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Market inefficiency is a latent concept, and it is difficult to bemeasured bymeans of a single indicator. In this paper, following both
the adaptive market hypothesis (AMH) and the fractal market hypothesis (FMH), we develop a new time-varyingmeasure of stock
market inefficiency. *e proposed measure, called composite efficiency index (CEI), is estimated as the synthesis of the most
common efficiency measures such as the returns’ autocorrelation, liquidity, volatility, and a new measure based on the Hurst
exponent, called the Hurst efficiency index (HEI). To empirically validate the indicator, we compare different European stock
markets in terms of efficiency over time.

1. Introduction

From Malkiel and Fama [1] seminal work, there have been
several papers that studied the market efficiency. *e effi-
cient market hypothesis (EMH) is based on many unrealistic
assumptions such as serial independence, returns’ nor-
mality, homoscedasticity, and absence of long memory.
Nowadays, it is well accepted that stock returns share some
statistical properties, called stylized facts (see Cont [2]),
which suggest strong deviation from the EMH. Various
methods have been proposed to test the efficient market
hypothesis (EMH), but the empirical evidence varies
according to the specific markets, periods of time, and the
selected approaches implemented to measure the efficiency.

EMH considers that the investor is generic. An investor
is anyone who wants to buy, sell, or hold a security because
of the available information, and it is rational price-taker.
*is generic approach, where information and investors are
general cases, implies that financial markets are “informa-
tionally efficient.” However, it is easy to see that extreme
market reactions occur more frequently than as expected by
the EMH, and noise traders operate to provide the necessary
liquidity for the rational investors. Proposed by Peters (1994)
on Mandelbrot’s’ previous work, the fractal market

hypothesis (FMH) arrives to provide a new framework to
model the turbulence in financial markets.*e FMH is based
on the concept of market liquidity, and how the information
that arrives to the market is interpreted by different agents.
So, the market is stable when there are investors operating in
a large number of investment horizons son the market is
provided of wide liquidity. When information has the same
impact on all investors, the market liquidity will decrease,
and the market will be unstable. *e FMH considers that the
market collapses when one-horizon traders are market
dominants placing many sell orders that the rest of agents
cannot absorb.

As the EMH, APT, and CAPM are equilibriummodels, it
is expected that work properly when markets are stable, but
not under turbulences. Weron andWeron [3] remarked that
the purpose of the FMH is to give a model of investor
behavior and market price movements that fits our obser-
vations. *e key is that, under the FMH, the market is stable
when it has no characteristic timescale or investment
horizon.

Market efficiency is surely a latent concept, and it is
difficult to be measured by means of a single indicator.
Nevertheless, it has been measured in different ways.
Moreover, from Lo [4], we know that market efficiency
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changes over the time. *is is the main idea underlying the
adaptive market hypothesis (AMH). As a consequence, a
good measure of efficiency has to be time-varying.

Among the several approaches for measuring market
efficiency, the most common is based on returns’ autocor-
relation (e.g., Ito et al. [5, 6], Noda [7], and Tran and Leirvik
[8]). *e degree of returns’ autocorrelation is an index of
market efficiency because, if present, it reflects a deviation
from the random walk hypothesis. In particular, Ito et al.
[5, 6] measured time-varying efficiency by considering the
autocorrelation in stock monthly returns estimated with a
time-variant autoregressive (TV-AR) model. Tran and
Leirvik [8] improved the measure of Ito et al. [5, 6] for high-
frequency data and for a large number of autocorrelations.

Furthermore, from a historical perspective, volatility has
been proved to be a good proxy of market efficiency as well
(Földvári and Van Leeuwen [9]). In this direction, Lo and
MacKinlay [10] proposed a test statistic based on the ratio of
variances which is still nowadays commonly used in testing
for market efficiency. More recently, Liu and Chen [11]
studied market efficiency by means of ARMA-GARCH
forecasts in order to account the heteroscedastic nature of
stock returns.

Another type of market efficiency measure is related to
the market liquidity (e.g., Sukpitak and Hengpunya [12]).
With this respect, Chordia et al. [13] found that predict-
ability is lower in the market with narrower bid-ask spreads
and that prices were closer to random walk in more liquid
markets. Similarly, Chung and Hrazdil [14] showed that the
more liquid in a market, the higher is its efficiency.*ere are
several ways of measuring liquidity (for a review, see
Gabrielsen et al. [15]), but one of the most recognized and
used was proposed by Amihud [16].

A fourth approach and, perhaps, the most discussed
(e.g., Kristoufek and Vosvrda [17, 18], Sensoy and Tabak
[19], and Kristoufek and Vosvrda [20, 21]) is based on the
analysis of markets’ long-range dependence, also defined as
long memory. *e long memory property describes if and
how much past events influence the future evolution of the
process (Asuloos et al. [22]). *ere are several researchers
who studied the long memory of financial markets (e.g., Lillo
and Farmer [23], Jiang et al. [24], Ferreira and Dionisio [25],
Barviera et al. [26], Sánchez Granero et al. [27], and
Dimitrova et al. [28]).

*e long memory is commonly studied through the
Hurst exponent, previously introduced by Hurst [29] and
lately developed by Mandelbrot and Van Ness [30], which
represents the rate of decay of the autocorrelation function
of a time series. If h> 1/2, we say that the time series shows
persistent behavior; if h< 1/2, we define the time series as
antipersistent. Bianchi et al. [31] claimed that different
values of the Hurst exponent h are related to different re-
gimes: “bull” and “bear” periods and the mean reversion.

Overall, the Hurst exponent is closely related to market
efficiency, and several authors (e.g., Bianchi [32], Sánchez
Granero et al. [27], and Dimitrova et al. [28]) showed that a
value of h � 0.5 reflects an efficient market. *erefore, in
constructing a measure of inefficiency, the deviations of h

from the value h � 0.5 have to be computed (Kristoufek and

Vosvrda [17]). However, a time-invariant Hurst exponent
explicitly contradicts the adaptive market hypothesis
(AMH). To overcome this limitation, we consider a new
efficiency measure based on a time-varying Hurst exponent
that is computed by assuming that stock prices follow a
multifractional Brownian motion (mBm).

However, each of the aforementioned approaches only
considers one aspect of efficiency. Composite indicators are
used in several domains of science to summarise in a
meaningful way the information coming from different
sources. Starting from the fact that efficiency is a difficult
concept to measure by means of a single indicator, in this
paper, we construct a new composite indicator, called
composite efficiency index (CEI), of financial market effi-
ciency by combining all the aforementioned different
measures.

Building composite indicators is a complex task that
involves several steps: (1) selection of the theoretical
framework, (2) the selection of the subindicators, and (3) the
aggregation method (i.e., how the single indicators are
combined). *e theoretical framework of the proposed CEI
is obviously represented by the financial market efficiency.
Regarding the selection of the subindicators, we consider
each of the aforementioned approaches of measuring market
efficiency. Regarding the last step, our approach consists in
estimating a factor model where the composite index is the
latent common factor.*en, the composite index is obtained
by the principal component estimator (see Bai and Ng [33]).

As an empirical application, we study the efficiency of
different European stock markets by considering also the
effects of the COVID-19 pandemic by means of this new
composite index. More in detail, we consider the Nether-
lands, Austria, Belgium, France, Germany, Spain, and
Switzerland stock markets and construct country-specific
composite indicators. *en, we proceed to estimate the
inefficiency of the market during the reference period and
investigate the deterministic or random nature of this
phenomenon. Moreover, the properties of the efficiency
process are studied from a statistical point of view through
the stationarity test (Dickey–Fuller test) and the analysis of
the (partial) autocorrelation function.

*e rest of this paper is organized as follows. In the next
sections, the remaining three steps required for the con-
struction of the composite efficiency index (CEI) are dis-
cussed in detail. In particular, in Sections 2 and 3, the
information set is presented (i.e., the set of the considered
subindicators), while in Section 4, the employed method-
ology (i.e., the aggregation method) is discussed. In par-
ticular, Section 3 discusses in detail a new Hurst-based
inefficiency measure. In Section 5, we apply the proposed
methodology to European stock market data, while some
final remarks are discussed in the conclusions.

2. Measuring Market Efficiency

In the following, we discuss in detail the subindices con-
sidered for the construction of the composite efficiency
index (CEI). *e classical single indicators are the returns’
autocorrelation, volatility, and liquidity. Moreover, we also
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construct a new efficiency measure based on the time-
varying Hurst exponent that is used as an additional sub-
index, which is discussed in more detail in Section 3 of this
paper.

2.1. Autocorrelation. *e proposed index exploits several
aspects of the efficiency for its construction. First of all, the
returns’ autocorrelation: we consider the fact that, according
to the EMH, an autoregressive process of any order p cannot
explain the dynamics of the returns rt. Hence, we consider
the following AR(p) process:

rt � α + β1rt− 1 + β2rt− 2 + . . . + βprp + εt. (1)

Let 􏽢β � (􏽢β1, 􏽢β2, . . . , 􏽢βp) be the vector of the estimated β
coefficients in (1). If the market is efficient, the vector β
should contain all values very close to zero. Following Noda
[7], we consider the magnitude market inefficiency (MIM):

MIMt �
􏽐

p
j�1

􏽢βj,t

1 + 􏽐
p

j�1
􏽢βj,t

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (2)

where absolute values are used to get rid of sign effects. For
this index, deviations from zero represent inefficient mar-
kets. Clearly, this measure is not rid of weaknesses. For
example, the market efficiency computed in this way, as any
model-based approach, depends on the sampling errors.
Nevertheless, (2) represents the first of the subindicator’s set.

2.2. Volatility. Another important proxy for stock market
inefficiency that we consider is volatility. Even if there are
several ways of computing volatility, Földvári and Van
Leeuwen [9] showed that GARCH models provide a good
way for appropriately reconstructing volatility. *erefore, as
volatility measure, we consider the in-sample predictions
obtained by a t-GARCH(1, 1) model of Bollerslev [34]:

rt � μt + ϵt, ϵt � σtzt

σ2t � ω + αz
2
t− 1 + βσ2t− 1

, (3)

where the innovation term contained in (zt: t≥ 0) is as-
sumed to be a stochastic process with i.i.d. t-student real-
izations in order to account for stock returns fat tails (e.g.,
Cerqueti et al. [35]).

2.3. Liquidity. Measuring market liquidity is important as
well. Indeed, we know that illiquid markets are very inef-
ficient. Despite there are several ways of measuring liquidity
(for a review, see Gabrielsen et al. [15]), we consider the
illiquidity measure developed by Amihud [16], which is one
of the most recognized since it can be computed by using
only prices and volumes. Moreover, it is also used by policy
makers to estimate liquidity in financial markets. *e
Amihud [16] illiquidity measure is obtained with the fol-
lowing equation:

ILLt �
1
T

􏽘

T

t�1

rt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

vt

, (4)

where ri
t,T is the return at time t and vt is the volume. (4) is a

realized measure of illiquidity since it can be computed on a
yearly basis, monthly as the average of the daily ratios within
each month, or daily as the average of the infradaily ratios. A
rough daily measure can be obtained by simply considering
the daily ratio in (4). Despite the fact that the Amihud [16]
index is a measure of the price impact, differently from the
bid-ask spread, its main advantage is based on the simplicity
of calculation and the easy availability of the data.

3. A New Hurst-Based Efficiency Measure

At the end, we consider a very promising measure of market
efficiency based on the fractal market hypothesis (FMH).
Exploring efficiency by the FMH requires the estimation of
the Hurst exponent. Indeed, nowadays, the Hurst-based
inefficiency measures are well established (e.g., Kristoufek
and Vosvrda [17, 18], Sensoy and Tabak [19], and Kristoufek
and Vosvrda [20, 21]).

Nevertheless, there are some relevant questions re-
garding the usage of the Hurst exponent in finance. First of
all, the way which the Hurst exponent is computed is crucial.
Indeed, even if different approaches to calculate the Hurst
exponent have been proposed in the last decades (see López-
Garćıa and Requena [36] for an interesting review), several
authors (e.g., Lo [37], Sánchez Granero et al. [27], and
Weron [38]) claimed that the Hurst exponent estimation
using classical methodologies presents a lack of preciseness
when the length of the series is not large enough. In addition,
Mercik et al. [39], Fernández-Mart́ınez et al. [40], and
Sánchez et al. [41] proved that most of the classical algo-
rithms used to calculate the Hurst exponent are valid only
for fractional Brownian motions and do not work properly
for another kind of distributions such as stable ones.

Another important issue lies on the fact that assuming a
constant value for the Hurst exponent h is unrealistic (e.g.,
see Bianchi [32], Bianchi et al. [31], and Mattera and Sciorio
[42]) and explicitly contradicts the adaptive market hy-
pothesis (AMH). To overcome this limitation, we consider
an additional efficiency measure based on a time-varying
Hurst exponent.

*e mathematical representation of a fractal market is
based on the fractional Brownianmotion (fBm) and assumes
a value of Hurst that can be h≠ 0.5. A very useful gener-
alization of the fractional Brownianmotion that is consistent
with the adaptive market hypothesis is represented by the
multifractional Brownian motion (mBm).

*e multifractional Brownian motion (mBm) was in-
troduced to replace the real h by a function t⟶ ht ranging
in [0, 1]. *e function ht is the regularity function of mBm.

Corlay et al. [43] started from the definition of a frac-
tional Brownian field. Let (Ω, F, P) be a probability space. A
fractional Brownian field on R × (0, 1) is a Gaussian field,
noted (W(t, h))(t,h)∈R×[0,1], such that, for every h in [0, 1], the
defined process is a fractional Brownian motion with Hurst
parameter h.

A multifractional Brownian motion is simply a “path”
traced on a fractional Brownian field. More precisely, it is
defined as follows.
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Let h: R⟶ [0, 1] be a deterministic continuous
function and W be a fractional Brownian field. AmBm on W

with functional parameter h is the Gaussian process defined
by Wh

t : � W(t, ht) for all t ∈ R.
*emultifractional Brownianmotion can be represented

by the following formulation (Bianchi [32]):

Wht
(t) � KVht

􏽚

R

|t − s|
ht− (1/2)

− |s|
ht− (1/2)

dW(s), (5)

where the normalizing factor Vht
is equal to

Vht
�

����������������
Γ 2ht + 1( 􏼁sin πht( 􏼁

􏽱

Γ ht +(1/2)( 􏼁
, (6)

and its covariance is given by

E Wht
(t)Whs

(s)􏽨 􏽩 � K
2
D ht, hs( 􏼁 t

ht+hs + s
ht+hs − |t − s|

ht+hs􏼐 􏼑,

(7)

where

D ht, hs( 􏼁 �

�������������������������������
Γ 2ht + 1( 􏼁Γ 2hs + 1( 􏼁sin πht( 􏼁sin πhs( 􏼁

􏽱

2Γ 2ht + hs + 1( 􏼁sin π ht + hs( 􏼁( 􏼁/2􏼂 􏼃
. (8)

In the mBm, a time-varying Hurst exponent ht is related
to the idea of long memory instead of a static one. Higher
values than 0.5 for the Hurst exponent indicate the per-
sistence of the time series, while lower values indicate
antipersistence. Under efficient markets, we have a geo-
metric Brownian motion (gBm) process, and the Hurst
index assumes a value of 0.5.

We then introduce a new time-varying measure of
market inefficiency, called Hurst-based efficiency index
(HEI), given by the absolute deviation of the empirical
(time-varying) Hurst exponent from its theoretical value of
0.5 under efficient markets:

HEIt � 0.5 − ht

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (9)

In this paper, we propose to estimate ht with the AMBE
method of Bianchi et al. [31] and Bianchi and Pianese [44]
that works as follows.

Considering a time series Xht,t
follows a multifractional

Brownian motion (5), the author assumes a discrete version
Xi,n􏽮 􏽯

i�1,...,n− 1, which, for j � i − δ, . . . , i − q, i � δ + 1, . . . , n,
and q � 1, . . . , δ, locally behaves like a fractional Brownian
motion with a given exponent h within a window of proper
length δ. *en, Bianchi [32] derived the following estimator:

􏽢ht � −
log

���
(π)

􏽰
S

k/ 2k/2Γ(k + 1/2)K
k

􏼐 􏼑􏼐 􏼑

k log((n + 1)/q)
(10)

with Sk:

S
k

�
1

δ − q + 1
􏽘

i− q

j�i− δ
Xj+q,n − Xj,n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
k
, i � δ + 1, . . . , n. (11)

In order to apply estimator (9), the parameters q, k, and δ
have to be chosen. According to Bianchi [32], the best choice
for q � 1. About k, since it affects the estimator’s variance,

the choice should be made with a variance-minimization
criterion. *e optimal choice is k � 2 (see Bianchi [32] for
the estimator’s variance formula). In the end, about the
parameter δ, the author suggests a value of δ � 30 for the
financial application.

*erefore, the Hurst-based efficiency index (HEI) is
obtained by replacing ht estimated with (9) within (8).

4. Methodology

*e last step required for building composite indicators is
based on the aggregation/synthesis of the subindices. With
this respect, several authors (e.g., Becker et al. [45] and
Karagiannis [46]) agree that one of the most critical aspects
in the definition of a composite index is this last step because
the weighting procedures reflect the relevance of each in-
dicator in determining the overall composite index.

Different schemes have been proposed in the literature,
but no one is free from weaknesses (for an overview, see
Greco et al. [47]).

*e first approach is to consider an equal weighting
scheme. *is scheme is commonly employed when it is
assumed that each indicator has the same informative power
with respect to the phenomenon under investigation. De-
spite its simplicity, the equal weighting does not take into
account both the variability of different indicators and their
relationship structure.

To avoid equal weighting, the literature considered
specific statistical methods. Some popular approaches are
based on the correlation analysis and linear regression.

According to the correlation analysis, it is possible to
determine the weights by considering the correlation be-
tween each indicator and a selected benchmark (Kantiray
[48]) such that the stronger is the correlation of a given
subindex, and the higher is its weight. *e main drawbacks
of the correlation-based approach rely on the fact that
correlations may be statistically not significant and do not
necessarily imply causation, only taking into account if
different indicators move or not in the same direction.

Regression analysis, instead, allows exploring the causal
linkage between the individual indicators and a benchmark.
Indicators’ weights are retrieved by estimating the linear
model. However, even if regression analysis exploits causal
relationships in weighting subindicators, as in correlation
analysis, the choice of an appropriate endogenous variable is
required.

*is aspect is problematic since most of the times, a
composite indicator is built with the aim ofmeasuring a latent
concept. *is is the case of well-being (e.g., Slottje [49] and
Haq and Zia [50]), but another interesting example is the
financial market inefficiency, where several proxies exist (e.g.,
volatility and market liquidity) but a single measure does not.

*erefore, a third approach for constructing composite
indicators is based on factorial analysis and principal
component analysis (PCA). In these cases, no benchmark
has to be chosen, and the composite indicator is obtained as
the synthesis of a set of subindices that roughly explain the
phenomenon. *e composite indicator proposed in this
paper falls within this last class of approaches.
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More in detail, we start by considering a factor model
structure. Factor models have been widely applied in both
theoretical and empirical finance. An important distinction
which has to be done is between observed and latent factor
models. Observed factors are known and based on outside
information. On the contrary, latent factors are unknown
and need to be estimated.

Let T and N denote the sample size in the time series and
number of subindices, respectively. For i � 1, . . . , N and
t � 1, . . . , T, the observation Xi,t has a factor structure
represented as

Xi,t � λi
′Ft + ei,t. (12)

*e factor model (11) can be written in the matrix form
as follows:

X � FΛ′ + e, (13)

where F � (F1, F2, . . . , FT)′ is the T × r matrix of factors and
Λ � (λ1, λ2, . . . , λN)′ is the N × r matrix of factor loadings.
Our objective is to estimate both F andΛ.*emost common
approach for estimating the static latent factor is through the
principal component estimator (e.g., Stock and Watson [51]
and Bai and Ng [33]).

By choosing the normalizations F′F/T � Ir and diagonal
Λ′Λ, we consider the following objective function
minimization:

tr X − FΛ′( 􏼁′ X − FΛ′( 􏼁􏼂 􏼃, (14)

where tr(·) denotes the matrix trace. *e estimator for F,
denoted by 􏽢F, is a T × r matrix consisting of r unitary ei-
genvectors associated with the r largest eigenvalues of the
matrix X′X/(TN) in the decreasing order. *en, 􏽢Λ � X′􏽢F is
an N × r matrix of estimated factor loadings. Stock and
Watson [51] showed that the sample eigenvector of X′X
asymptotically behaves like those of Λ′F′FΛ, and then, use
these eigenvectors to consistently estimate 􏽢F.

We consider the composite efficiency index (CEI) as the
r � 1 estimated factor.*e choice of single common factor is
reasonable because in the empirical application, we find that
the first factor explains most of the total variance. Indeed, it
is important to highlight that if the first factor accounts for at
least 65% of the total variance, the latent concept is usually
considered unidimensional, and the first factor is assumed to
be the composite indicator (see Nardo et al. [52]). Moreover,
by employing the Bai and Ng [53] procedure, we find that
only one latent factor (i.e., r � 1) can be used to describe
market efficiency for all the considered stock markets. Al-
ternatively, also, the Kaiser rule can be applied to identify the
number of factors (*e Kaiser rule suggests to drop factors
with eigenvalues below 1. *e motivation is that it makes no
sense to add a factor explaining less variability than just one
indicator.), but the use of Bai and Ng [53] procedure is more
appropriate when dealing with factor models. *e Bai and
Ng procedure works for both strict and approximate factor
models. In approximate factor models, some correlation in
the idiosyncratic components is allowed, and thus is more
general than the strict factor model where the idiosyncratic
components are uncorrelated. *eir procedure can also be

applied for the definition of the optimal number of factors
for strict factor models.

Factor model and PCA are inevitably related concepts.
However, differently from PCA, the first involves the esti-
mation of a model where some observable variables are
determined by both common factors and unique factors.
Moreover, a factor model has its own covariance structure
such that the total data variability can be decomposed into
that accounted for by common factors and that due to
unique factors. Nevertheless, PCA is commonly used to
estimate the common latent factors.

5. Application to European Stock Markets

5.1. Data and Subindices. To show the usefulness of the
proposed index, we provide an application to the major
European stock markets. In detail, we consider the prices
and volume time series for the stock exchange index of the
Netherlands (AEX), Austria (ATX), Belgium (BEL20),
France (CAC40), Germany (DAX30), Spain (IBEX35), and
Switzerland (SMI). For each time series, we consider the
daily data from January 1, 2003, to August 1, 2021. For some
market indices (i.e., ATX and IBEX), we have shorter time
series because of data availability. However, different time
series length is not an issue for our application. *e time
series of the log returns are shown in Figure 1.

*e ingredients needed for the computation of the
composite indicator are those described in Section 2 of the
paper. To compute the MIM (2), the indicator of market
efficiency based on the returns’ autocorrelation structure has
been obtained by considering a time-varying AR process
(TV-AR) as in [7]. In particular, following a rolling-window
approach, we consider an estimation window equal to
M � 252, hence, of 1 year of daily observations, which is
updated day by day. *erefore, given a T-length time series,
we obtain, for each market, a MIM time series of length
T − M. Figure 2 shows the evolution over time of the MIM
for each of the considered stock market indices. *e higher
the MIM value, the higher the market inefficiency.

*en, another indicator of market efficiency that we
consider is based on the estimated conditional volatility. In
this paper, following authors such as Földvári and Van
Leeuwen [9] and Liu and Chen [11], we consider in-sample
predictions from a t-GARCH(1, 1) model (3). Figure 3 reports
the evolution over time of the estimated conditional volatility.

It is clear from Figure 3 that volatility increases during
the period of crisis. Market liquidity is another important
measure of market efficiency since, as we have seen, a liquid
market is more efficient than an illiquid one. In the paper, we
consider the illiquidity measure of Amihud [16] in (4). As in
the case of the MIM index, to compute the ILL index, we
used a rolling-window approach with the estimation win-
dow m � 252, i.e., one year of observation. Since the ILL
index is a realized measure, we compute the market illi-
quidity over the last year by updating the indicator daily.*e
results for the considered sample of market returns are
shown in Figure 4.

In the end, we have the new measure of market ineffi-
ciency based on the time-varying Hurst exponent. As
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explained in Section 2 of the paper, the Hurst exponent is
computed with the AMBEmethod proposed by Bianchi [32]
and Bianchi et al. [31]. *e Hurst estimates are shown in
Figure 5.

Figure 5 somehow validates the adaptive market hy-
pothesis (AMH) since we observe many deviations from the
value of h � 0.5, under which the market should be efficient.
Moreover, the degree of efficiency changes over time as well,
and the severity of the deviation is not constant over the
time. Indeed, while, in some time periods, we observe
strongly persistent behaviors (i.e., ht > 0.5), in others, the
markets seem to be antipersistent.

Nevertheless, any deviation from h � 0.5 represents a
deviation from the hypothesis of efficient market. *erefore,
we derive the Hurst-based efficiency index (HEI) as the
absolute deviations of the Hurst exponent in Figure 5 from
the value ht � 0.5, as shown in (8).

*e resulting time series are shown in Figure 6.
A value of HEIt � 0 means that the market is somehow

efficient, and the bigger the HEI value, the higher the degree
of market inefficiency. We observe huge spikes in the HEI
time series in the presence of crisis. In particular, by con-
sidering Figures 2–6 together, we can see that the time
periods with picks in the HEI index are associated to picks in
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Figure 1: Daily returns of the considered stock market indices.
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Figure 2: Daily estimated MIM for each of the considered stock market indices.
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the other inefficiencymeasures, i.e., MIM, ILL, and volatility.
*erefore, all the indices increase with increasing ineffi-
ciency, and therefore, the HEI index gets higher values when
the market becomes more illiquid and highly volatile.

Nonetheless, we aim to measure the complexity of fi-
nancial market by considering a single index that incor-
porates all these information. To this aim, we developed the
composite efficiency index by following the methodology
explained in Section 3.

5.2. Composite Efficiency Index: In-Sample Analysis. In the
following, we aim to describe the in-sample dynamics of the
developed CEI. As previously explained, the CEI is

computed as the latent factor underlying the movements of
the aforementioned subindices. Such a latent factor is
consistently estimated with the principal component (PC)
estimator. *e CEI time series, for each stock market, is
shown in Figure 7.

Clearly, different markets show very different behaviors
of the index. *is fact depends on different importance of
each single subcomponent in being the main driving force of
inefficiency across different markets.

As a consequence, while some markets present trends in
efficiency levels (e.g., ATX and PSI markets), others show
more random behaviors around their mean. *is fact rises
the problem of efficiency predictability. With a predictable
market efficiency, policy makers would be able to identify
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appropriate policies with the aim of making markets more
efficient in the near future. Similarly, stock traders would
adjust their investment strategies accordingly.

Figure 8 shows the autocorrelation structure of the CEI
for the sample of stock markets.

Figure 8 highlights a very strong autocorrelation structure
for the CEI across all the considered markets. Hence, the CEI
shows a very persistent behavior. *is evidence suggests a
possibly strong predictability. To get further evidence, we test
if the CEIs are random walk (RW) or not. In doing so, we
perform the Ljung–Box [54] test on the CEI’s first different
(ΔCEIt). Ljung–Box [54], usually used to test for the white
noise hypothesis, is based on the following test statistic:

Q � T(T + 2) 􏽘
h

k�1
(T − k)

− 1ρ2k, (15)

where T is the length of the time series, ρk is the kth au-
tocorrelation coefficient, and h is the number of lags used
for testing. Hyndman and Athanasopoulos [55] recom-
mended using h � 10 for nonseasonal data. Autocorrela-
tions at different lags k are computed with the usual
estimator:

􏽢ρk �
􏽐

T
t�k+1 yt − y( 􏼁 yt− k − y( 􏼁

􏽐
T
t�1 yt − y( 􏼁

2 , (16)

AEX Hurst

0.30

0.35

0.40

0.45

0.50

0.55

0.60
ATX Hurst

0.30

0.35

0.40

0.45

0.50

0.55

0.60
BEL20 Hurst

0.35

0.40

0.45

0.50

0.55

0.60

0.65

CAC40 Hurst

0.35

0.40

0.45

0.50

0.55

0.60

0.65

DAX30 Hurst

0.35

0.40

0.45

0.50

0.55

0.60

IBEX35 Hurst

0.35

0.40

0.45

0.50

0.55

0.60
PSI20 Hurst

0.40

0.45

0.50

0.55

0.60

0.65
SMI Hurst

0.35

0.40

0.45

0.50

0.55

0.60
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with y being the sample average over T of the time series yt.
A large value of the statistics Q, which follows a χ2 distri-
bution with h − K degrees of freedom, indicates that there is
a significant autocorrelation structure in the time series.
Under the null hypothesis, the time series is a white noise. In
applying the Ljung–Box test, we exploit the fact that if CEIt is
random walk, its first difference ΔCEIt must be a white noise
process. *e results are reported in Table 1.

As Table 1 shows, by rejecting the null hypothesis of
white noise for the CEI first differences, we reject the

random walk hypothesis for the CEI time series for all the
markets. *erefore, the market efficiency and its variation
follow predictable stochastic processes. However, each
market has its own data-generating process.

5.3. Composite Efficiency Index: Out-of-Sample Analysis.
Another important aspect that can be studied is to assess if
the market efficiency can be useful for predicting stock
returns. In doing so, we conduct an out-of-sample analysis
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0 5 15 25 35 0 5 15 25 35 0 5 15 25 350 5 10 20 30

0 5 15 25 35 0 5 15 25 35 0 5 15 25 350 5 15 25 35

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0
AEX CEI ACF ATX CEI ACF BEL CEI ACF CAC CEI ACF

DAX CEI ACF IBEX CEI ACF PSI CEI ACF SMI CEI ACF

Figure 8: ACF of the daily composite efficiency index (CEI) for each of the considered stock market indices.

Complexity 9



following the empirical approach of the exchange rate
predictability literature (e.g., Meese and Rogoff [56], Rossi
[57], Molodtsova and Papell [58], and Mattera et al. [59]).
Indeed, we compare the forecasts obtained with a random
walk without drift model

􏽢ri,t � ri,t− 1 (17)

with those obtained by the following predictive regression:

ri,t � αi + βiΔCEIi,t + ϵi,t, (18)

where α is the constant term, β represents the impact of
ΔCEI on the returns, and ϵt is an error term. Note that we
use the first difference of the CEI instead of its levels. *is is
because it is not guaranteed a priori that the composite index
is stationary. Stationarity of the composite indicator clearly
depends on the stationarity of the subindicators. To see the
results, Table 2 contains the results of the augmented
Dickey–Fuller test, showing that some of the CEIs present
either unit roots or deterministic trends.

*is is evident also looking at the indices’ autocorrela-
tion structure shown in Figure 8. With first differences,
instead, all the indices are stationary, and the consistency of
the OLS estimator is guaranteed. Moreover, first difference
can be seen as a measure of the CEI variation rate. Hence, we
are interested in understanding if inefficiency variation is
able to predict variation in prices, i.e., the returns.

In order to evaluate the forecasts’ accuracy in out of sample,
we split the dataset into a training set used to estimate pa-
rameters and to obtain forecasts and a training set with one-
third of the observations used for predictive accuracy tests. In
particular, we conduct an experiment following a rolling-sample
approach. Given a T-long dataset, we choose an estimation
window of length M equal to two-third of the dataset. *en, in
each period t, starting from t � M + 1, we use the M obser-
vations to estimate the parameters needed for obtaining the
forecasts for t + 1. *is process is repeated T − M times by
adding the return for the next period in the dataset and
dropping the earliest one until the end of the dataset is reached.
*e outcome is, for each strategy, a time series ofT − M out-of-
sample forecasts.

*en, for each ith stock market, we compute the fore-
casting error as follows:

ei,t � 􏽢ri,t − ri,t. (19)

In the end, given the forecasting error in (17), we
compute the mean square forecast error (MSfE) and use

Clark and West [60] to test whether the forecasts obtained
from model (16) are statistically different from those of the
benchmark RWmodel (15). Under the null hypothesis of the
Clark and West [60] test, the two competing forecasting
models have statistically equal predictive ability. If the MSfE
of model (16) is lower and statistically different with respect
to the MSfE of model (15), we can argue that the variation of
the market efficiency level, measured by the CEI, is a good
predictor for stock market returns. Moreover, for sake of
robustness, we also consider the results of the Diebold and
Mariano test [61] of predictive accuracy. *e results of the
out-of-sample experiment are shown in Table 3.

According to the Clark and West test [60] for all stock
markets, the forecast obtained through regression is sta-
tistically different than the random walk benchmark (see
columns 3 and 4 of Table 3). Moreover, the MSfE of (16) is
always lower than the random walk MSfE, meaning that the
CEI is a useful predictor for market returns. *is is a
generalized result because the forecast error of the two
competing models is statistically different, i.e., the observed
differences are not sample driven.

6. Conclusion

Since the Fama seminal work on the topic, there have been
several papers that studied the market efficiency. However,
the market efficiency is a latent concept, and it is difficult to
be measured by means of a single indicator. Indeed, market
efficiency has been investigated by means of various
methods. Among the most important, we have the random
walk hypothesis, the martingale hypothesis, and the
liquidity.

Nevertheless, most of the literature studies are based on
the EMH, which lies on several strong assumptions such as
independence, normality, and many others, while several
empirical studies have proved that stock returns show some

Table 1: Ljung–Box [54] results.

Market Q p value
AEX 261.74 2.2 e− 16

ATX 156.22 2.2 e− 16

BEL20 105.9 2.2 e− 16

CAC40 133.23 2.2 e− 16

DAX30 88.632 9.992 e− 15

IBEX35 104.09 2.2 e− 16

PSI20 76.871 2.055 e− 12

SMI 209.27 2.2 e− 16

Table 2: Augmented Dickey–Fuller test results.

Market ADF statistic p value
AEX CEI 3.48 0.044
ATX CEI − 2.64 0.309
BEL20 CEI − 7.30 0.010
CAC40 CEI − 6.68 0.010
DAX30 CEI − 4.23 0.010
IBEX35 CEI − 2.42 0.399
PSI20 CEI − 2.26 0.466
SMI CEI − 4.20 0.010

Table 3: Out-of-sample forecasting accuracy results.

Market MSfE (16) MSfE (15) p value [60] p value [61]
AEX 0.000113 0.000224 4.9193 e− 18 2.296 e− 13

ATX 0.000363 0.000698 2.7894 e− 06 0.0002241
BEL20 0.000144 0.000272 1.8871 e− 10 2.191 e− 07

CAC40 0.000142 0.000277 6.2007 e− 14 1.256 e− 09

DAX30 0.000195 0.000406 2.9687 e− 12 2.819 e− 10

IBEX35 0.000201 0.000416 4.3183 e− 16 5.155 e− 05

PSI20 0.000141 0.000277 3.3021 e− 11 8.479 e− 08

SMI 0.000088 0.000182 1.5224 e− 13 1.336 e− 09
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statistical properties that are known as stylized facts. A very
important stylized fact is represented by the presence of
long-range dependence, also defined as long memory. *e
long memory property describes if and how much past
events influence the future evolution of the process.

*e long memory is commonly studied through the
Hurst exponent, previously introduced by Hurst [29] and
lately developed by Mandelbrot and Wallis [62], which
represents the rate of decay of the autocorrelation function
of a time series.

*e fractal market hypothesis (FMH) claims that the
Hurst exponent is related to market efficiency since a value
of h � 0.5 reflects efficient market conditions. *e mathe-
matical representation of the stock prices under the FMH is
given by the fractional Brownian motion (fBm). However, a
main drawback of the fBm lies on the fact that the Hurst
exponent is assumed to be static and not time-varying.
*erefore, constructing an efficiency measure with a static
Hurst exponent contradicts the adaptive market hypothesis
(AMH).

However, by assuming a multifractional Brownian
motion (mBm) for stock prices, we compute a time-varying
Hurst exponent that can potentially explain how efficiency
changes over time. With this respect, following Bianchi [32],
we use a simple measure of market inefficiency, called Hurst-
based efficiency index (HEI), computed as the absolute
deviation of the time-varying Hurst exponent from 0.5.

*en, to capture, in a more accurate way, all the effi-
ciency dimensions, we computed a composite indicator by
using the developed Hurst-based inefficiency measure,
conditional volatility, and market liquidity.

We apply the proposed indicator to European stock
market indices to study the behavior inefficiency. We find
that the proposed index called CEI does not follow a random
walk process getting evidence of efficiency predictability.
*is result could be relevant to both policy makers and
traders. We also use the CEI as predictors in a log-return
predictive regression problem. We find that the CEI is a
relevant predictor for daily stock returns as well.
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ponents and the dynamics of (in)efficiency in stock markets,”
Chaos, Solitons & Fractals, vol. 109, pp. 64–75, 2018.

[45] W. Becker, M. Saisana, P. Paruolo, and I. Vandecasteele,
“Weights and importance in composite indicators: closing the
gap,” Ecological Indicators, vol. 80, pp. 12–22, 2017.

[46] G. Karagiannis, “On aggregate composite indicators,” Journal
of the Operational Research Society, vol. 68, no. 7, pp. 741–746,
2017.

[47] S. Greco, A. Ishizaka, M. Tasiou, and G. Torrisi, “On the
methodological framework of composite indices: a review of
the issues of weighting, aggregation, and robustness,” Social
Indicators Research, vol. 141, no. 1, pp. 61–94, 2019.

[48] A. Kantiray, “On the measurement of certain aspects of social
development,” Social Indicators Research, vol. 21, no. 1,
pp. 35–92, 1989.

[49] D. J. Slottje, “Measuring the quality of life across countries,”
8e Review of Economics and Statistics, vol. 73, no. 4,
pp. 684–693, 1991.

[50] R. Haq and U. Zia, “Multidimensional wellbeing: an index of
quality of life in a developing economy,” Social Indicators
Research, vol. 114, no. 3, pp. 997–1012, 2013.

[51] J. H. Stock and M. W. Watson, “Forecasting using principal
components from a large number of predictors,” Journal of the
American Statistical Association, vol. 97, no. 460, pp. 1167–
1179, 2002.

[52] M. Nardo, M. Saisana, A. Saltelli, S. Tarantola, A. Hoffman,
and E. Giovannini, “Handbook on Constructing Composite
Indicators: Methodology and User Guide,” Technical report,
OECD Publishing, Paris, France, 2005.

[53] J. Bai and S. Ng, “Determining the number of factors in
approximate factor models,” Econometrica, vol. 70, no. 1,
pp. 191–221, 2002.

[54] G. M. Ljung and G. E. P. Box, “On a measure of lack of fit in
time series models,” Biometrika, vol. 65, no. 2, pp. 297–303,
1978.

[55] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles
and Practice, OTexts, 2018.

[56] R. A. Meese and K. Rogoff, “Empirical exchange rate models
of the seventies: do they fit out of sample?” Journal of In-
ternational Economics, vol. 14, no. 1-2, pp. 3–24, 1983.

[57] B. Rossi, “Exchange rate predictability,” Journal of Economic
Literature, vol. 51, no. 4, pp. 1063–1119, 2013.

[58] T. Molodtsova and D. H. Papell, “Out-of-sample exchange
rate predictability with taylor rule fundamentals,” Journal of
International Economics, vol. 77, no. 2, pp. 167–180, 2009.

[59] R. Mattera, M. Misuraca, G. Scepi, and M. Spano, “A mixed-
frequency approach for exchange rates predictions,” Elec-
tronic Journal of Applied Statistical Analysis, vol. 14, no. 1,
pp. 230–253, 2021.

[60] T. E. Clark and K. D. West, “Using out-of-sample mean
squared prediction errors to test the martingale difference

12 Complexity



hypothesis,” Journal of Econometrics, vol. 135, no. 1-2,
pp. 155–186, 2006.

[61] F. X. Diebold and R. S. Mariano, “Comparing predictive
accuracy,” Journal of Business & Economic Statistics, vol. 20,
no. 1, pp. 134–144, 2002.

[62] B. B. Mandelbrot and J. R. Wallis, “Robustness of the rescaled
range r/s in the measurement of noncyclic long run statistical
dependence,” Water Resources Research, vol. 5, no. 5,
pp. 967–988, 1969.

Complexity 13


