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(is paper aims to explore the dynamic characteristics of the post treatment human immunodeficiency virus (HIV) type-1
model by proposing the theoretical frameworks. Distinct from the previous works, this study explores the effect of effector
cells, loss of functional effector cells, and two types of anti-retroviral therapies such as reverse transcriptase inhibitors (RTIs)
and protease inhibitors (PIs) and also the effect of intracellular time delay. Based on the Routh—Hurwitz criterion and
eigenvalue analysis, the stability of the proposed HIV-1 model is analyzed. To reveal the significance of time delay, the Hopf-
type bifurcation analysis is performed. (e optimal control algorithm is designed by choosing the antiviral therapies such as
RTI and PI as control parameters. Numerical simulations are performed to validate the effectiveness of the proposed
theoretical frameworks.

1. Introduction

According to the World Health Organization (WHO),
680,000 individuals died from HIV-1-related diseases
worldwide in 2020, ranging from 480,000 to 1.0 million,
while 1.5 million people were newly infected with HIV-1.
Antiretroviral therapy (ART) has drastically reduced the
number of people infected with HIV during the 1990s,
with 27.5 million (approximately) people undergoing
treatment in 2020. Because of antiretroviral medication,
the HIV infection rate has decreased by 49% over the last
two decades, from 2000 to 2020. Despite the researcher’s
valiant efforts in terms of treatment options and drugs, a
cure for HIV-1 remains a pipe dream, necessitating
lifelong treatment. Mathematical models have been
demonstrated to be a useful tool for comprehending the
dynamics of disease progression, identifying key deter-
minants, and evaluating the efficacy of antiretroviral
therapy.

During the 1990s, HIV was thought to be a lethal
disease, similar to other lentiviruses, because HIV remains
within the host without causing symptoms and progresses
to a chronic stage known as acquired immunodeficiency

virus (AIDS), with a nearly ten-year delay between HIV
and AIDS. In this case, mathematical modeling of HIV
can help in estimating the lifespan of infected cells,
evaluating therapeutic efficacy, and realizing that new
virions require a host with deoxyribonucleic acid (DNA)
to replicate. Currently, a variety of therapy options are
available to help people with HIV get better. However,
controlling the virus is the only option available and
curing the disease still requires seamless efforts in the
research domain.

Mathematical models have been created to investigate
the dynamic properties of cell populations using parameters
including latent reservoirs, immunological responses, total
carrying capacity, and time-delayed fractional differential
operators based on literature reviews (see [1–5]). Immature
infected cells also known as latent stage are those that have
been infected but are not yet infectious, which is considered
in the present study. Immune responses such as CD4+
T-cells/CD8+ T-cells are activated when a foreign agent
enters the body, causing the body’s alarm system to go into
overdrive [6, 7].

When systems are in motion, there will always be a
degree of lag time. Time delays are inevitable because it has
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an ability to cause a significant impact on cell pop-
ulations. When modeling the kinetics of HIV-1 infec-
tion, two types of delays are taken into account. One
situation is that the uninfected cells interact with in-
fected/free virions and there is an intracellular temporal
delay. Besides, after a foreign agent has been ingested,
immune response cells must be activated, which results
in a delay in the immunological response. (is study
aims to explore the effect of intracellular time delay with
respect to infected cell population [8, 9]. Initially, ART is
given to every primarily infected HIV person, but based
on the stage of infection the level of drugs may be
redefined. However, it is a challenging task with respect
to the immune boosters which may vary in the indi-
vidual. Besides, it can be seen that, if there is a change in
the period of drugs provided, then it will reflect in the
virion populations. Hence, this study explores the effect
of antiretroviral therapies which are suggested as
posttreatment for a long period of time. (e proposed
model’s stability analysis will provide some insights into
disease progression in relation to the system parameters
such as infection rate and time delays. Followed by,
bifurcation analysis is used to determine the threshold
value of the significant parameter that has the poten-
tial to cause fluctuations in the cell population. (e
optimal control algorithm is designed by selecting cell
populations, which aids in better understanding and
extraction of system parameters, resulting in cell pop-
ulations with stable staining [10–13]. Recently, the
models were proposed on Zika virus, HIV, SARS-CoV-2,
and other viral dynamics models such as maize streak
virus in maize spread by leaf hopper mostly in Africa,
canine distemper virus, and rabies epidemics in red fox
with respect to significant factors such as vaccination
parameter involved models and optimal control strat-
egies (for more details, refer [14–22]). Distinct from the
existing models, the present study focuses on consid-
ering the effect of time delays and two kinds of anti-
retroviral therapies. (e overall contribution is listed in
the following:

(1) (is paper models the dynamics of HIV-1 infection
by considering the factors such as healthy CD4+
cells, latent reservoirs, infected cells, free virions, and
immune responses also considering the effect of time
delay.

(2) Positivity and boundedness of solutions of the dif-
ferential model are proved. (e reproduction
number is determined through the next-generation
matrix, which helps to identify the community
spread.

(3) Conditions for the existence of Hopf bifurcation are
proved by choosing the intracellular time delay as a
bifurcation parameter.

(4) Optimal control algorithm is designed to ensure the
stabilization of the proposed model.

(5) Numerical simulations are performed to validate the
proposed theoretical frameworks.

2. Model of Posttreatment HIV-1
Viral Dynamics

(e schematic representation of our model is given below.

_x(t) � s − cx(t) − 1 − ε1(t)( βx(t)y(t − τ),

_l(t) � αL 1 − ε1(t)( βx(t)y(t) + ρ − a − dL( l(t),

_y(t) � 1 − αL(  1 − ε1(t)( βx(t)y(t) + al(t)

− δy(t) − my(t)z(t),

_u(t) � 1 − ε2(t)( py(t) − cu(t),

_z(t) � bz

y(t)

KB + y(t)
z(t) − dz

(t)

KD + y(t)
z(t) − μz(t).

(1)

In model (1), the first equation represents the rate of
change in the susceptible cell populations, where s denotes
the rate of production, c is decay rate and ε1, ε2 denotes the
efficacy of antiretroviral therapies. Consider that εi(t), where
i � 1, 2, in [0, 1]; if εi � 1, where i � 1, 2., then cent percent
the treatment is effective whichmakes the infection zero, and
if εi(t) � 0, i � 1, 2, then, no progress in the therapy. β rep-
resents the rate of infection between the infected and unin-
fected cell population. τ stands for intracellular time delay.(e
second equation describes the state of latent infection; that is,
target cells are infected but not yet infectious. Suppose if the
infected cells are matured enough to infect the susceptible cells.
ρ, αL, and dL are scalars.(e third equation explains the rate of
change in the infectious cell population with the death rate δ,
migrated from latent infection a, removing the infection by
immune responses at the rate of m. (e fourth equation ex-
plores the rate of change in the free virions; the rate of pro-
liferation from the infection is given by p and the decay rate is
c. Finally, the production of effector cells can have the max-
imum proliferation in an infected cell with a maximum rate bz

and is given by the term bz(y(t)/y(t) + KB)z(t). (e loss of
functional effector cells is defined by dz(y(t)/y(t) + KD)z(t),
with an assumption KD >KB.

2.1. Positivity and Boundedness. In order to ensure the
convergence of the solutions of the model, it becomes
necessary to ensure that solutions of the state variables in
model (1) are positive and ultimately bounded.

Theorem 1. Assume that (x(t), l(t), y(t), u(t), z(t)) be a
solution of the proposed model (1) with the initial conditions
x(t)> 0, l(t)> 0, y(t)> 0, u(t)> 0, z(t)> 0. It is positive and
ultimately bounded for t> 0.

Proof. Consider the proof regarding x(t)> 0 for all t> 0. In
this regard, assume that there exists t1 > 0, which implies
x(t1) � 0, x(t)> 0, t ∈ [0, t1) such that _x(t)≤ 0. From (1), it
is clear that _x(t1) � s, s> 0, which is a contradiction and
leads to the proof that x(t)> 0, ∀t> 0.

Similarly, the proof can be extended for all the remaining
state equations.
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l(t) � l(0)e
− a+dL− ρ( )t

+ 
t

0
αL 1 − ϵ1(t)( βx(ξ)y(ξ)e

a+dL− ρ( )(ξ− t)dξ,

z(t) � z(0)e


t

0
bzy(ξ)/KB + y(ξ)z(ξ) − dzy(ξ)/KD + y(ξ)z(ξ) − μ( dξ

,

y(t) � y(0)e
− δt

+ 
t

0
1 − αL(  1 − ϵ1(t)( βx(ξ)y(ξ) + al(ξ)(

− my(ξ)z(ξ))e
− δ(ξ− t)dξ,

u(t) � u(0)e
− ct

+ 
t

0
1 − ϵ2(t)( ye

c(ξ− t)dξ.

(2)

Now, to prove {l(t), y(t), u(t), z(t)}> 0, ∀t> 0. And
consider that t2 > 0 and define

min l t2( , y t2( , u t2( , z t2(   � 0. (3)

If l(t2) � 0, l(t)> 0 for t ∈ [0, t2) and y(t)> 0, u(t)> 0,
z(t)> 0 for t ∈ [0, t2),

_l(t2) � 0, then we have _l(t2) �

αL(1 − ϵ1(t))βx(t2)y(t2)> 0, which is a contradiction.
If y(t2) � 0, y(t) > 0 for t ∈ [0, t2) and {l(t), u(t),

z(t)}> 0 for t ∈ [0, t2) with _y(t2)≤ 0. However, from (1),
one can have _y(t2) � al(t2)> 0.

Similarly, for u(t2) � 0 and z(t2) � 0 is also a
contradiction. (us, x(t), l(t), y(t), u(t), z(t) > 0, ∀t> 0.
To proceed with ensuring the boundedness of the solutions,
we extend the results of the positivity of the solution for
model (1).

_x(t)≤ s − cx(t). (4)

Taking the limits will lead to

lim
t⟶∞

sup(x(t))≤
s

c
. (5)

Let H(t) � x(t) + l(t) + y(t)

_H(t) � _x(t) + _l(t) + _y(t)

_H(t) � s − cx(t) − 1 − ε1(t)( βx(t)y(t)

+ αL 1 − ε1(t)( βx(t)y(t) + ρ − a − dL( l(t)

+ 1 − αL(  1 − ε1(t)( βx(t)y(t)

+ al(t) − δy(t) − my(t)z(t)

≤ s − Υx(t) + ρ − dL( l(t) − δy(t)

≤ s + σH(t).

(6)

Define that σ �min c, (ρ − dL), δ  and

lim
t⟶∞

sup(H(t))≤
s

σ
, (7)

To prove the ultimate boundedness of free virions, the
same approach is followed:

_u(t) � py(t) − cu(t) � p
s

σ
1 − ϵ2(t)(   − cu(t)

limt→∞sup(u(t)) ≤
ps 1 − ϵ2(t)( 

σc
.

(8)

Since u(t) cannot be negative, if ϵ2(t) � 0, then
sup(u(t)) � 0. Similarly, for z(t), we get

_z(t) � bz

y(t)

KB + y(t)
z(t) − dz

(t)

KD + y(t)
z(t) − μz(t),

_z(t)

z
� bz

y(t)

KB + y(t)
− dz

y(t)

KD + y(t)
− μ.

(9)

Applying integration on both sides

lim
t⟶∞

sup(z(t))≤ bzΩ1 − dzΩ2 − μ, (10)

where

Ω1 � bz

(s/σ)

KB +(s/σ)
,

Ω2 � dz

(s/σ)

KD +(s/σ)
.

(11)

Hence, it is proved that all the state variables solutions
are ultimately bounded.

Consider

Δ � (x, l, y, u, z) ∈ C
5
+: ‖x(t)‖≤

s

σ
, ‖l(t)‖

≤
s

σ
, ‖y(t)‖≤

s

σ
,

������u(t)‖ ≤
ps 1 − ε2(t)( 

σc

‖z(t)‖≤ bzΩ1 − dzΩ2 − μ},

(12)

where σ, Ω1, and Ω2 are given in the above equation. From
the given theorem, it is clear that, within the region, Δ is a
positive invariant. □

3. Equilibria

(is section describes the derivation of equilibria of PTC
HIV model based on three cases such as disease-free, im-
mune-free equilibrium, and endemic equilibrium.

(i) Model (1) without infection exhibits disease-free
equilibrium E0 � (x0, 0, 0, 0, 0), where x0 � s/d.

(ii) If R0 > 1, model (1) has an immune-free equilibrium
E1 � (x1, l1, y1, u1, 0) with the coefficients

x1 �
δ a + dL − ρ( 

β 1 − ϵ1(t)(  aαL + 1 − αL(  a + dL − ρ(  
,

l1 �
αLβ 1 − ϵ1(t)( x1y1

a + dL − ρ
,

u1 �
p 1 − ϵ2(t)( 1

c
,

y1 �
d R0 − 1( 

β 1 − ϵ1(t)( 
.

(13)

(iii) (e endemic equilibrium of the system E2(x+, l+,
y+, u+, z+) is given by
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x+ �
s

c + β 1 − ϵ1(t)( y+

,

l+ �
αL 1 − ϵ1(t)( βx+y+

a + dL − ρ

y+ �
− Ky  +

��������������

Ky 
2

− 4(I)(C)



2I
,

u+ � p+

1 − ϵ2(t)

c, z+ �
a + dL − ρ(  1 − αL(  1 − ϵ1(t)( βx+ + aαL 1 − ϵ1(t)( βx+y+ − δ a + dL − ρ( 

m a + dL − ρ( 
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(14)

with Ky � KDbz − dzKB − μKB − μKD and I � bz − dz − μ,

C � − μKBKD.

3.1. Basic Reproduction Number. In epidemiology, a basic
reproduction number is the average number of persons an
affected person can transmit the secondary infection.(e basic
reproduction number is an indicator that helps to determine
the community spread of infection, which can be calculated
using the next generation matrix. For the proposed model, the
basic reproduction number, say, R0, is determined for various
situations and described in the following sections.

3.1.1. For Disease-Free Equilibrium. (e basic reproduction
number of the model without a viral latent reservoir is

1 − ϵ1(t)( βx(t)y(t) − δy(t)> 0,

1 − ϵ1(t)( βx(t) − δ( y(t)> 0.
(15)

Since y(t)≠ 0, then

R0 � 1 − ϵ1(t)( β ·
s

c
·
1
δ
. (16)

3.1.2. For Immune-Free Equilibrium. (e basic reproduc-
tion number of the model with immune-free equilibrium is

F �
αL 1 − ε1(t)( βx(t)y(t)

1 − αL(  1 − ε1(t)( βx(t)y(t)
 ,

V �
ρ − a − dL( l(t)

al(t) − δy(t)
 .

(17)

(en, F and V help us to find the next generation
matrix FV− 1 as calculated:

F �

0 αL 1 − ε1(t)( βx(t)

0 1 − αL(  1 − ε1(t)( βx(t)

⎛⎝ ⎞⎠,

V �

ρ − a − dL 0

a − δ
⎛⎝ ⎞⎠,

V
− 1

�
1

− δ ρ − a − dL( 

− δ 0

− a ρ − a − dL

⎛⎝ ⎞⎠,

FV
− 1

�

0 αL 1 − ε1(t)( βx(t)

0 1 − αL(  1 − ε1(t)( βx(t)

⎛⎝ ⎞⎠ ·
1

− δ ρ − a − dL( 

− δ 0

− a ρ − a − dL

⎛⎝ ⎞⎠,

�

− aαL 1 − ε1(t)( βx(t)

δ a + dL − ρ( 

− αL 1 − ε1(t)( βx(t)

δ

− a 1 − αL(  1 − ε1(t)( βx(t)

δ a + dL − ρ( 

− 1 − ε1(t)(  1 − αL( βx(t)

δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(18)
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Now, the characteristic equation for the above matrix is

λ2 −
− aαL 1− ε1(t)( βx(t)

δ a+dL − ρ( 
−

1− ε1(t)(  1− αL( βx(t)

δ
 ,

λ+
− αL 1− ε1(t)( βx(t)

δ
 

− a 1− αL(  1− ε1(t)( βx(t)

δ a+dL − ρ( 
 �0,

(19)

where x0 � s/Υ, then the basic reproduction number is given
by

R0 � 1 − ε1(t)(  · β · 1 − αL(  +
aαL

a + dL − ρ
  ·

s

Υ
·
1
δ
. (20)

3.1.3. For Endemic Equilibrium. (e basic reproduction
number of the model with endemic equilibrium is
given by

F �
αL 1 − ε1(t)( βx(t)y(t)

1 − αL(  1 − ε1(t)( βx(t)y(t)
 ,

V �
ρ − a − dL( l(t)

al(t) − δy(t)
 .

(21)

(en, F and V help us to find the next generation
matrix FV− 1 as calculated below:

F �

0 αL 1 − ε1(t)( βx(t)

0 1 − αL(  1 − ε1(t)( βx(t)

⎛⎜⎝ ⎞⎟⎠,

V �

ρ − a − dL 0

a − δ
⎛⎜⎝ ⎞⎟⎠,

V
− 1

�
1

− δ ρ − a − dL( 

− δ 0

− a ρ − a − dL

⎛⎜⎝ ⎞⎟⎠,

FV
− 1

�

0 αL 1 − ε1(t)( βx(t)

0 1 − αL(  1 − ε1(t)( βx(t)

⎛⎜⎝ ⎞⎟⎠ ·
1

− δ ρ − a − dL( 

− δ 0

− a ρ − a − dL

⎛⎜⎝ ⎞⎟⎠,

�

− aαL 1 − ε1(t)( βx(t)

δ a + dL − ρ( 

− αL 1 − ε1(t)( βx(t)

δ

− a 1 − αL(  1 − ε1(t)( βx(t)

δ a + dL − ρ( 

− 1 − ε1(t)(  1 − αL( βx(t)

δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)

Now, the characteristic equation for the above matrix is

λ2 −
− aαL 1 − ε1(t)( βx(t)

δ a + dL − ρ( 
−

1 − ε1(t)(  1 − αL( βx(t)

δ
 ,

λ +
− αL 1 − ε1(t)( βx(t)

δ
 

− a 1 − αL(  1 − ε1(t)( βx(t)

δ a + dL − ρ( 
  � 0.

(23)

(e basic reproduction number is calculated from the
next generation matrix is given by

λ �
2Isβ 1 − ε1(t)(  aαL + a + dL − ρ(  1 − αL(  

δ a + dL − ρ(  2Ic + β 1 − ε1(t)(  − Ky +

����������

Ky 
2

− 4IC



  

, (24)

where Ky, I, and C are described above. (e spectral radius
or the largest eigenvalue of the next generation matrix is
called the basic reproduction number.

4. Stability Analysis

Let E2(x+, l+, y+, u+, z+) be any arbitrary positive equilib-
rium of the system (1). (en, the Jacobian matrix was

Complexity 5



evaluated at positive equilibrium’s E2 in the view of bio-
logical aspects. (is leads us to the following characteristic

polynomial. (e plus signs are ignored for the convenience
of calculations.

J �

− c − 1 − ε1(t)( βy 0 − 1 − ε1(t)( βxe
− λτ 0 0

αL 1 − ε1(t)( βy ρ − a − dL αL 1 − ε1(t)( βx 0 0

βy 1 − αL(  1 − ε1(t)(  a a33 0 − my

0 0 p 1 − ε2(t)(  − c 0

0 0 a53 0 a55

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where a33 � βx(1 − αL)(1 − ε1(t)) − mz − δ, a53 �

(bzz/KB + y) − (dzz/ KD + y)− (bzyz/(KB + y)2)+ (dzyz/
(KD + y)2) and a55 � (bzy/KB + y) − μ − (dzy/KD + y)

4.1. Stability Analysis of the Model without Time Delay.
(e characteristic polynomial without delay is given by

λ5 + P1λ
4

+ P2λ
3

+ P3λ
2

+ P4λ + P5 � 0. (26)

Routh–Hurwitz criterion: define nth root-based
Routh–Hurwitz matrix as follows:

Hn �

P1 1 0 0 · · · 0

P3 P2 P1 1 · · · 0

P5 P4 P3 P2 · · · 1

⋮ ⋮ ⋮

0 0 0 0 · · · Pn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

wherePj � 0, if j> n.When n � 5, thematrix is simplified into

H5 �

P1 1 0 0 0

P3 P2 P1 1 0

P5 P4 P3 P2 1

0 0 P5 P4 P3

0 0 0 0 P5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

Suppose all the roots of the characteristic polynomial with
negative real part, then the determinant of Routh–Hurwitz
matrices are positive and vice versa. (at is, detHI > 0, 1 �

1, 2, . . . , 5.(is can be employed to verify the proof of(eorem
1.(e necessary and sufficient condition to exist for the negative
real part for equation (6) is P1 > 0, P1P2 − P3 > 0, P1(

P2P3 − P1P4) + (P2
3 − P1P5)> 0,P1[P2(P3P4 − P2

P5) − P1(P2
4) +

P4P5] − [P3(P3P4 − P2P5) + P1(P4P5) + P2
5]> 0, and

det(H5)> 0.
(e expansion of the coefficients P1, P2, P3, P4, P5 is

given in Appendix.

4.2. Stability Analysis of the Model with Time Delay. (e
characteristic polynomial of the Jacobian is

λ5 + Q1λ
4

+ Q2λ
3

+ Q3λ
2

+ Q4λ + Q5

+e
− λτ

R1λ
3

+ R2λ
2

+ R3λ + R4  � 0.
(29)

(e coefficients Qi, i � 1, 2, 3, 4, 5, and Ri, i � 1, 2, 3, 4,
are given in Appendix. We rewrite the above equation
as

Q(λ) + e
− λτ

R(λ) � 0. (30)

Suppose some of the eigenvalues are purely imagi-
nary, that is, λ � iω, then the characteristic equation
becomes

(iω)
5

+ Q1(iω)
4

+ Q2(iω)
3

+ Q3(iω)
2

+ Q4(iω)

+ Q5 + e
− iωτ

R1(iω)
3

+ R2(iω)
2

+ R3(iω) + R4  � 0,

iω5
+ Q1ω

4
− iQ2ω

3
− Q3ω

2
+ iQ4ω + Q5

+ e
− iωτ

− R1iω
3

− R2ω
2

+ iR3ω + R4  � 0,

i ω5
− Q2ω

3
+ Q4ω  + Q1ω

4
− Q3ω

2
+ Q5 

+(cosωτ − i sinωτ) − iR1ω
3

− R2ω
2

+ iR3ω + R4  � 0,

i ω5
− Q2ω

3
+ Q4ω  + Q1ω

4
− Q3ω

2
+ Q5 

+(cosωτ − i sinωτ) i − R1ω
3

+ R3ω  − R2ω
2

+ R4  � 0.

(31)

Equating real and imaginary parts in the above
equation:

ω5
− Q2ω

3
+ Q4ω + cosωτ − R1ω

3
− R3ω 

− i sinωτ − R2ω
2

+ R4  � 0,
(32)

Q1ω
4

− Q3ω
2

+ Q5 + cosωτ − R2ω
2

+ R4 

+ i sinωτ − R1ω
3

+ R3ω  � 0.
(33)

Squaring and adding equations (32) and (33), we
get
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ω5
− Q2ω

3
+ Q4ω 

2
+ Q1ω

4
− Q3ω

2
+ Q5 

2

� cos2ωτ − R2ω
2

+ R4 
2

+ sin2ωτ − R1ω
3

+ R3ω 
2

+cos2ωτ − R1ω
3

+ R3ω 
2

+ sin2ωτ − R2ω
2

+ R4 
2
,

ω5
− Q2ω

3
+ Q4ω 

2
+ Q1ω

4
− Q3ω

2
+ Q5 

2

� − R1ω
3

+ R3ω 
2

+ − R2ω
2

+ R4 
2
.

(34)

Simplifying the above equations leads to the following:
− ω10

+ (− Q
2
1 + 2Q2)ω

8
+ (− Q

2
2 + R

2
1 − 2Q4 + 2Q1Q3)ω

6
+ (− Q

2
3 + R

2
2 − 2Q1Q5 + 2Q2Q4 − 2R1R3)

ω4
+ (− Q

2
4 + R

2
3 + 2Q3Q5 − 2R2R4)ω2

− Q
2
5 + R

2
4 � 0.

Since this is the differential equation of order 10, we
get almost “10” roots such as ω1 � z1,ω2 � z2, ω3 � z3,ω4 �

z4,ω5�z5,ω6 � z6,ω7 � z7,ω8 � z8,ω9 � z9, andω10 � z10.
Eliminating cosωτ from equations (32) and (33), we get

sinωτ �
ω5

− Q2ω
3

+ Q4ω A − Q1ω
4

− Q3ω
2

+ Q5 B

A
2

+ B
2 ,

ωτ � sin− 1 ω5
− Q2ω

3
+ Q4ω A − Q1ω

4
− Q3ω

2
+ Q5 B

A
2

+ B
2

⎛⎝ ⎞⎠,

τi
�
1
ω
sin− 1 ω5

− Q2ω
3

+ Q4ω A − Q1ω
4

− Q3ω
2

+ Q5 B

A
2

+ B
2

⎛⎝ ⎞⎠,

(35)

where i � 0, 1, 2, . . ., A � (R4 − R2ω2) and
B � (− R1ω3 + R3ω).

Hence, for τ � 0, E2 is asymptotically stable by Routh–
Hurwitz criterion [1], E2 remains stable for τ < τ0; we choose

τ0 � min τj
 , (36)

which completes the proof.

5. Hopf Bifurcation Analysis

In general, any physical system will reflect the changes in the
qualitative behavior subject to states and parameters changes;
for instance, changes in the rate of infection will reflect in the
cell populations. Hence, determining the significant parameters
that have an ability to affect the stability of the systems is
considered bifurcation parameters. By choosing bifurcation
parameters, various kinds of solution nature can be realized;
among that Hopf-type bifurcation explores the point where
solution trajectories cross the origin, say, from negative to
positive, in which the system has purely imaginary eigenvalues.
(e present model possesses the Hopf-type bifurcation while
the bifurcation parameter exceeds the threshold value. (e
process of deriving the stability conditions and proving the
existence of Hopf bifurcation are given below.

Theorem 2. Consider that the characteristic polynomial is of
the form

f0(λ) + f1(λ)e
− λτ

� 0, (37)

where f0 and f1 are continuously differentiable with respect to
λ. One of the roots is λ(τ) � α(τ) + iω(τ), where λ(τ) is
continuously differentiable with respect to τ, and satisfies
α(τ0) � 0 and ω(τ0) � ω0 for a positive real number t0. Denote

ϕ(ω) � f0(iω)



2

− f1(iω)



2
, (38)

which results in

sign
dRe(λ)

dτ

τ�τ0
  � sign

1
2ω

dϕ
dω

 

ω�ω0

 . (39)

Proof. Consider equation (38), and by taking the derivative
of |f0(iω)|2 with respect to ω, will lead to
d

dω
f0(iω)



2

  �
d

dω
Ref0(iω) 

2
+ Imf0(iω) 

2
 

� 2Ref0(iω).Re f0′(iω)i  + 2Imf0f0(iω).Im f0′(iω)i 

� 2Re f0(iω)f0′(iω)i 

� − 2Im f0(iω)f0′(iω) .

(40)

(en,
1
2ω

.
dϕ
dω

�
d

dω
f0(iω)



2

− f1(iω)



2

 

�
1
ω
Im f1(iω)f1′(iω) − f0(iω)f0′(iω) 

� Im f1(iω)



2 f1′(iω)

ωf1(iω)
− f0(iω)



2 f0′(iω)

ωf0(iω)
 .

(41)

Since |f0(iω0)|
2 � |f1(iω0)|

2, we have

1
2ω

.
dϕ
dω

 

ω�ω0

� f0 iω0( 



2Im

f1′ iω0( 

ω0f1 iω0( 
−

f0′ iω0( 

ω0f0 iω0( 
 . (42)

Now, we turn to the left side of (38), calculating the
derivative of both sides of f0(λ) + f1e

− λτ � 0 with respect to
τ, we obtain
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f0′(λ)
dλ
dτ

+ f1′(λ)
dλ
dτ

e
− λτ

− λ + τ
dλ
dτ

f1(λ)e
− λτ

  � 0. (43)

(us,

dλ
dτ

 

− 1

�
f0′(λ) + f1(λ)e

− λτ
− τf1(λ)e

− λτ

λf1(λ)e
− λτ

�
f0′(λ)e

λτ
+ f1′(λ)

λf1(λ)
−
τ
λ
.

(44)

Since f0(iω0) + f1(iω0)e
− iω0τ0 � 0, we have

Re
dλ
dτ

τ�τ0
 

− 1

� Re
f0′ iω0( e

iω0τ0 + f1′ iω0( 

ω0f1 iω0( 
 

� Re
f0′ iω0( 

ω0f0 iω0( 
i  + Re −

f1′ iω0( 

ω0f1 iω0( 
i 

� Im
f1′ iω0( 

ω0f1 iω0( 
−

f0′ iω0( 

ω0f0 iω0( 
 .

(45)

(erefore,

sign
dRe(λ)

dτ

τ�τ0
  � signRe

dλ
dτ

τ�τ0
 

� signRe
dλ
dτ

τ�τ0
 

− 1

� sign
1
2ω

.
dϕ
dω

 

ω�ω0

 .

(46)

(e proof is completed. □

6. Optimal Control Design

Considering (1), based on two variables such as RTI and PI as
controls, namely, ε1 and ε2. Here, ε1 represents the drug reverse
transcriptase, and it safeguards the healthy CD4+ from in-
fection, so that the healthy immune cells are maintained in the
right proportion. Also, ε2 is represented the drug protease
inhibitors, which maintains the release of the free virions to
burst which are active and fully infected. In general, the
treatment is initiated with an antiretroviral drug or the
combination of two or more drugs, which creates some side
effects while using a regular basis. Since the decision of
choosing the drug combination is complex and, in this regard,
an optimal strategy is a useful tool to understand the situation
and make decisions. Now, optimal control provides different
options with respect to estimating the costs of the drugs used
for the therapies and observing the drug’s effectiveness for the
disease. (e therapy should last long as the optimal control
helps us to find the suitable drug combination for the disease.
Formulating the optimization problem based on optimal pair,
existence is discussed in the following sections.

6.1. ?e Optimization Problem. In order to state the opti-
mization problem, we first consider ε1 and ε2 vary with time.

_x(t) � s − cx(t) − 1 − ε1(t)( βx(t)y(t),

_l(t) � αL 1 − ε1(t)( βx(t)y(t) + ρ − a − dL( l(t),

_y(t) � 1 − αL(  1 − ε1(t)( βx(t)y(t)

+ al(t) − δy(t) − my(t)z(t),

_u(t) � p 1 − ε2(t)( y(t) − cu(t),

_z(t) � bz

y(t)

KB + y(t)
z(t) − dz

y(t)

KD + y(t)
z(t) − μz(t).

(47)

(e optimization problem is designed in terms of
maximizing the following objective function constructed
from the model parameters:

J ε1, ε2(  � 
tf

0
x(t) + z(t) + u(t) −

A1

2
ε21(t) +

A2

2
ε22(t) dt.

(48)

Here, the upper bound tf denotes the period of the treat-
ment and assumptions A1 > 0 and A2 > 0, respectively, stand for
benefit and treatment costs. (e scalars ε1(t) and ε2(t) are
bounded and Lebesgue integrable.(e objective of the control is
to increase the uninfected cell populations through immune cells
and decrease the cell count of free virions and infected cells.
Hence, (ε∗1 , ε∗2 ) is the control pair that needs to be investigated.
We assume that the control pair is nonempty, convex, and closed
and it is integrable in the objective functional.

J ε∗1 , ε∗2(  � max J ε1, ε2( : ε1, ε2(  ∈ U , (49)

where U is the control set defined by U � ε1(t), ε2(t): εi(t) 

measurable, 0≤ εi ≤ 1, t ∈ [0, tf], i � 1, 2.

6.2. Optimal System. In order to investigate the properties of
the optimal system, the Pontryagin’s minimum principle given
in [13] is utilized and it provides necessary stability conditions
for the designed optimal control problem.(e advantage of the
principle is that it handles (47)–(49) in terms of maximizing a
Hamiltonian H through ε1 and ε2

H t, x, l, y, u, z, yτ , ε1, ε2, λ( 

�
A1

2
ε21 +

A2

2
ε22 − x − u − z + 

5

i�0
λifi,

(50)

with

f1 � s − cx − 1 − ε1( βxyτ

f2 � αL 1 − ε1( βxy + ρ − a − dL( l,

f3 � 1 − αL(  1 − ε1( βxy + al − δy − myz,

f4 � p 1 − ε2( y − cu,

f5 � bz

y

KB + y
z − dz

y

KD + y
z − μz.

(51)

8 Complexity



Based on the above discussion, the following theorem
can be derived.

Theorem 3. For any optimal control ε∗1 , ε
∗
2 , and solutions

x∗, l∗, y∗, u∗, z∗ of the corresponding state system (1), there exists
adjoint variables λ1, λ2, λ3, λ4, and λ5 satisfying the equations

λ1′(t) � 1 + λ1(t) Υ + β 1 − ε1(t + τ)y(t)(  + λ2(t) αL ε1 − 1( βy(t)(  + λ3(t) 1 − αL(  ε1 − 1( βy(t)( 

λ2′(t) � λ2(t) − ρ + a + dL(  − λ3(t)(a),

λ3′(t) � λ1(t)βx(t) 1 − ε1(t + τ)(   + λ2(t) αl ε1(t) − 1( βx(t) ,

+ λ3(t) 1 − αL(  ε1(t) − 1( βx(t) + δ + mz(t)  + λ4(t)ρ ε2(t) − 1( ,

+ λ5(t) −
bzz(t)

kB + y(t)
+

dzz(t)

kD + y(t)
 +

bzy(t)z(t)

kB + y(t)( 
2 −

dzy(t)z(t)

kD + y(t)( 
2
⎤⎦,

λ4′(t) � 1 + cλ4(t),

λ5′(t) � 1 + λ3(t)(my(t)) + λ5(t) dz

y(t)

KD + y(t)
− bz

y(t)

KB + y(t)
+ μ ,

(52)

with the transversality conditions

λi tf  � 0, i � 1, . . . , 5. (53)

Moreover, the optimal control is given by

ε∗1 � min 1, max 0, −
β

A1
λ1x
∗
(t)y
∗
τ   ,

ε∗2 � min 1, max 0,
p

A2
λ4y
∗
(t)   .

(54)

Proof. (e adjoint equations and transversality conditions
can be obtained by using Pontryagin’s minimum principle
with delay, such that suppose if consider the equation in the
vector for X � (λ1, λ2, λ3, λ4, λ5).

λ1′(t) � −
z( _x(t))

zx(t)

z( _l(t))

zx(t)

z( _y(t))

zx(t)

z( _u(t))

zx(t)

z( _z(t))

zx(t)
 X

T
−

zH

zx
,

λ2′(t) � −
z( _x(t))

zl(t)

z( _l(t))

zl(t)

z( _y(t))

zl(t)

z( _u(t))

zl(t)

z( _z(t))

zl(t)
 X

T
−

zH

zl
,

λ3′(t) � −
z( _x(t))

zy(t)

z( _l(t))

zy(t)

z( _y(t))

zy(t)

z( _u(t))

zy(t)

z( _z(t))

zy(t)
 X

T
−

zH

zy
,

λ4′(t) � −
z( _x(t))

zu(t)

z( _l(t))

zu(t)

z( _y(t))

zu(t)

z( _u(t))

zu(t)

z( _z(t))

zu(t)
 X

T
−

zH

zu
,

λ5′(t) � −
z( _x(t))

zz(t)

z( _l(t))

zz(t)

z( _y(t))

zz(t)

z( _u(t))

zz(t)

z( _z(t))

zz(t)
 X

T
−

zH

zz
.

(55)

(e optimal control ε∗1 and ε∗2 can be solved from the
optimality conditions

zH

zε1
(t) � 0,

zH

zε2
(t) � 0. (56)

(at is,
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zH

zε1
(t) � A1ε1 + β x(t)yτ( λ1 � 0,

zH

zε2
(t) � A2ε2 − λ4py(t) � 0.

(57)

Consider the optimal controls ε∗1 and ε∗2 defined in (54)
are bounded. If we substitute ε∗1 and ε∗2 in systems (47) and
(52), we obtain the following optimality system:

_x(t) � s − Υx∗(t) − 1 − ε∗1(t)( βx
∗
(t)y
∗
(t − Γ),

_l
∗
(t) � αL 1 − ε∗1(t)( βx

∗
(t)y
∗
(t) + ρ − a − dL( l

∗
(t),

_y
∗
(t) � 1 − αL(  1 − ε∗1(t)( βx

∗
(t)y
∗
(t) + al

∗
(t) − δy

∗
(t) − my

∗
(t)z
∗
(t),

_u
∗
(t) � p 1 − ε∗2(t)( y

∗
(t) − cu

∗
(t),

_z
∗
(t) � bz

y
∗
(t)

KB + y
∗
(t)

z
∗
(t) − dz

y
∗
(t)

KD + y
∗
(t)

z
∗
(t) − μz

∗
(t),

λ1′(t) � 1 + λ1(t) Υ + β 1 − ε1(t + τ)y(t)(  + λ2(t) αL ε1 − 1( βy(t)( (

+λ3(t) 1 − αL(  ε1 − 1( βy(t),

λ2′(t) � λ2(t) − ρ + a + dL(  − λ3(t)(a),

λ3′(t) � λ1(t)βx(t) 1 − ε1(t + τ)(   + λ2(t) αl ε1(t) − 1( βx(t) 

+ λ3(t) 1 − αL(  ε1(t) − 1( βx(t) + δ + mz(t)  + λ4(t)ρ ε2(t) − 1( 

+ λ5(t) −
bzz(t)

kB + y(t)
+

dzz(t)

kD + y(t)
 +

bzy(t)z(t)

kB + y(t)( 
2 −

dzy(t)z(t)

kD + y(t)( 
2
⎤⎦,

λ4′(t) � 1 + cλ4(t),

λ5′(t) � 1 + λ3(t)(my(t)) + λ5(t) dz

y(t)

KD + y(t)
− bz

y(t)

KB + y(t)
+ μ ,

ε∗1 � min 1, max 0, −
β

A1
λ1x
∗
(t)y
∗
τ   ,

ε∗2 � min 1, max 0,
p

A2
λ4y
∗
(t)   ,

λi tf  � 0, i � 1, . . . , 5.

(58)

(e significance of stability conditions, validating
the existence of Hopf bifurcation properties, and effect of the
optimal controller are explored in the following section. □

7. Numerical Simulation

(is section describes the numerical evaluations of the
proposed model (1) by choosing the experimental range of
parameter values provided in Table 1. (e simulations are
performed through Runge–Kutta fourth-order numerical
approximation scheme.(e outcomes of the cell simulations

corresponding to cell populations are demonstrated through
phase-space diagrams. Figures 1 and 2 illustrate the solution
behavior of cell populations within the threshold and ex-
ceeding the threshold of time delay, respectively. Also,
Figure 3 explores the effect of optimal control design, in
which the objective is achieved by increasing the number of
uninfected cell populations and diminishing the number of
virions. In addition, Figures 4–7 provide insights by com-
paring the controlled and uncontrolled system states such as
uninfected, infected, latent, and free virions, respectively.
Figures 2 shows the interpretation of variables of the
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equilibrium when τ < 0.93.(e top left corner in the panel of
Figure 2 evidence the rate of change in healthy CD4+ and
infected cells and the bottom left depicts the uninfected
cells and the free virions. Similarly, the phase portrait of
all the cell populations such as uninfected and infected
cells with free virions and immune cells is accordingly
picturized. (e drug parameter ε1(t) and the transmission
rate β have a high influence on the stability of the

equilibrium. (at is, for 0≤ ε1(t)≤ 0.6, the equilibrium is
stable. For 1.5 × 10− 7 ≤ β≤ 1.5 × 10− 6, the equilibrium
remains stable. When the transmission rate gets higher or
lesser, it loses the stability of equilibrium, where αL, r, μ,
and a also affect the stability when it increases rapidly.
(e rest of the parameters are having less significance in
terms of stability when compared with the remaining
parameters.

Table 1: Parameter values and their sources.

Notations Values References
s 105 cells/mL/day [23]
c 0.01 —
β 1.5 × 10− 6(mL/day) [24, 25]
δ 1 day− 1 [26]
N 2000 [27, 28]
p 2000 day− 1 —
C 23 day− 1 [29]
ϵ 0.001 —
A 0.001 day− 1 —
dL 0.004 day− 1 [30]
t1/2 44months [31]
ρ 0.0045 day− 1 [32]
αL 10− 6 —
sz 1 cells/mL/day —
bz 1 day− 1 [33]
KB 0.1 cells/mL [34]
dz 2 day− 1 [35]
KD 5 cells/mL [34]
μ 0.0002 day− 1 —
M 0.42mL/cells/day —
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Figure 1: Unstable responses for the time delay τ > 0.93.
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Figure 1 represents the state trajectories where the equi-
librium point loses its stability due to time delay that makes the
transmission rate slow. If the drug is already administered into
the body, the drug starts to function among the cells; there is a
period for the drug to make progress and with respect to time
delays, it becomes necessary to have the effect of time response,

and if the drug efficacy is not up to expectation, then the
endemic equilibrium will loose the stability.

Figure 8 shows that the uninfected cells start to bifurcate
as τ crosses the value 0.93.

Figures 3 represents the uninfected cell population after
the optimal control is established. (e top figures show the
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Figure 2: Stable responses for the time delay τ < 0.93.
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increasing cell population of the uninfected cells and the
reducing rate of the infected cells; it is visible after a certain
stage the immune cells maintained in proportion, with no
increasing number of cells. Similarly, the free virions are
depleted in the process.

Figures 4–7 provide the comparisons between controlled
and uncontrolled susceptible cell populations, infected cell
populations, latent cell populations, and free virions. (e
graphs exhibit the controlled cell population after the
implementation of optimal control.

8. Conclusion

(e aim of the paper is to explore the dynamical analysis of
posttreatment HIV-1 infection with respect to various sig-
nificant parameters such as the effect of time delays, two
different kinds of antiretroviral therapies, and loss of functional
effector cells. By employing the Routh–Hurwitz criterion, the
stability properties of the model with respect to discrete-type
constant time-delay which is chosen as a bifurcation parameter

have been presented. To ensure the effect of time delays, the
existence of Hopf-type bifurcation in the behavior of solutions
has been proved through proving the corresponding trans-
versality conditions. To reveal the effect of combination of drug
therapies, alongwith those parameters, the situation ismodeled
as an optimal control problem in terms of the objective
function. (rough objective function, the results explore the
maximization in the number of uninfected cell population and
minimization in the number of infected cells and corre-
sponding results are picturized in the numerical section. In the
future direction, the model can be extended in terms of
fractional order differential operator, considering continuous-
type time-delays, stochastic disturbances, and impulse in the
antiviral therapy, which also plays a significant role in the
system dynamics.

Appendix

(e coefficient of system variables is provided in the
following:
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C11

C22 � ρ − a − dL;C23

C53 �
bzz

KB + y
−

dzz

KD + y
−

bzyz

KB + y( 
2 +

bzyz

KD + y( 
2; C55

Q1 � c − C22 − C33 − C55 − C11( 

Q2 � C11C22 − C11c − C22c − C33cC23a + C11C33 + C22C33 + C11C55C22C55( 

+ C33C55 − C35C53

Q3 � C11C35C53 − C11C22C55 − C11C33C55 − C11C22C33 − C22C33C55(

+ C22C35C53 + C11C23a + C23C55a + C11C22c + C11C33c + C22C33c

+C11C55c + C22C55c + C33C55c − C35C53c − C23ac

Q4 C11C22C33C55 − C11C22C35C53 − C11C23C55( a − C11C22C33c

− C11C22C55c − C11C33C55c + C11C35C53c − C22C33C55c

+C22C35C53c + C11C23ac + C23C55ac

Q5 � C11C22C33C55c − C11C22C35C53c − C11C23C55ac

R1 � − C13C31

R2 � C13C22C31 + C13C31C55 − C13C21a − C13C31c( ,

R3 � C13C21C55a − C13C22C31C55 + C13C22C31c + C13C31C55c − C13C21ac( 

R4 � − C13C22C31C55c + C13C21C55ac

P1 � c − C22 − C33 − C55 − C11( ,

P2 � C11C22 − C11c − C22c − C33c − C55c − C23a + C11C33 − C13C31(

+C22C33 + C11C55 + C22C55 + C33C55 − C35C53,

P3 � C13C22C31 − C11C22C33 − C11C22C55 − C11C33C55 + C11C35C53(

+ C13C31C55 − C22C33C55 + C22C35C53 + C11C23a

− C13C21a + C23C55a + C11C22c + C11C33c

− C13C31c + C22C33c + C11C55c + C22C55c

+C33C55c − C35C53c − C23ac,

P4 � C11C22C33C55 − C11C22C35C53 − C13C22C31C55 − C11C23C55a + C13C21C55a − C11C22C33c(

+ C13C22C31c − C11C22C55c − C11C33C55c + C11C35C53c + C13C31C55c

− C22C33C55c + C22C35C53c + C11C23ac − C13C21ac + C23C55ac,

P5 � C11C22C33C55c − C11C22C35C53c − C13C22C31C55c − C11C23C55ac + C13C21C55ac.

(A.1)
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