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Recently, some specific random fields have been defined based on multivariate distributions. (is paper will show that almost all
these random fields have a deficiency in spatial autocorrelation structure. (e paper recommends a method for coping with this
problem. Another application of these random fields is spatial data prediction, and the Kriging estimator is the most widely used
method that does not require defining the mentioned random fields. Although it is an unbiased estimator with a minimummean-
squared error, it does not necessarily have a minimum mean-squared error in the class of all linear estimators. In this work, a
biased estimator is introduced with less mean-squared error than the Kriging estimator under some conditions. Asymptotic
behavior of its basic component will be investigated too.

1. Introduction

Random fields (RFs) as a statistical model can be applied in
many real-life events, such as biological sequences, man-
agement of soil resources in agriculture and forestry, text
and image processing, designing environmental monitor-
ing networks, artificial intelligence, and road and tunnel
planning.

An RF is usually constructed based on a multivariate
distribution’s finite-dimensional distributions. For example,
the skew-normal (SN) RF based on multivariate SN dis-
tribution [1] has been defined by Kim and Mallick [2]. (e
closed skew-normal (CSN) RF based on multivariate CSN
distribution [GF_2004] has been established by Allard and
Naveau [3]. Similar work has been performed by Karimi et al
[4], Hosseini et al. [5], and Karimi and Mohammadzadeh
[6]. Zareifard and Jafari Khaledi [7] defined a second-order
stationary RF named unified skew-normal (SUN) RF by
using multivariate SUN distribution [8]. (e generalized
Skew-Normal (GSN) RF introduced byMahmoudian [9] has
also been constructed frommultivariate GSN distribution as
shown by Sahu et al. [10], while the generalized asymmetric

Laplace (GAL) RF is defined by multivariate GAL distri-
bution as shown by Kozubowski et al. [11]and was intro-
duced by Saber et al. [12]. Some other RFs may be defined by
multivariate skew-t distribution and its general form or
multivariate extended skew-t (EST) distribution as shown by
Arellano-Valle and Genton [13].

For the spatial structure of the model, Wall [14]
studied the spatial structure implied by the CAR and SAR
models. According to Saber et al. [12] and Mahmoudian
[15], almost all mentioned RFs in the previous paragraph
are not well defined by the Kolmogorov existence theo-
rem. Saber et al. [12] showed that these RFs do not
consider proper spatial autocorrelation structure (PSAS).
In the present article, we will show that almost all
aforementioned skew RFs have this deficiency. In fact,
they do not consider PSAS.

A final application of any random field is spatial data
prediction, which has been applied in some works of authors
such as Basu and Reinsel [16], Saber and Nematollahi [17],
and Saber [18]. Many researchers have studied the predic-
tion of spatial data using mentioned unsuitable RFs. To solve
the previously discussed problem, some authors such as
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Mojiri et al. [19] have considered a univariate distribution
for detection of errors of the process, which results in a new
problem in modeling spatial correlation. Some others such
as Hosseini and Karimi [21] have used an approximate skew-
normal RF. Although this work has some benefits for
reaching a high percentage of PSAS, it has some funda-
mental problems, and it cannot solve the two mentioned
problems.

Kriging is a spatial prediction methodology and is the
most widely used method of spatial data prediction that has
increased during recent years. Because this method does not
require defining the previously mentioned random fields
that have problem in PSAS, Cressie [22] presented an un-
biased linear estimator for Kriging and has a minimum
mean-squared error (MSE), although it is not the best es-
timator in the larger class of all linear estimators. On the
other hand, according to Moyeed and Papritz [23] linear
Kriging is as good as any nonlinear method, especially for
symmetric data. However, for skewed data, some of the
nonlinear methods perform better in estimating prediction
uncertainty. (e focus of this article is on linear Kriging as
we suggested a biased estimator for Kriging where the only
interest is to minimize the MSE. Our recommended esti-
mator has less MSE than the Cressie estimator under some
conditions. (erefore, it is appropriate to use it for skewed
data when we have a problem in defining a valid RF and for
ordinary Kriging that does not have precision for nonlinear
methods.

(e paper is organized as follows: In Section 2, some
requirements of the previously mentioned multivariate
distributions are reviewed to show defined RFs that do not
consider the PSAS property. After that, an estimator for the
mean of the process and then a predictor with a minimum
MSE in all the linear predictors for ordinary Kriging are
presented in Section 3. Finally, Section 4 is devoted to in-
vestigating some asymptotic behavior for the recommended
estimator.

2. A Problem in Some RFs

(e first part of this section reviews the variance matrix
of multivariate SN, CSN, EST, GSN, SUN, and GAL
distributions.

Consider a p-dimensional continuous random vector
X � (X1, . . . , Xp)′that has an SN distribution, denoted by
X ∼ SNp(μ,Σ, λ). (en, we have

Var(X) � Σ −
2

π 1 + λTλ􏼐 􏼑
Σ1/2 λλTΣ1/2

, (1)

and consider another p-dimensional continuous random
vector X � (X1, . . . , Xp)′ but with a CSN distribution,
denoted by X ∼ CSNp,q(μ,Σ, Γ, ξ,Δ). (en, we have

Var(X) � Σ + ΣΓTΛΓΣ − ΣΓTΨΨTΓΣ, (2)

where Λ and Ψ are complicated matrices based on
Φq(0; ξ,Δ + ΓΣΓ′). (e detail about these matrices is not
essential for us, although they are present in the study
conducted by González-Faŕıas et al. [24].

(e variance matrix of a multivariate ESTdistribution is
denoted by X ∼ ESTp(μ,Σ, λ, ], τ), which is given as follows:

Var(X) � α2∗ ω
− 1Σω− 1

− δδT
􏼐 􏼑 + σ2∗δδ

T
. (3)

However, the variance matrix of a multivariate GSN
distribution is denoted by X ∼ GSNp(μ,Σ, λ), which is given
as follows:

Var(X) � Σ + 1 −
2
π

􏼒 􏼓diag λ2􏼐 􏼑. (4)

Arellano-Valle and Azzalini [25] recently provided a
very complicated and cumbersome computation of the
variance matrix of multivariate SUN. Let
X ∼ SUNd,m(ξ,Σ,Δ, τ, Γ). (en we have,

Var(X) � Σ + ωΔHΔTω. (5)

Finally, the variance matrix of the GAL distribution
continuous p-dimensional random vector X denoted by
X ∼ GALp(μ,Σ, q) is given as follows:

Var(X) � q Σ + μμT
􏼐 􏼑. (6)

After that, we state the following remark.

Remark 1. Let Z (s1), . . . ,Z(sn) be the observations from an
RF Z(s): s ∈ D⊆Rd􏼈 􏼉 at n locations (s1, . . . , sn) in the area
D. It is assumed that Cov(Z(si), Z(sj)) � q(|si − sj|) where
|h| is the norm of the vector h and q is a real value function.
In amatrix form, Var(Z) � Cwhere Z � (Z (s1), . . . , Z(sn))

and C � [Ci,j]
n

i,j�1 with a notation Ci,j � q(|si − sj|). Some
RFs have been defined so that they satisfy the condition
Var(Z) � C, while in some other cases, the covariance
matrix C has been used somehow in which Var(Z)≠C.

In continuation of this section, we investigate the con-
dition where Var(Z) � C is named as PSAS in some well-
known RFs.

Gaussian RF: Z ∼ Nn(μ,Σ) and Var(Z) � Σ. (erefore,
we choose Σ � C to have a spatial correlation between
variables.

t RF: Z ∼ tn(μ,Σ, d) (d≥ 3) and Var(Z) � d/d − 2Σ . It
seems to be an appropriate choice to reach the PSAS when
Σ � d − 2/dC.

SN RF: Z ∼ SNn(μ,Σ, λ) and ar(Z) � Σ − 2/π(1+

λTλ)Σ1/2 λλT Σ1/2 where it is convenient to substitute Σ −

2/π(1 + λTλ)Σ1/2 λλT Σ1/2 � C to get to the PSAS.
CSN RF: Z ∼ CSNn,q(μ,Σ, Γ, ξ,Δ) and ar(Z) � Σ+
ΣΓTΛΓΣ − ΣΓTΨΨTΓΣ . Choosing Σ + ΣΓTΛΓΣ−
ΣΓTΨΨTΓΣ � C provides an adequate choice to reach the
PSAS.

EST RF: Z ∼ ESTn(μ,Σ, λ, ], τ) and ar(Z) �

α2∗(ω
− 1Σω− 1 − δδT) + σ2∗δδ

T. By substituting α2∗(ω
− 1Σω− 1−

δδT) + σ2∗ δδ
T � C, we will obtain the PSAS.

SUN RF: Z ∼ SUNn,m(ξ,Σ,Δ, τ, Γ) and ar(Z) � Σ+
ωΔHΔTω . Making Σ + ωΔHΔTω � C will fulfill the PSAS.

GSN RF: Z ∼ GSNn(μ,Σ, λ1) and ar(Z) � Σ+ λ(1−

2/π)I . It provides a suitable choice to choose Σ + λ(1 − 2/
π)I � C and then consider λ as a nugget and Σ + λ(1 −

2/π)I � C to accomplish the PSAS.
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GAL RF: Z ∼ GALn(μ,Σ, q) and ar(Z) � q(Σ + μμT) .
After finding the PSAS, we will choose q(Σ + μ2 1 1T) � C,
which results as μ � Xβ and Σ � 1/qC − XββTXT where X is
the matrix of covariates and β is the regression coefficient.

As previously shown, some of the RFs satisfy the PSAS,
while others do not. In the following remark, we denote this
matter concisely.

Remark 2. (e Gaussian RF, t RF, GSN RF, and GAL RF
satisfy the PSAS. Other RFs containing the SN RF, CSN RF,
EST RF, and SUN RF do not satisfy the PSAS. In some of the
previous works that applied a second group of RFs, it was
supposed that Σ � C, although it does not lead to Var(Z) �

C for achieving the PSAS.
Imposing the equality Var(Z) � C, without any other

constraints, may result in a nonpositive definite for the
matrix Σ. (ere is a method from which we can add a small
value to the diagonal of Σ, but it does not work in every case.
So, there is still a problem in getting the PSAS and positive
definiteness for the matrix. Σ

3. Linear Kriging as an Alternative for the
Nonlinear Predictors Conducted by RFs

Let RF Z(s): s ∈ D⊆Rd􏼈 􏼉 satisfies the following model:

Z(s) � μ + Y(s) + ε(s), (7)

where μ is the mean value, Y (·) is the zero-mean inter-
mediate-scale variation, and a white noise error denoted by ε
(·) with a variance σ2ε .

Kriging belongs to the family of linear least square es-
timation algorithms. Given the observations Z� (Z (s1),. . .,
Z(sn)), a common task is to predict Z(s0) at an unobserved
location s0 and to calculate the prediction error variance at
each such location. (e Kriging estimator is a linear pre-
dictor for 􏽢Z (s0), which is as follows:

􏽢Z so( 􏼁 � 􏽘
n

i�1
liZ si( 􏼁, (8)

where li s (the Kriging weights) are some scalars that may be
found under two conditions:

(a) E(􏽢Z(s0) − Z(s0)) � 0 (unbiased condition)
(b) Argmin MSE(􏽢Z(s0)) � E(􏽢Z(s0) − Z(s0))

2
􏽮 􏽯

Simple Kriging (known mean) and ordinary Kriging
(unknown but constant mean) are two well-known divisions
of Kriging based on the mean value specification. In fact, in
simple Kriging μ is assumed to be known, but it is unknown
in the case of ordinary Kriging, which occurs more in the
application. As in the previous section, let C � (cov(Z(si),

Z(sj)))i,j denotes the covariance matrix of the observations
and let c � (cov(Z(s0), Z(s1)), . . . , cov(Z(s0), Z(sn)))ˊ

denotes the vector containing the covariances between
observed and unobserved location s0.

According to Cressie [22], the simple Kriging estimator
and its error variance are given, respectively, by

􏽢Zsimple s0( 􏼁 � γˊC− 1Z, (9)

and

Var 􏽢Zsimple s0( 􏼁 − Z s0( 􏼁􏼐 􏼑 � σ2z s0( 􏼁 − γˊC− 1γ. (10)

Also, the ordinary Kriging and its error variance are
given, respectively, by

􏽢Z s0( 􏼁 � γ + 1
1 − 1ˊC− 1γ􏼐 􏼑

1ˊC− 11
⎛⎝ ⎞⎠

ˊ

C− 1Z, (11)

and

σ2r s0( 􏼁 � V 􏽢Z s0( 􏼁 − Z s0( 􏼁􏼐 􏼑

� σ2z s0( 􏼁 − γˊC− 1γ +
1 − 1ˊC− 1γ􏼐 􏼑

2

1ˊC− 11
,

(12)

where 1ˊ � (1, . . . , 1) is the row vector of size n in which its
components are 1 s.

3.1. New Estimator. (e Kriging estimator for ordinary
Kriging is the best estimator regarding unbiasedness and
the minimum MSE. However, a biased estimator with a
less MSE is preferable in some circumstances. An esti-
mator with this condition exists, and we denote our
motivation for recommending this estimator in the fol-
lowing theorem.

Theorem 1. An unbiased linear estimator for the mean of the
process given in (7) exists and has a minimumMSE among all
unbiased linear estimators for the mean. >is estimator is in
the form of

􏽢μ �
1ˊC− 1Z
1ˊC− 11

, (13)

and its variance is given by

Var(􏽢μ) �
1

1ˊC− 11
. (14)

Proof. A linear estimator for μ is in the form of
􏽐

n
i�1 aiZ(si) � aˊZ. Unbiasedness implies that

aˊ1 � 􏽐
n
i�1 ai � 1. Hence, under this condition, Var(aˊZ) �

aˊCa must be minimized. By using the Lagrange equation
Γ � aˊCa + λ(aˊ1 − 1) and by vector differentiating, one can
solve this problem to reach 􏽢a � C− 11/1ˊC− 11, and its results
are shown in (13). Now, we haveVar(1ˊC− 1/ 1ˊC− 11Z) �

1ˊC− 1 CC− 1 1/ (1ˊC− 11)2 � 1ˊC− 11/(1ˊC− 11)2 � 1/1ˊC− 11,
which completes the proof.

Now, a simple Kriging method can be applied
instead of an ordinary Kriging method. By substituting (13)
in (7), we can reach Z(s) − 􏽢μ � Y(s) + ε(s) and
Z(s) − 1ˊC− 1Z/1ˊC− 11 � Y(s) + ε(s). From (9), we can
conclude that
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􏽢Znew s0( 􏼁 � γˊC− 1 Z −
1ˊC− 1Z
1ˊC− 11

􏼠 􏼡

� γ −
1

1ˊC− 11
􏼠 􏼡ˊC− 1Z,

(15)

which is the new estimator for interpolation. 􏽢Znew(s0) is a
special case of 􏽢Z(s0) when cˊC− 11 � 2. □

Corollary 1. >e biasedness and prediction error variance of
the estimator 􏽢Znew is given by

E 􏽢Znew s0( 􏼁 − Z s0( 􏼁􏼐 􏼑 � μ γˊC− 11 − 2􏼐 􏼑,

Var 􏽢Znew s0( 􏼁 − Z s0( 􏼁 � σ2z s0( 􏼁􏼐 􏼑 − γˊC− 1γ +
1

1ˊC− 11
.

(16)

Proof. (e proof comes from (eorem 1, and a direct
computation is presented in the following equations:

E 􏽢Znew s0( 􏼁 − Z s0( 􏼁􏼐 􏼑 � γ −
1

1ˊC− 11
􏼠 􏼡ˊC− 1μ1 − μ

� μ γˊC− 11 − 2􏼐 􏼑,

Var 􏽢Znew s0( 􏼁 − Z s0( 􏼁􏼐 􏼑 � Var 􏽢Znew s0( 􏼁􏼐 􏼑 + Var Z s0( 􏼁( 􏼁 − 2cov 􏽢Znew s0( 􏼁, Z s0( 􏼁􏼐 􏼑

� γ −
1

1ˊC− 11
􏼠 􏼡ˊC− 1 γ −

1
1ˊC− 11

􏼠 􏼡 + σ2z s0( 􏼁 − 2 γ −
1

1ˊC− 11
􏼠 􏼡ˊC− 1γ

� σ2z s0( 􏼁 − γˊC− 1γ +
1

1ˊC− 11
.

(17)

Because of this fact, we deduce that 􏽢Znew(s0) is a
biased estimator. Now, to compare with the ordinary
Kriging estimator given by (11), variance is not a useful
criterion. (e MSE is better when solving this problem
and not only in this case but also while comparing be-
tween estimators even though at least one of them is
biased. Finally, (eorem 2 shows that 􏽢Znew(s0) is better
than the ordinary Kriging estimator (11) regarding the
MSE under some conditions. □

Theorem 2. Under one of the following two conditions (i)
and (ii), 􏽤MSE 􏽢Znew(s0) will be less than 􏽤MSE(􏽢Z(s0)).

(i) (1ˊC− 1Z)2 > 1ˊC− 11 and cˊC− 11 are between 2 and
2(1ˊC− 1Z)2/(1ˊC− 1Z)2 − 1ˊC− 11

(ii) (1ˊC− 1Z)2 < 1ˊC− 11 and cˊC− 11> 2 or
cˊC− 11< 2(1ˊC− 1Z)2/(1ˊC− 1Z)2 − 1ˊC− 11)

Proof. From Corollary 1, we have MSE( 􏽢Znew(s0)) �

(μ(cˊC− 11 − 2))2 + σ2z(s0) − cˊC− 1c + 1/1ˊC− 11 . On the
other hand, Equation (12) results in MSE( 􏽢Z(s0)) �

σ2z(s0) − cˊC− 1c + (1 − cˊC− 11)2/1ˊC− 11. (en, by defining
c � cˊC− 11 and a � 1ˊC− 11, one can show that
d � MSE(􏽢Znew(s0)) − MSE(􏽢Z(s0)) � 2c − c2/a + μ2(2 − c)2

From the positive definiteness of C, it is found that a> 0.
By multiplying the above equality by a, we get
ad � 2c − c2 + aμ2(2 − c)2. Replacing μ by 􏽢μ leads to

a􏽢d � c
2
(e − a) + c(2a − 4e) + 4e, (18)

where e � (1ˊC− 1Z)2. (e quadratic form (18) has two roots
c1 � 2 and c2 � 2e/e − a with respect to c. Under condition
(i) or (ii), Equation (18) will be negative; hence, 􏽢d≤ 0 under
condition (i) or (ii) as well. (is completes the proof. □

4. Asymptotic Behavior of the Mean Estimator

Since the estimator of μ (13) in (eorem 1 has an essential
role, its asymptotic behavior should be interesting for this
study. First, we denote the following lemma, which is re-
quired for the continuation of this section.

Lemma 1. For two sequences of unbiased estimators 􏽢θ
(1)

n and
􏽢θ

(2)

n we can say that 􏽢θ
(2)

n ⟶L 2 θ, 􏽢θ
(1)

n ⟶L 2 θ , if
Var(􏽢θ

(2)

n )≥Var(􏽢θ
(1)

n ). Here, ⟶L 2 states the mean square
convergence.

Theorem 3. Let a random process Z (s) exists on a lattice Λ
in Rk with coordinates, s1, . . . , sn, Var(Z(si))≤ c<∞ for all
i � 1, . . . , n and cov(Z(si), Z(sj))⟶ 0 as |si − sj| tends to
infinity, then Zn ⟶L 2 μ and 􏽢μ⟶L 2 μ.

Proof. Without losing generality, assume Zi denotes Z(si).
First, we know that E(Zn) � 1/n(􏽐

n
i�1 E(Zi)) � μ. Now, we

can compute the variance of Zn
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Var Zn􏼐 􏼑 �
1
n
2 􏽘

n

i�1
􏽘

n

j�1
Var Zi( 􏼁Var Zj􏼐 􏼑ρ Zi, Zj􏼐 􏼑

≤
c

n
2 􏽘

n

i�1
􏽘

n

j�1
ρ Zi, Zj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�
c

n
2 􏽘

n

i�1
􏽘

n

j�1
ρ Zi, Zj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌I si − sj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥Nε􏽮 􏽯

+
c

n
2 􏽘

n

i�1
􏽘

n

j�1
ρ Zi, Zj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌I si− sj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥Nε􏽮 􏽯

.

(19)

(e last term has n2 components. (e assumption which
ρ(Z(si), Z(sj))⟶ 0 , as |si − sj| tends to infinity gives that
for all ε> 0 , there exists an integer Nε enough large such
that |ρ(Z(si), Z(sj))|≤ ε for all Z(si) and Z(sj) and that
|si − sj|≥Nε. For a fixed si, the number of sj so that |si −

sj|≤Nε is less than (2Nε)
k. (erefore, the total number

of points with condition |si − sj|≤Nε is at last n(2Nε)
k

which leads to Var(Zn)≤ c/n2(n(2Nε)
k + (n2−

n(2Nε)
k)ε) � c(1/n(2Nε)

k + (1 − 1/n(2Nε)
k)ε)

which clearly proves Zn ⟶L 2 μ. By (eorem 1, 􏽢μ is
unbiased for μ and Var(􏽢μ)<Var(Zn). Finally, by Lemma 1
we get that 􏽢μ⟶L 2 μ. □

Corollary 2. It is an immediate consequence of >eorem 4
that under its conditions 1ˊC− 11 tends to infinity as n tends to
infinity.

Theorem 4. Under conditions of >eorem 4 and at least one
of the followings (i) or (ii) and 􏽢Zn(s0)⟶L 2 μ.

(i) cˊC− 1c⟶ 0 as n tends to infinity.
(ii) 1ˊC− 11cˊC− 1c − (cˊC− 11)2 is bounded.

Proof. Regarding Lemma 1 and the unbiasedness of 􏽢Zn(s0),
we see that var(􏽢Zn(s0))⟶ 0 if it satisfies condition (i) or
(ii). Since 􏽢μn is the linear unbiased estimator for μ with the
minimum variance and 􏽢Zn(s0) is the linear unbiased esti-
mator for μ, we obtain that

0≤ var 􏽢μn( 􏼁 − var 􏽢Zn s0( 􏼁􏼐 􏼑 � kn. (20)

Corollary 1 and equation (20) result in
var(􏽢Zn(s0))⟶ 0 if and only if kn⟶ 0. On the other
hand, a direct computation shows that
kn � 1ˊC− 11 cˊC− 1c − (cˊC− 11)2/1ˊC− 11 and under condi-
tion (ii), it obviously tends to 0. Another form of kn is
kn � cˊC− 1c − (cˊC− 11)2/1ˊC− 11, with the fact that
(cˊC− 11)2/1ˊC− 11> 0 and if (i) satisfies, it will tend to 0. □

5. Conclusion

In this paper, we showed some previously defined RFs that
have been extensively applied to modeling time series,
spatial, and spatiotemporal data. However, they have a few
limitations that they cannot consider the PSAS, which has a

crucial and basic role in modeling the previously mentioned
data. For that, we presented some alternative RFs without
the mentioned problem, and having a more general solution
is still needed.(e paper recommended a method for coping
with this problem by finding a new predictor in ordinary
Kriging. (e customary predictor for ordinary Kriging has a
minimum MSE in the class of all linear unbiased predictors.
However, it does not necessarily have a minimum MSE in
the class of all linear predictors. (erefore, we obtained a
biased predictor with a less MSE than the Kriging predictor.
Asymptotic behavior of this predictor alongside the past
Kriging predictor was provided.

We studied six well-known multivariate distributions in
this article. Some other multivariate distributions studied by
Kotz et al. [26] such as the truncated multivariate normal
distribution, truncated multivariate t distribution, Linnik’s
distribution, gamma distribution, and logistic distribution
can be surveyed under this paper’s point of view.

Despite providing some solutions for the problem of
lacking PSAS, it seems that the best method for modeling
skew spatial data is defining a consistent skew RF. (is
matter may be performed in the future.
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[11] T. J. Kozubowski, K. Podgórski, and I. Rychlik, “Multivariate
generalized Laplace distribution and related random fields,”
Journal of Multivariate Analysis, vol. 113, pp. 59–72, 2013.

[12] M. M. Saber, A. R. Nematollahi, and M. Mohammadzadeh,
“Generalized asymmetric Laplace random fields: existence
and application,” Journal of Data Science, vol. 18, pp. 51–68,
2018.

[13] R. B. Arellano-Valle and M. G. Genton, “Multivariate ex-
tended skew-t distributions and related families,” Metron,
vol. 68, no. 3, pp. 201–234, 2010.

[14] M. Wall, “A close look at the spatial structure implied by the
CAR and SAR models,” Journal of Statistical Planning and
Inference, vol. 121, no. 2, pp. 311–324, 2004.

[15] B. Mahmoudian, “On the existence of some skew-Gaussian
random field models,” Statistics & Probability Letters, vol. 137,
pp. 331–335, 2018.

[16] S. Basu and G. C. Reinsel, “Properties of the spatial unilateral
first-order ARMA model,” Advances in Applied Probability,
vol. 25, no. 3, 1993.

[17] M. M. Saber and A. R. Nematollahi, “Comparison of spatial
interpolation methods in the first order stationary multipli-
cative spatial autoregressive models,” Communications in
Statistics ->eory and Methods, vol. 46, no. 18, pp. 9230–9246,
2017.

[18] M. M. Saber, “Performance of extrapolation based on Pit-
man’s measure of closeness in spatial regression models with
extended skew t innovations,” Communications in Statistics -
>eory and Methods, vol. 48, no. 2, pp. 282–299, 2019.

[19] A. Mojiri, Y. Waghei, H. R. Sani, and G. ., R. Borzadaran,
“Comparison of predictions by kriging and spatial autore-
gressive models,” Communications in Statistics - Simulation
and Computation, vol. 47, no. 6, pp. 1785–1795, 2018.

[20] A. Mojiri, Y. Waghei, H. R. Nili Sani, and G. R. Mohtashami
Borzadaran, “Non-stationary spatial autoregressive modeling
for the prediction of lattice data,” Communications in Sta-
tistics - Simulation and Computation, forthcoming, 2021.

[21] F. Hosseini and O. Karimi, “Approximate pairwise likelihood
inference in SGLMmodels with skew normal latent variables,”
Journal of Computational and Applied Mathematics, vol. 398,
2021.

[22] N. A. C. Cressie, Statistics for Spatial Data, Wiley, New York,
NY, USA, 1993.

[23] R. A. Moyeed and A. Papritz, “An empirical comparison of
kriging methods for nonlinear spatial point prediction,”
Mathematical Geology, vol. 34, no. 4, pp. 365–386, 2002.

[24] G. Gonzales-Farias, G Dominguez-Molin, and A. K. Gupta,
M. G. Genton,(e closed skew normal distribution,” in Skew-
Elliptical Distribution and >eir Applications: A Journey be-
yond Normality, pp. 25–42, Chapman & Hall, Boca Rayton,
FL, USA, 2004.

[25] R. B. Arellano-Valle and A. Azzalini, “Some properties of the
unified skew-normal distribution,” Mathematics arXiv: Sta-
tistics >eory, vol. 63, pp. 461–487, 2020.

[26] S. Kotz, N. Balakrishnan, and N. L. Johnson, Continuous
Multivariate Distributions. Models and Applications, Wiley,
vol. 1, New York, NY, USA, , 2000.

6 Complexity


