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*is paper presents an adaptive fuzzy sliding-mode controller for multiple Euler–Lagrange systems communicated with directed
topology. Based on the graph theory and Lyapunov–Krasovskii functions, a delay-dependent sufficient condition for the existence
of sliding surfaces is given in terms of linear matrix inequalities. *e asymptotic stability is analyzed by using the Lyapunov
method in the presence of unknown parametric dynamics, actuator faults, and time-varying delays. *e usage of adaptive
techniques is to adapt the unknown parameters so that the objective of globally asymptotic stability is achieved. Finally, simulation
results are provided to illustrate the effectiveness of the proposed control scheme.

1. Introduction

Cooperative control of multiagent systems has attracted
much attention in recent years, such as consensus [1–4],
formation [5–8], and flocking problems [9–12]. *e
solving of the consensus problem is an essential and
interesting topic of cooperative multiagent research.
Basically, the idea of consensus implies that a group of
agents can reach an agreement on certain quantities of
interest. In graph-based approaches, a directed or
indirected graph is popularly applied to describe the
communication topology of networked multiagent sys-
tems. In the last few years, several methods have been
proposed to deal with the consensus problems of the
multiagent systems [13–17]. In [13], adaptive synchro-
nization protocols for a heterogeneous multiagent net-
work were investigated, where the interaction between
agents is represented by a direct graph. In [14], the
leaderless consensus problem over strict-feedback non-
linear multiagent systems with unknown model param-
eters and control directions was investigated. Also, a
robust continuous-time optimization algorithm was
presented for multiagent systems with guaranteed fixed-

time convergence. Zhang al. presented a robust consensus
tracking strategy for multiple unmanned underwater
vehicles with switching topology [16]. In [17], the leader-
following average consensus problem was addressed for
linear multiagent systems.

Besides the first-order or second-order linear models,
one important class of multiagent control systems is the so-
called Euler–Lagrange systems, which generally describes
the dynamic properties of robot manipulators, rigid body
systems, and so on. In [18], the leader-following consensus
problem was studied of multiple Euler–Lagrange (EL) sys-
tems subject to an uncertain leader. In [19], an adaptive
sliding mode control technique was proposed for the EL
systems with actuator faults and system uncertainties. In
addition, a distributed optimal consensus strategy based on
an event-triggered scheme for EL multiagent systems was
investigated [20]. *e model-free optimal consensus prob-
lem was addressed for networked Euler–Lagrange systems
without velocity measurements [21]. Chen et al. proposed a
robust adaptive finite-time tracking control scheme for
Euler-Lagrange systems subject to nonparametric uncer-
tainties, unknown disturbances, and input saturation [22].
In [23], a robust adaptive finite-time tracking control
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scheme was proposed for Euler–Lagrange systems subject to
nonparametric uncertainties, unknown disturbances, and
input saturation.

*e sliding-modemethod has been studied for nonlinear
systems because of some attractive features, such as ro-
bustness to parameter variations and good transient per-
formance. Recently, a sliding-mode controller has been
developed to deal with nonlinearities and uncertainties for
multiagent systems [24–28]. In [24], the finite-time con-
sensus tracking of multirobotic systems with disturbances
was investigated via utilizing integral sliding mode control.
In [25], an optimal sliding mode control approach was
presented for the consensus of nonlinear discrete-time high-
order multiagent systems. Jina et al. investigated the con-
sensus control problem of Takagi–Sugeno fuzzy multiagent
systems by using an observer-based distributed adaptive
sliding mode control [26]. In addition, the event-triggered
tracking control problem of second-order uncertain mul-
tiagent systems was addressed by utilizing the distributed
sliding-mode control approach [27]. In [28], the consensus
tracking problem of networked control systems with dis-
turbances was discussed, where an integral sliding mode
protocol was developed to achieve the consensus in a setting
time. Recently, fuzzy sliding-mode control has attracted
much attention, where the fuzzy mechanism is useful to
decrease the chattering behaviors. In [29], an adaptive back-
stepping fuzzy neural network controller using a fuzzy
sliding mode controller was designed to suppress the har-
monics of a shunt active power filter. In addition, a fuzzy
sliding mode control method was proposed to improve the
ability of magnetic levitation feed platform subject to ex-
ternal disturbance [30]. In [31], a fuzzy sliding-mode control
was developed to deal with unmodeled dynamics and ex-
ternal disturbances in a human-exoskeleton system.

On the other hand, in multiagent systems, actuator
failures generally result in poor system performance or even
cause the instability. In [32], an adaptive fixed-time con-
troller was designed for a class of uncertain nonstrict
feedback multiagent systems subject to actuator faults and
external disturbances. In [33], a robust consensus control
strategy was addressed for nonlinear second-order multi-
agent systems against actuator faults and uncertainties.
Dong et al. presented an augmented control system for a
quadrotor unmanned aerial vehicle with parameter uncer-
tainties, external disturbance, and the partial loss of actuator
effectiveness [34]. In [35], a cooperative fault tolerant
control was presented for linear leader-follower networks
subject to actuator faults. Moreover, the fault-tolerant
leader-following consensus problem was discussed for
multiagent systems with input saturation and actuator faults
[36]. In [37], the consensus problem was investigated for a
class of nonaffine nonlinear multiagent systems with actu-
ator faults of partial loss of effectiveness.

Because of the interactive communication in multiagent
systems, the coupling delays between agents become more
crucial due to practical considerations. In [38], the con-
sensus problem of discrete-time linear multiagent systems
was addressed with unbounded time-varying delays. In [39],
the containment control problem of the double-integrator

multiagent systems was investigated with time-varying
communication delays. Tan et al. discussed the output
feedback control problem for a class of nonlinear multiagent
systems governed by the high-order strict-feedback model
with time delays [40]. Also, the finite-time consensus of
leader-following multiagent systems was addressed with
multiple time delays over time-varying topology [41]. *e
leader-following consensus problem was discussed for dis-
crete-time multiagent systems with time-varying delays [42].
In [43], the second-order multiagent networks with time-
varying delays were investigated, where a sufficient condi-
tion was presented to make all agents asymptotically reach
consensus using the linear matrix inequality theory.

In this paper, an adaptive fuzzy sliding-mode fault-
tolerant controller (AFSFC) is presented for multiple
Euler–Lagrange systems. Also, the parametric uncertainties,
actuator faults, and time-varying communication delays are
considered. *e proposed control scheme is based on
adaptive sliding-mode techniques combining with the fuzzy
logic strategy. An adaptive algorithm is provided to estimate
the unknown parametric vector. Moreover, by employing
the Lyapunov–Krasovskii function and linear matrix in-
equalities (LMIs), a sufficient condition is established such
that the resulting sliding-mode dynamics is stable. *e main
contributions of this paper are stated as follows: (1) an
adaptive fuzzy sliding-mode controller is proposed for
networked Euler–Lagrange systems with communication
time-varying delays. *e fuzzy sliding mode and adaptive
controller are combined to deal with the parametric un-
certainties. (2) For the multiagent systems, provided with
controller parameters and communication topology, the
maximum tolerated delay of all agents can be determined by
using the Lyapunov–Krasovskii analysis and LMIs. (3) *e
proposed control scheme can be applied to a group of agents
with a directed communication topology. *e tracking er-
rors are shown to be asymptotically convergent with a di-
rected spanning tree of communication topology. (4) *e
unknown parametric dynamics and actuator faults can be
estimated online using adaptive strategies. (5) *e overall
closed-loop stability can be preserved using Lyapunov sta-
bility analysis in both fault-free and faulty situations.
Moreover, the allowable communication delays can be
obtained and formulated as some LMIs.

*is paper is organized as follows: in Section 2, the
dynamic model of Euler–Lagrange systems is presented with
the consideration of partial loss of effectiveness faults. *e
stability of the sliding motion of multiagent systems is in-
vestigated in Section 3. In Section 4, an adaptive fuzzy
sliding-mode controller for multiagent systems with time-
varying delays and actuator faults is discussed. In Section 5,
the simulation results are provided for performance com-
parisons. Finally, the concluding remarks are given in
Section 6.

2. Preliminaries

2.1. Fundamentals of Graph &eory. A directed graph G �

(V, E) consists of a vertex set V � v1, v2, . . . , vn􏼈 􏼉 and an
edge set E⊆V × V, where (vj, vi) ∈ E means that the ith
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node can receive information from the jth node.
Ni � vj ∈ V: (vj, vi) ∈ E􏽮 􏽯 denotes the neighboring set of vi.
*e adjacent matrix A � [aij] ∈R

n×n, where aij � 1, if
(vj, vi) ∈ E, or aij � 0, otherwise. *e degree matrix D �

diag d1, d2, . . . , dn􏼈 􏼉 ∈Rn×n, di � 􏽐j∈Ni
aij of a digraph G is a

diagonal matrix.

Lemma 1 (see [44]). &e graph G has a directed spanning
tree if and only if there is at least one node with a directed path
to all other nodes. If a graph G has a spanning tree, then a
right eigenvector L associated with the zero eigenvalue is 1n �

[1, 1, . . . , 1]T, i.e. L1n � 0.

Assumption 1. *e graph G has a directed spanning tree.

2.2. Dynamic Models of Multiagent Systems. *is paper
considers a group of n-agent Euler–Lagrange systems, which
can be represented as

Mi qi( 􏼁€qi + Ci qi, _qi( 􏼁 _qi + gi qi( 􏼁 � τi, (1)

where _qi ∈R
p is the vector of joint positions,

Mi(qi) ∈R
p×p is the inertia matrix, Ci(qi, _qi) ∈R

p×p is the
Coriolis matrix, gi(qi) ∈R

p is the gravitational vector,
τi ∈R

p is the vector of input torques, i� 1, 2, . . ., n. *e
actuator fault model considered can be described as

τf
i � σiτi + Δτi, (2)

where σi is the effectiveness factor, Δτi is an additive fault,
0< σi ≤ 1, and i� 1, 2, . . ., n. With fault model (2), the
Euler–Lagrangian dynamics (1) of ith agent can be rewritten
as follows:

Mi qi( 􏼁€qi + Ci qi, _qi( 􏼁 _qi + gi qi( 􏼁 � σiτi + Δτi. (3)

Let σi be the lower bound of σi, 0< σi ≤ σi, in which σi is
an unknown positive constant. *e actuators are fault-free
when σi = 1 and Δτi � 0, and σi ∈ (0, 1) corresponds to the
cases with partial loss of effectiveness (PLOE) faults.

Property 1. *e Euler–Lagrangian dynamics (1) is linearly
parameterizable as

Mi qi( 􏼁€qi + Ci qi, _qi( 􏼁 _qi + gi qi( 􏼁 � Yi qi, _qi, €qi( 􏼁Θi, (4)

whereYi(·) ∈Rp×pθ is the regressionmatrix andΘi ∈R
pθ is

a vector of unknown constant parameters.

Property 2. *e matrix Mi(qi)€qi − 2Ci(qi, _qi) is skew
symmetric.

Lemma 2 (see [45]). Given a positive definite matrix Z, the
following inequality holds:

2ATB≤ATZA + BTZ− 1B, (5)

where A and B are two matrices with proper dimensions.

Assumption 2. *ere exists a positive constant τi such that
‖Δτi‖≤ τi.

Lemma 3 (see [46]). LetO �
O11 O12
OT

12 − O22
􏼢 􏼣 be a matrix with

proper dimensions, O22 〉 0. &en, the following equation

holds,
O 〈 0 O11 + O12O

− 1
22O

T
12 〈 0. (6)

3. Stability of Sliding Motion

For the time-delayed multiagent systems (1), a sliding-mode
controller will be designed so that the corresponding sliding
motion is asymptotically stable. *e sliding surface for the
ith agent is defined as

si � _qi + Kiϵi, (7)

where Ki ∈R
p×p is a constant positive diagonal matrix, ϵi �

􏽐j∈Ni
aij(qi(t − d(t)) − qj(t − d(t))), i� 1, 2, . . ., n.

Assumption 3. *e communication time-varying delay d(t)

satisfies that

0〈d(t)≤d〈∞, _d(t)≤ μ〈1, (8)

where d and μ are positive constants.
In the following, the notations qi,d and qj,d stand for

qi(t − d(t)) and qj(t − d(t)), respectively, for simplicity.
We denote s � [sT

1 , sT
2 , . . . , sT

n ]T. *e sliding surface of
multiagent systems is summarized as

s � _q + K L⊗ Ip􏼐 􏼑qd, (9)

where _q � [ _qT
1 , _qT

2 , . . . , _qT
n ]T, qd � [qT

1,d, qT
2,d, . . . , qT

n,d]T

∈Rpn, and K � diag K1,K2, . . . ,Kn􏼈 􏼉 ∈Rpn×pn. When the
sliding mode is achieved, (9) can be equivalently described as

_q � − K L⊗ Ip􏼐 􏼑qd. (10)

Let the error function between the 1st agent and other
agents as

e1r � q1 − qr, r � 2, 3, . . . , n. (11)

Moreover, (11) can be rewritten as the following aug-
mented form:

e � q1 ⊗ 1n− 1 + Eq, (12)

where e � [eT
12, eT

13, . . . , eT
1n]T, q � [qT

1 , qT
2 , . . . , qT

n ]T, 1n− 1 �

[1, 1, . . . , 1]T, and

E �

1p − 1p 0p · · · 0p

1p 0p − 1p · · · 0p

⋮ ⋮ ⋮ ⋱ ⋮

1p 0p 0p · · · − 1p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Rp(n− 1)×pn
, (13)

in which 1p is the p-dimension identity matrix, and 0p is the
p-dimensional matrix with all zeros. *us, (11) can be re-
written as

q � q1 ⊗ 1n + Fe, (14)

where

Complexity 3



F �

0p 0p · · · 0p

− 1p 0p · · · 0p

0p − 1p · · · 0p

⋮ ⋮ ⋱ ⋮

0p 0p · · · − 1p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Rpn×p(n− 1)
. (15)

*e derivative of (12) along (10) and (13) is derived as

e � − EK L⊗ Ip􏼐 􏼑 q1,d ⊗ 1n􏼐 􏼑 − EK L⊗ Ip􏼐 􏼑Fed, (16)

where the notation ed stands for e(t − d(t)). According to
Lemma 1, it is obtained as

_e � − Ψed, (17)

where Ψ � EK(L⊗ Ip)F.

Lemma 4 (See [47]). &e matrix Ψ is Hurwitz if and only if
the communication topology G of the multiagent systems has
a directed spanning tree.

Theorem 1. Suppose that the communication graph of a
multiagent Euler–Lagrange system of (1) has a directed
spanning tree. From Assumption 3, the error dynamics of (15)
is asymptotically stable, if the following inequalities hold:

− PΨ − ΨTP + Q PΨ

ΨT
P − (dR)

− 1
⎡⎣ ⎤⎦〈0,

− 􏽥μQ Ψ

ΨT
(dR)

− 1
⎡⎣ ⎤⎦〈0,

(18)

where P, Q, and R are symmetric positive definite matrices of
R(pn− 1)×(pn− 1) and 􏽥μ � 1 − μ.

Proof. *e Lyapunov–Krasovskii function [48] is chosen as

Vs � eTPe + 􏽚
t

t− d(t)
eT

(s)Qe(s)ds + 􏽚
0

− d
􏽚

t

t+θ
_eT

(s)R _e(s)dsdθ.

(19)

*e time derivative of Vs along (15) is derived as

_Vs ≤ − 2eTPΨed + eTQe − 􏽥μeT
aQed + deT

aΨ
TRΨed

− 􏽚
t

t− d
∈T(s)R _e(s)ds.

(20)

It is noted that ed � e − 􏽒
t

t− d(t)
e(s)ds. *en, from

Lemma 2 and Assumption 3, it leads to the following
inequality:

− 2eTPΨed � − 2eT
PΨ e + 􏽚

t

t− d(t)

_e(s)ds􏼠 􏼡

≤ − 2eTPΨe + deTΨTPR− 1PΨe

+ 􏽚
t

t− d(t)
_e
T
(s)R _e(s)ds.

(21)

Substituting (19) into (18), it results in

_Vs ≤ − 2eTPΨe + eTQe − 􏽥μeT
dQed + deTΨTPR− 1PΨe

+ deT
dΨ

TRΨed

�
e

ed

􏼢 􏼣

T Ω1 0

0 Ω2
􏼢 􏼣

e

ed

􏼢 􏼣,

(22)

where Ω1 � − PΨ − ΨTP + Q + dΨTPR− 1PΨ and Ω2 �

− 􏽥μQ + dΨTRΨ. From Lemma 3, _Vs is negative if (16) holds.
It implies that the error dynamics of (15) is asymptotically
stable. *is completes the proof. □

Remark 1. It is noted that *eorem 1 proposed a delay-
dependent sufficient condition of stability for the sliding
surfaces (9) based on the LMIs (16). *e error function (12)
with time-varying communication delay will converge to zero
as t⟶∞. Also, the allowable bound of time-varying delays
can be obtained. Since it provides only sufficient conditions
for stability, the results could be likely conservative.

4. Consensus Controller Design

4.1. Fault-Free Cases. Note that in the fault-free case, i.e.,
σi � 1 and Δτi � 0, the torques acting on the dynamic system
(1) are designed as

τi � τeq,i + τsw,i, (23)

where τeq,i is the equivalent control action and τsw,i is the
switching controller. To obtain the equivalent control action
τeq,i, the state trajectory is desired to stay in the sliding
surface, i.e., _si � 0. From (7), it gives that _si � €qi + Ki _ϵi � 0.
From (1), with the equivalent control action τi � τeq,i, the
equivalent control action τeq,i can be derived as

τeq,i � − MiKi _ϵi − CiKiϵi + gi, (24)

where _ϵi � (1 − _d(t))􏽐j∈Ni
aij( _qi,d − _qj,d). We consider the

unknown parameter vectorΘi of (4). Let the estimation ofΘi

be defined as
􏽥Θi � Θi − 􏽢Θi, (25)

where 􏽢Θi is the estimation of Θi. *e adaptive law of 􏽢Θi is
designated as follows:

_􏽢Θi � ΓYT
i qi, _qi, ϵi, _ϵi( 􏼁si, (26)

where Γ ∈ Rp×pθ is a constant positive definite matrix.
Let si and τsw,i be the input and output variables of a

switching control system, respectively. *erefore, the
switching system is represented by a single input-output
fuzzy logic system. *e fuzzy system is a collection of the
fuzzy IF-THEN rules in the form of
Rule k : IF sri isMki,THEN τsw,ri isF(6− k)i, k � 1, 2, . . . , 5,

(27)

where the Mki and F(6− k)i are the input and output fuzzy
sets, si � [s1i, s2i, . . . , spi]

T, τsw,i � [τsw,1i, τsw,2i, . . . , τsw,pi]
T,

r� 1, 2, . . ., p, respectively. *e triangular input and sin-
gleton output membership functions are shown in Figure 1.
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By using the centroid defuzzification technique, the output
τsw,ri of the fuzzy system is

τsw,ri �
􏽐

5
k�1 gkiμki sri( 􏼁

􏽐
5
k�1 μki sri( 􏼁

� − 􏽘
5

k�1
gki

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌sgn sri( 􏼁μki sri( 􏼁, (28)

where gki is the value of the corresponding fuzzy output and
μki(sri) is the firing strength of the antecedent membership
function, and sgn(.) is a standard sign function. We rewrite
(25) as the following augmented form:

τsw,i � − 􏽙
i
sgn si( 􏼁, (29)

where sgn(si) � [sgn(s1i), sgn(s2i), . . . , sgn(spi)]
T and

􏽙
i

� diag 􏽘
5

k�1
gki

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μki s1i( 􏼁, 􏽘

5

k�1
gki

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μki s2i( 􏼁, . . . , 􏽘

5

k�1
gki

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μki spi􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭.

(30)

Remark 2. Triangular and Gaussian membership functions
are typical membership functions chosen for the process of
fuzzy inference. In this paper, the reason of choosing tri-
angular functions as the input membership functions is to
reduce the computation complexity in the calculation of
firing strengths in (25).

Theorem 2. We consider a multiagent Euler–Lagrange
system of (1) with a directed spanning-tree communication
graph. From (7), the state trajectories of (1) will be driven onto
the sliding surface si � 0 with the adaptive fuzzy sliding-mode
controller (AFSC) (21), (22), (26), and the adaptive law (24).

Proof. Let the Lyapunov function be chosen as

V � 􏽘

n

i�1

1
2

sT
i Misi + 􏽥ΘT

i Γ
− 1 􏽥Θi􏼒 􏼓. (31)

*e time derivative of V can be expressed as

_V � 􏽘
n

i�1
sT

i Misi +
1
2
sT

i
_Misi + 􏽥ΘT

i Γ
− 1 _􏽥Θi􏼒 􏼓

� 􏽘
n

i�1
sT

i τsw,i + Yi qi, _qi, ϵi, _ϵi( 􏼁 􏽥Θi − Cisi􏼐 􏼑􏼐

+
1
2
sT

i
_Misi − 􏽥ΘiΓ

− 1 _􏽢Θi􏼓.

(32)

From Property 1, (29) can be rewritten as

_V � 􏽘
n

i�1
sT

i τsw,i + Yi qi, _qi, ϵi, _ϵi( 􏼁 􏽥Θi􏼐 􏼑 − 􏽥ΘT

i Γ
− 1 _􏽢Θi􏼒 􏼓. (33)

Substituting (24) and (26) into (30), it yields

_V � 􏽘
n

i�1
sT

i τsw,i � − 􏽘
n

i�1
sT

i 􏽑
i
sgn si( 􏼁< 0. (34)

*erefore, it implies that si � 0 and that the system
trajectory is enforced on the sliding surfaces. *e proof is
completed. □

4.2. Fault Cases. In this section, we consider the controller
design for multiagent systems with PLOE and unknown
effectiveness fault, i.e., 0< σi < 1 and Δτi ≠ 0. From (7), the
dynamical system (3) can be rewritten as

Mi _si + Cisi − MiKi _ϵi − CiKiϵi + gi � σiτi + Δτi. (35)

For the multiagent systems of n agents, a faulty actuator
of the ith agent can be described as

τi � τeq,i + τsw,i + τc,i, (36)

where the auxiliary controller τc,i is provided to compensate
the faulty influences.

*e auxiliary controller can be expressed as

τc,i � −
1
􏽢σ i

sgn si( 􏼁‖τi‖ + 􏽢τisgn si( 􏼁􏼢 􏼣. (37)

*e adaptive algorithms of fault are given as

_􏽢σ i � ϕi

1
􏽢σ i

sgn si( 􏼁‖τi‖􏼠 􏼡, (38)

_􏽢τi � ςi‖si‖, (39)

where ϕi and ςi are positive constants. To make the design
concepts more concise and clearer, the overall adaptive fuzzy
sliding-mode fault-tolerant controller (AFSFC) structure is
shown in Figure 2.

Theorem 3. We consider a multiagent Euler–Lagrange
system of (3) with a directed spanning-tree communication
graph. From (7), the state trajectories of the system (32) will be
driven onto the surface si � 0 with the AFSFC (33), the
auxiliary controller (34), and the adaptive laws (24), (35),
(36).

Proof. Let the Lyapunov function be chosen as

Vf � V + 􏽘
n

i�1

1
2

1
ϕi

􏽥σ 2
i +

1
ςi

􏽥τ2i􏼠 􏼡, (40)

where i

􏽥σ
� σi − 􏽢σ i, and 􏽥τi � τi − 􏽢τi. *e time derivative of Vf

can be expressed as

M5i M4i M3i M2i M1i

f5i f4i f3i f2i f1i

sri
g5i g4i g3i g2i g1i

F5i F4i F3i F2i F1i

τsw,ri

Figure 1: Membership functions of the fuzzy switching controller.
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_Vf � _V + 􏽘
n

i�1
−
1
ϕi

􏽥σ i
_􏽢σ i −

1
ςi

􏽥τi
_􏽢τi􏼠 􏼡

� 􏽘
n

i�1
sT

i Mi _si +
1
2
sT

i
_Misi − 􏽥ΘT

i Γ
− 1 _􏽢Θi −

1
ϕi

􏽥σ i
_􏽢σ i −

1
ςi

􏽥τi
_􏽢τi􏼠 􏼡.

(41)

Substituting (32) and (33) into (38), it yields

_Vf � 􏽘
n

i�1
sT

i MiKiϵi + CiKiϵi + gi + σiτi + σiτc,i + Δτi􏼐 􏼑 − 􏽥ΘT

i Γ
− 1 _􏽢Θi −

1
ϕi

􏽥σ i
_􏽢σ i −

1
ςi

􏽥τi
_􏽢τi􏼠 􏼡. (42)

From Assumption 2 and *eorem 2, the time derivative
of V can be described as

_Vf ≤ 􏽘

n

i�1
sT

i Yi qi, _qi, ϵi, _ϵi( 􏼁 􏽥Θi + sT
i τsw,i + ‖si‖‖τi‖ + σis

T
i τc,i + τi‖si‖ − 􏽥ΘT

i Γ
− 1 _􏽢Θi −

1
ϕi

􏽥σ
i

_􏽢σ
i

−
1
ςi

􏽥τi
_􏽢τi

⎞⎠.⎛⎝ (43)

From (43), one has

σis
T
i τc,i � −

σi

􏽢σ i

‖si‖‖τi‖ − σi
􏽢τi‖si‖≤ −

σi

􏽢σ i

‖si‖‖τi‖ − 􏽢τi‖si‖

� − 1 +
􏽥σ i

􏽢σ i

􏼠 􏼡‖si‖‖τi‖ − 􏽢τi‖si‖,

(44)

where ∀ − 1≤ − σi ≤ − σi < 0.

Substituting (41) into (40), it leads to

_Vf ≤ 􏽘
n

i�1
sT

i Yi qi, _qi, ϵi, _ϵi( 􏼁 􏽥Θi + sT
i τsw,i + 􏽥τi‖si‖ −

σi

􏽢σ i

‖si‖‖τi‖􏼠

− 􏽥ΘT

i Γ
− 1 _􏽢Θi −

1
ϕi

􏽥σ i
_􏽢σ i −

1
ςi

􏽥τi
_􏽢τi􏼡.

(45)

Delay d (t)

Adaptive law
of model

(24)

Equivalent
controller

(22)

qi,d

qj,d +
-

i Sliding surface
(9)

si
Switching
controller

(26)

Auxiliary
controller

(33)

Adaptive law
of fault

(34), (35)

Adaptive fuzzy sliding-mode fault controller

τc,i

τsw,i

τeq,i

τif

qi

τi qiActuator faults
(2)

Dynamic model
(1)+

.

Figure 2: Structure of adaptive fuzzy-sliding fault-tolerant control.
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From (24), (35) and (36), one has
􏽥ΘT

i Γ
− 1 _􏽢Θi � − sT

i Yi(qi, _qi, ϵi, _ϵi) 􏽥Θi, 1/ςi
􏽥τi

_􏽢τi � 􏽥τi‖si‖, and
1/ϕi􏽥σ i

_􏽢σ i � − 􏽥σ i(􏽢σ i)
− 1‖si‖‖τi‖. *erefore, (42) can be re-

written as

_Vf ≤ 􏽘
n

i�1
sT

i τsw,i � − 􏽘
n

i�1
sT

i 􏽑
i
sgn si( 􏼁< 0. (46)

*erefore, it implies that si � 0 so that the system tra-
jectory is enforced on the sliding surfaces. *e proof is
completed. □

Remark 3. In summary, with the sliding-mode control, the
switching control action τsw,i (26) will drive the ith agent to
the sliding surface si. As the agents converge to the sliding
surface, the equivalent controller τeq,i (22) will ensure the
agents stay on the sliding surface. Moreover, the existence of
unknown parameters and actuator faults can be resolved by
using the adaptive law (24) and auxiliary controller (34).

5. Simulation Results

*e simulations are conducted for 2-DOF (degree of free-
dom) with six robot agents. *e Euler–Lagrange model (1) is
obtained as [49].

Mi qi( 􏼁 �
M

11
i M

12
i

M
21
i M

22
i

⎡⎢⎣ ⎤⎥⎦,

Ci qi, _qi( 􏼁 �
C
11
i C

12
i

C
21
i C

22
i

⎡⎢⎣ ⎤⎥⎦,

Gi � 0,

qi �
q1i

q2i

􏼢 􏼣,

(47)

where M11
i � α1 + 2α2cos(q2i) + 2α3sin(q2i), M12

i � M21
i �

α2 + α3cos(q2i) + α4sin(q2i), M22
i � α2, C11

i � − (α3sin
(q2i) + α4cos(q2i)) _q2i, C12

i � − (α3sin(q2i) + α4cos
(q2i))( _q1i + _q2i), C21

i � (α3sin(q2i) + α4cos(q2i)) _q1i, C22
i � 0,

in which α1 � I1 + m1l
2
c1 + Ie + mel

2
e , α2 � I1 + mel

2
c1,

α3 � melclcecos(σe), α4 � melclcesin(σe). *e parameters of
the multiagent system are set as m1 � 1, me � 2, lc � 1, lc1 �

0.5, lce � 0.8, σe � π/6, Ie � 0.25, and I1 � 0.15.
*e six-agent connected network is shown in Figure 3.

Form Figures 3(a)–3(f), the directed graph exists the
spanning tree. According to *eorem 1, the agents of the
proposed topology in Figure 3(a) are asymptotically stable
using the AFSFC scheme with the delay bound d � 0.16
(sec). *e parameters of the AFSFC are set as 􏽥μ � 0.5, Ki �

diag 1, 1{ } , f1i � − f5i � 1, f2i � − f4i � 0.5, f3i � 0, g1i �

− g5i � 144, g2i � − g4i � 12, g3i � 1.5, and Γi � diag 2, 2{ }.
*e adaptive laws are set as _􏽢Θi � [􏽢α1, 􏽢α2, 􏽢α3, 􏽢α4]

T, ϕi � 1 ×

10− 4, ςi � 1, and

Yi qi, _qi, ϵi, _ϵi( 􏼁 �
Y11

i Y12
i Y13

i Y14
i

Y21
i Y22

i Y23
i Y24

i

⎡⎣ ⎤⎦
T

, (48)

where Y11
i � k1iϵ1i, Y12

i � k2i _ϵ2i, Y21
i � 0, Y12

i � k1i _ϵ1i + k2i _ϵ2i,
Y23

i � k1icos(q2)_ϵ1i + k1i _q1isin(q2i)ϵ1i, Y24
i � k1isin(q2)_ϵ1i+

k1i _q1icos(q2i)ϵ1i, and

Y
13
i � 2k1icos q2i( 􏼁 _ϵ1i + k2isin q2i( 􏼁 _ϵ2i − k1i _q2isin q2i( 􏼁ϵ1i

− k2i _q1isin _q2i( 􏼁ϵ2i − k2i _q2isin _q2i( 􏼁ϵ2i,

Y
14
i � 2k1isin q2i( 􏼁 _ϵ1i + k2isin q2i( 􏼁 _ϵ2i − k1i _q2icos q2i( 􏼁ϵ1i

− k2i _q1isin _q2i( 􏼁ϵ2i − k2i _q2icos _q2i( 􏼁ϵ2i.

(49)

In this paper, the time delay is chosen as d(t) � 0.08 +

0.08 sin(t) (sec) for simulations. *e initial states of the six
agents are set as q1 � [− 1, 1]T, q2 � [1, 0.5]T,
q3 � [− 2.5, − 1]T, q4 � [2, − 0.5]T, q5 � [2.5, 1.5]T,
q6 � [− 2, 1.5]T, and the initial velocities and acceleration are
zeros.*e following indices are considered for the combined
formation errors, the integral absolute error (IAE), the in-
tegral time absolute error (ITAE), the integral square error
(ISE), and the integral time square error (ITSE) [50].

Remark 4. *e indices IAE, ITAE, ISE, and ITSE are
considered for the performance comparisons. *e IAE and
ISE indicate the accumulated consensus error of agents,
where the weights in the transient and steady-state stages are
equal. On the other hand, ITAE and ITSE indicate the time-
weighted consensus errors, and these two indices can be
better used to highlight the performance superiority in the
steady state.

5.1. Fault-FreeCases. *e comparisons between the adaptive
fuzzy sliding-mode controller (AFSC) and the proposed
adaptive fuzzy sliding-mode fault-tolerant controller
(AFSFC) are also given in Figs. 4–9. Figures 4 and 7 show the
responses of multiagent systems with the ASC and proposed
AFSC, respectively. Lines A1-A6 are the trajectories of
agents 1–6, the symbol “o” is initial state positions, and the
symbol “⋆” is final state positions. Figures 5 and 8 show the
states q1i and q2i of multiagent systems with the ASC and
proposed AFSC, respectively. Figures 6 and 9 show the
control inputs τ1i and τ2i of multiagent systems with the
AFSC and AFSFC, respectively. *e position errors are
summarized in Table 1. In this case, the AFSC and AFSFC
method can support a certain degree of consistence in
position responses.

5.2. Fault Cases. In this case, the effectiveness fault σi is
present randomly in [0.01 0.5], and the additive faults are set
to be Δτ � [2rand(.)2rand(.)]T, where rand(.) is a random
number uniformly distributed in 1 − 1􏼂 􏼃. *e comparisons
between the AFSC and the proposed AFSFC are also given in
Figs. 10–15. Figures 10 and 13 show the response of mul-
tiagent systems with the ASC and proposed AFSC. Fig-
ures 11 and 14 show the states q1i and q2i of multiagent
systems with the AFSC and AFSFC, respectively. All the
agents can achieve consensus. *e states q1i and q2i are more
stable by the proposed AFSFC compared with the AFSC.
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Figures 12 and 15 show the control inputs τ1i and τ2i of
multiagent systems with the AFSC and AFSFC, respectively.
From Figures 12 and 15, the amplitude of the control inputs
is smaller in the first few seconds with the proposed AFSFC.
In summary, from Figures 10–15, the performance of the
proposed AFSFC is obviously better than the AFSC. Sub-
sequently, the position errors are summarized in Table 2. It
can be observed that the proposed AFSFC method extends
the performance improvement from 7.07% to 86.84%.

Remark 5. From Figs. 6, 9, 12, and 15, it can be observed
that greater inputs are required to deal with the problem
of actuator faults. In practical applications, the control
inputs should have prescribed limits. *e consensus
stability issues of multiagent agents with input con-
straints open a new theoretical problem, which cannot be
solved at the current stage and needs to be investigated
separately.
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Figure 3: Communication topology of a multiagent system. (a) d � 0.16 sec. (b) d � 0.16 sec. (c) d � 0.06 sec. (d)d � 0.36 sec. (e) d � 0.15
sec. (f )d � 0.11 sec.
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Figure 4: Multiagent trajectories and the fault-free case (AFSC).
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Figure 5: Simulation results of states q1i and q2i and the fault-free
case (AFSC).
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Figure 6: Simulation results of control inputs τ1i and τ2i and the fault-free case (AFSC).
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Figure 7: Multiagent trajectories and the fault-free case (AFSFC).
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Figure 8: Simulation results of states q1i and q2i and the fault-free case (AFSFC).
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Figure 9: Simulation results of control inputs τ1i and τ2i and the fault-free case (AFSFC).

Table 1: Performance comparisons (fault-free case).

IAE ITAE ISE ITSE
AFSC 19454 38888 55358 50697
AFSFC 20697 42587 61819 63843
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Figure 10: Multiagent trajectories and the fault case (AFSC).
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Figure 11: *e states q1i and q2i and the fault case (AFSC).
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Figure 12: *e control inputs τ1i and τ2i and the fault case (AFSC).
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Figure 13: State trajectories and the fault case (AFSFC).
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6. Conclusions

*is paper has proposed an adaptive fuzzy sliding-mode
fault-tolerant controller for Euler–Lagrange systems in the
presence of unknown parametrics, actuator faults, and
communication time-varying delays. In the design of the

fuzzy sliding-mode fault-tolerant controller, a delay-de-
pendent sufficient condition is derived, and the allowable
bound of time delays can be obtained in the form of linear
matrix inequalities. Based on the Lyapunov stability theory,
the overall stability of the multiagent system is guaranteed
such that the desired consensus of agents can be asymp-
totically attained. Simulation results indicate that the pro-
posed control scheme has superior responses, compared to
the AFSC method. Especially, the proposed AFSFC method
provides significant improvement in the case of actuator
faults. In practical applications, the control inputs should
have prescribed limits. *us, the systematic analysis and
synthesis of input-constrained multiagent systems are an
interesting topic in the future.
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