S. Chapra, Applied Numerical Methods with MATLAB for
Engineers and Scientists, McGraw-Hill, New York, NY, USA,
2010.

18 Complexity

[27] R. Manning, “On the flow of water in open channels and
pipes,” Transactions of the Institution of Civil Engineers of
Ireland, vol. 20, pp. 161–207, 1891.

[28] B. Kalantari, “Polynomiography: from the fundamental the-
orem of algebra to art,” Leonardo, vol. 38, no. 3, pp. 233–238,
2005.

[29] B. Kalantari and E. H. Lee, “Newton-Ellipsoid poly-
nomiography,” Journal of Mathematics and the Arts, vol. 13,
no. 4, pp. 336–352, 2019.

[30] B. Kalantari, “An invitation to polynomiography via expo-
nential series,” 2017, https://arxiv.org/abs/1707.09417.

[31] K. Gdawiec, W. Kotarski, and A. Lisowska, “Visual analysis of
the Newton’s method with fractional order derivatives,”
Symmetry, vol. 11, no. 9, p. 1143, 2019.

[32] K. Gdawiec, “Fractal patterns from the dynamics of combined
polynomial root finding methods,” Nonlinear Dynamics,
vol. 90, no. 4, pp. 2457–2479, 2017.

[33] M. Scott, B. Neta, and C. Chun, “Basin attractors for various
methods,” Applied Mathematics and Computation, vol. 218,
no. 6, pp. 2584–2599, 2011.

Complexity 19

https://arxiv.org/abs/1707.09417

