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In this study, some new hypotheses and techniques are presented to obtain some new analytical solutions (localized and periodic
solutions) to the generalized Kawahara equation (gKE). As a particular case, some traveling wave solutions to both Kawahara equation
(KE) and modified Kawahara equation (mKE) are derived in detail. Periodic and soliton solutions to this family are obtained. *e
periodic solutions are expressed in terms of Weierstrass elliptic functions (WSEFs) and Jacobian elliptic functions (JEFs). For KE, some
direct and indirect approaches are carried out to derive the periodic and localized solutions. For mKE, two different hypotheses in the
form ofWSEFs are used to derive the periodic and localized solutions. Also, the cnoidal wave solutions in the form of JEFs are obtained.
As a realistic physical application, the solutions obtained can be dedicated to studying many nonlinear waves that propagate in plasma.

1. Introduction

Both ordinary and partial differential equations succeed in
modelling and describing many complex nonlinear sys-
tems that are widely used in various fields of science such
as optical fiber, fluid mechanics, nonlinear optics, biology,
ecology, astronomy, oceans, economics, and plasma
physics [1–10]. Due to the importance of these applica-
tions, the great success has achieved by differential
equations in clarifying and interpreting the ambiguity of
many complex systems, which prompted many authors to
look for different analytical and numerical methods in
solving such models [5–11]. In recent years, many new
analytical and numerical methods have been discovered,
and some improvements have been made to many of the

existing methods in order to either obtain real solutions
related to realistic problems or to obtain more accurate
solutions to many integrable and nonintegrable differ-
ential equations [12–16]. In particular, there are a large
number of partial differential equations (PDEs) that have
been used for modelling a lot of nonlinear phenomena
such as solitary waves, shock waves, cnoidal waves,
peakons, and compactons that arise in different plasma
models [5–11]. One of the most important of these
equations and the most famous due to its great success not
only in the field of fluid mechanics and plasma physics but
also in various fields of science is Korteweg–de Vries
(KdV) equation [5]:

ztu(x, t) + α1u(x, t)zxu(x, t) + βz
3
xu(x, t) � 0, (1)
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where (α1, β) are the real coefficients which are related to the
physical model under study. *is equation and its one-di-
mensional family including a modified KdV (mKdV)
equation [5, 10], a Gardner equation, KdV–Burger’s equa-
tion [5], damped KdV/mKdV equation [11], and so on have
been widely used until this day in interpreting the mecha-
nism and properties of many nonlinear phenomena that can
propagate in plasma physics. *is family is characterized by
the third-order dispersion, but there is another family
characterized by the fifth-order dispersion which is called
the family of Kawahara equation (KE) [17].

RKE ≡ ztu(x, t) + α1u(x, t)zxu(x, t)

+ βz
3
xu(x, t) − cz

5
xu(x, t) � 0.

(2)

*is is a nonlinear dispersive equation which gener-
alizes the well-known KdV equation. Kawahara equation
(2), sometimes referred to as the fifth-order KdV/or super
KdV equation [18], is a model that describes solitary waves,
cnoidal waves, and periodic waves propagating in non-
linear and high-dispersive media. *is equation and many
related equations with fifth-order dispersion have been
extensively studied in literature [19]. It has important
applications in the theory of magnetoacoustic waves in
plasma and in the theory of shallow water waves with
surface tension [17, 18, 20–30]. However, equation (2) fails
to explain the nonlinear waves at some critical values of the
plasma compositions due to the disappearance of the
nonlinear term, i.e., α1 � 0. Accordingly, modified Kawa-
hara equation (mKE) with higher-order nonlinearity was
derived to describe some nonlinear phenomena at the
critical plasma compositions:

RmKE ≡ ztu(x, t) + α2u
2
(x, t)zxu(x, t)

+ βz
3
xu(x, t) − cz

5
xu(x, t) � 0.

(3)

Both KE equation (2) and mKE equation (3) are inte-
grable Hamiltonian systems which are due to the many
applications related to this family; manymethodologies have
been applied for analyzing it [17, 18, 20–24, 27–30]. *ere
remain many secrets about the solutions of this family that
appear and become clear day after day as a result of using
new analytical and numerical methods for solving this
family. *is is one of our motives for obtaining a new
generation of solutions to this family, which can contribute
in understanding the mysterious of many phenomena in
plasma physics and other fields related to this family. *us,
our aim is to provide new traveling wave (localized and
periodic) solutions to the following generalized KE [29]
using several new hypotheses and techniques:

ztu(x, t) + αpu
P
(x, t)zxu(x, t) + βz

3
xu(x, t) − cz

5
xu(x, t) � 0,

(4)

where p is a real number. Note that KE equation (2) can be
obtained for p � 1, while for p � 2, mKE equation (3) is
recovered.

2. General Analytical Solutions to the
Generalized KE

To find a general analytic solution to the evolution equation
(4), we suppose

u � v
(1/p)

,

v ≡ v(ξ) ξ � x + λt,

⎧⎨

⎩ (5)

where λ represents the frame velocity.
Inserting ansatz equations (5) into (4) gives the non-

linear ODE:

αp
4
v
5
v′ + p

4
v
4 βv

(3)
+ λv′ − cv

(5)
􏼐 􏼑

+(p − 1)p
3
v
3 5cv

(4)
v′ + 10cv

(3)
v′′ − 3βv′v′′􏼐 􏼑

+(p − 1)p
2
(2p − 1)v

2
v′ − 15c v′′( 􏼁

2
􏼐

+ β v′( 􏼁
2

− 10cv
(3)

v′􏼑

− c(p − 1)(2p − 1)(3p − 1)(4p − 1) v′( 􏼁
5

+ 10c(p − 1)p(2p − 1)(3p − 1)v v′( 􏼁
3
v′′ � 0,

(6)

where v′ ≡ zξv, v′′ ≡ z2ξv, v(3) ≡ z3ξv, v(4) ≡ z4ξv, and
v(5) ≡ z5ξv.

In the following subsections, two important particular
cases (p � 1 and p � 2), i.e., KE equation (2) and mKE
equation (3)are analyzed.

2.1. Solutions of the Planar Kawahara Equation. In the fol-
lowing sections, we try to find some new solutions including
the periodic wave solutions, cnoidal wave solutions, and
solitary wave solutions to the planar KE equation (2)
(p � 1).

2.1.1. Periodic and Solitary Wave Solutions. For planar KE
equation (2), ODE equation (6) reduces to

− cv
(5)

+ βv
(3)

+ αvv′ + λv′ � 0. (7)

Integrating equation (7) once over ξ gives us

c0 − cv
(4)

+ βv′′ +
1
2
αv

2
+ λv � 0, (8)

where c0 is the integration constant.
Multiplying equation (8) by v′ and then integrating it

again, we get

c0v + c1 +
1
2

c v′′( 􏼁
2

+
1
2
β v′( 􏼁

2
− cv

(3)
v′ +

1
6
αv

3
+
1
2
λv

2
� 0,

(9)

where c1 the new constant of integration. *e solution of
equation (2) via several approaches is discussed as follows.

We seek a solution in the ansatz form:

v � 􏽘
N

k�0
djφ

j
, (10)

2 Complexity



where φ ≡ φ(ξ) is a solution to the following Helmholtz
equation [31].

φ′′ + Aφ + Bφ2
� 0,

φ′( 􏼁
2

� − Aφ2
−
2
3

Bφ3
+ 2c2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

Balancing the highest linear and nonlinear terms in
equation (11) gives N � 2, so that

v � d0 + d1φ + d2φ
2
. (12)

Inserting ansatz equation (12) into equation (9), we
obtain

􏽘

6

j�0
Fjφ

j
� 0, (13)

where the values of Fj(j � 0, 1, · · · 6) are defined in Ap-
pendix A, and by solving the following system,

Fj � 0, (14)

we get

c0 �
− 1

57122αc
2 4598321A

4
c
4

− 54418A
2β2c2

+ 1457β4 − 28561c
2λ2􏼐 􏼑,

c1 �
− 1

28960854α2c3

19394118562A
6
c
6

− 183532986A
4β2c4

+ 2331348747A
4
c
5λ

+134862A
2β4c2

− 27589926A
2β2c3λ + 94922β6 + 738699β4cλ − 4826809c

3λ3
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠,

c2 �
(13Ac + β)

263640B
2
c
3 1690A

2
c
2

− 403Aβc + 31β2􏼐 􏼑,

d0 �
− 1

507αc
1183A

2
c
2

− 910Aβc + 31β2 + 507cλ􏼐 􏼑,

d1 �
140B(13Ac + β)

39α
,

d2 �
140B

2
c

3α
.

(15)

Equation (11) has many formulas for its general solu-
tions such as

φ � −
A

2B
−
6
B
℘ ξ + e0; A

2/12, g3􏼐 􏼑, (16)

where ℘ ≡ ℘(ξ + e0; A2/12, g3) indicates the Weierstrass
elliptic function (WSEF) and the values of e0 and g3 are
undetermined parameters which can be obtained from the
initial conditions.

Also, the general solution to equation (11) can be
expressed by

φ � e1 −
6e1 A + Be1( 􏼁

A + 2Be1 + 12℘ ξ + e0; A
2/12, 1/216 A

3
− 6B

2
e
2
1A − 4B

3
e
3
1􏼐 􏼑􏼐 􏼑

,

(17)

where the values of e0 and e1 are determined from the initial
conditions.

*us, a periodic solution to KE equation (2) according to
the values of parameters given in system equation (15) and
the value of φ given in equation (16) is obtained as

u �
910βAc − 7098A

2
c
2

− 910Aβc − 31β2 − 507cλ
507αc

−
280β
13α
℘ x + λt + ξ0; A

2/12, g3􏼐 􏼑

+
1680c

α
℘2 x + λt + ξ0; A

2/12, g3􏼐 􏼑.

(18)

*e constants A, B, λ, and ξ0 are the arbitraries.
Using relation equation (9) with of the parameters given

in system equation (15) and the value of φ given in equation
(17), the solution to KE equation (2) can be expressed by
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u �
− 31β2 − 13c 39λ − 70Aβ + 91A

2
c􏼐 􏼑 + 1820Bce0 β + 13Ac + 13Bce0( 􏼁

507αc

−
280Be0 A + Be0( 􏼁 β + 13Ac + 26Bce0( 􏼁

13α A + 2Be0 + 12℘ x + λt + ξ0; A
2/12, 1/216 A

3
− 2B

2
e
2
0 3A + 2Be0( 􏼁􏼐 􏼑􏼐 􏼑􏽨 􏽩

+
1680B

2
ce

2
0 A + Be0( 􏼁

2

α A + 2Be0 + 12℘2 x + λt + ξ0; A
2/12, 1/216 A

3
− 2B

2
e
2
0 3A + 2Be0( 􏼁􏼐 􏼑􏼐 􏼑􏽨 􏽩

,

(19)

where the constants A, B, λ, and e0 are the arbitraries.
From the periodic solution equation (18), the soliton

solutions can be obtained using the following hypotheses:

cg2 � A
2/12 �

4
3
,

g3 �
β 3549A

2
c
2

− 31β2􏼐 􏼑

4745520c
3 �

8
27

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

which lead to (A, β) � (4, 52c), and by rearrange solution
(18), the following soliton solution is obtained:

� −
1168c + 3λ

3α
−
1120c

α
℘ x + λt;

4
3
, −

8
27

􏼒 􏼓,

+
1680c

α
℘ x + λt;

4
3
, −

8
27

􏼒 􏼓
2
.

(21)

Moreover, the solitary wave solution can be obtained by

g2 � A
2/12 � 1/12,

g3 �
β 3549A

2
c
2

− 31β2􏼐 􏼑

4745520c
3 � − 1/216,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

which leads to (A, β) � (1, 13c); then, the periodic solution
(18) reduces to the following soliton solution:

� −
73c + 3λ

3α
−
280c℘ x + λt + ξ0; 1/12, − 1/216( 􏼁

α

+
1680c℘ x + λt + ξ0; 1/12, − 1/216( 􏼁

2

α
.

(23)

Also, the periodic solution to KE (2) can be derived
directly in terms of WSEF ℘ ≡ ℘(x + λt + ξ0; g2, g3) by
inserting the following ansatz in (9).

u � a0 + a1℘ + a2℘
2
, (24)

which leads to

􏽘

6

j�0
Sjφ

j
� 0, (25)

where the values of Sj(j � 0, 1, · · ·) are defined in
Appendix B , and by solving the following system,

Sj � 0, (26)

we have

a1 � −
280βk

2

13α
, a2 �

1680ck
4

α
,

c1 � −
1

14394744αc
2
k

11661αa0ck 507αa0ck + 1014cλ + 146β2k􏼐 􏼑

− 1285245c
2λ2 + 449159β4k2

+ 1702506β2ckλ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

c2 �
1

21894405624α2c3
k

1521αa0c

507αa0ck 6929αa0ck + 9126cλ + 2189β2k􏼐 􏼑

+5 277β2k − 507cλ􏼐 􏼑 507cλ + 73β2k􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

− 7 128781549β2c2λ2 + 9635389β6k2
+ 75627162β4ckλ􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g2 � −
507αa0ck + 507cλ + 31β2k

85176c
2
k
5 ,

g3 � −
β 169αa0ck + 169cλ + 31β2k􏼐 􏼑

3163680c
3
k
7 .

(27)
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Collecting both equations (24) and (27), we finally get

u � a0 −
280βk

2

13α
℘ kx + tλ + ξ0; −

31kβ2 + 507cλ + 507kαca0

85176k
5
c
2 , −

β 31kβ2 + 169cλ + 169kαca0􏼐 􏼑

3163680k
7
c
3

⎛⎝ ⎞⎠

+
1680ck

4

α
℘ kx + tλ + ξ0; −

31kβ2 + 507cλ + 507kαca0

85176k5c2 , −
β 31kβ2 + 169cλ + 169kαca0􏼐 􏼑

3163680k7c3
⎛⎝ ⎞⎠

2

.

(28)

Solution equation (28) satisfies KE equation (2).

2.1.2. Cnoidal and Solitary Wave Solutions. We look for a
solution to KE equation (2) in the ansatz form

u(x, t) � v(ξ) � 􏽘
N

j�0
djcn

j
(ξ), (29)

where ξ �
��
ω

√
(x + λt) and N is an integer and positive

number. From the balance between the highest-order linear
(N + 4) and nonlinear (2N) terms of equation (8), we have
N � 4. Substituting ansatz equation (29) into equation (6)
gives a very complicated system. By solving this system using
Mathematica package, we found that the coefficients of the
odd power in ansatz equation (29) vanish.*us, the solution
of KE equation (2) could be written in the following ansatz:

u � A + Bcn
2
(ξ, m) + Ccn

4
(ξ, m). (30)

Inserting ansatz equation (30) into KE equation (2), we
get

RKE � 􏽘
3

j�0
Wjcn

2j
� 0, (31)

the values of Wj(j � 0, 1, · · · 3) are given in Appendix C, and
by solving the system,

Wj � 0, (32)

we have

A �
1

507αc

− 31β2 + 3640βc(1 − 2m)ω

+169c 112c(14(m − 1)m − 1)ω2
− 3λ􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

B �
− 280mω
13α

(52c(2m − 1)ω − β), C �
1680cm

2ω2

α
,

(33)

where ω is a solution to the following cubic equation:

31β3 − 56784βc
2

m
2

− m + 1􏼐 􏼑ω2

+ 703040c
3
(m − 2)(m + 1)(2m − 1)ω3

� 0.
(34)

Finally, the cnoidal wave solutions to KE equation (2) are
obtained as

�
− 31β2 + 3640βc(1 − 2m)ω + 169c 112c(14(m − 1)m − 1)ω2

− 3λ􏼐 􏼑

507αc
,

−
280mω(52c(2m − 1)ω − β)

13α
cn

2
(ξ, m) +

1680cm
2ω2

α
cn

4
(ξ, m),

(35)

where λ is the arbitrary constant, ξ �
��
ω

√
(x + λt), and ω is a

root to equation (34).
*e cnoidal wave solution equation (35) can be directly

reduced to the soliton solution for m⟶ 1 as

u � −
36β2 + 169cλ

169αc
+
105β2

169αc
sec h

4 1
2

���
β
13c

􏽳

(x + λt)⎡⎣ ⎤⎦. (36)

Moreover, solution equation (36) coincides with the
obtained one by means of the tanh method:

u �
105β2

169αc
sec h

4 1
2

���
β
13c

􏽳

x −
36β2

169c
t􏼠 􏼡⎡⎣ ⎤⎦. (37)

*eobtained solutions can be employed for investigating
the propagation of nonlinear structures in different plasma
models. For instance, we can apply these solutions to study
cnoidal and solitary waves in the ultracold neutral plasma
(UCNP) which is composed of strongly coupled positive
ions and non-Maxwellian electron distributions [32–35].
Based on this model and forMaxwellian electrons, the values
of the coefficients (α, β) are given by (to prevent stuffing and
repetition, all the details can be found [32])

α � λphandβ �
1

2λph

, (38)

and the phase velocity λph of the ion-acoustic waves (IAWs)
reads

λ �
�����
1 + σ∗

􏽰
, (39a)

where σ∗ ≡ σ∗(Te, Ti) represents the effective temperature
ratio which is a function of electron and ion temperatures
(Te, Ti) [32–35]. For (Te, Ti) � (25K, 1K), we get
σ∗ � 0.401169, and for (Te, Ti) � (900K, 1K), we obtain
σ∗ � 0.0120837 [32–35]. With respect to the coefficient of
the fifth-order dispersion c, in general, it has a small value
0< c≪ 1.*e impact of effective temperature ratio σ∗ on the
profile of the cnoidal wave solution equation (35) and the
solitary wave solution equation (36) for (c, λ) � (0.1, 0.1) is
shown in Figures 1 and 2, respectively. It is observed that
increasing the electron temperature, i.e., decreasing σ∗, leads
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to the enhancement (reduction) of the amplitude (width) of
both localized and periodic waves.

2.2. Solutions of Planar Modified Kawahara Equation.
*e generalized KE equation (4) can reduce the planar mKE
equation (3) for p � 2. Making the traveling wave trans-
formation u � v(ξ), where ξ � x + λt + ξ0, we get

λv′ + αv
2
v′ + βv

(3)
− cv

(5)
� 0, (40)

and integrating equation (40) twice over ξ, we obtain

R ≡ c0v + c1 − cv
(3)

v′ + 1/12αv
4

+
1
2
λv

2

+
1
2
β v′( 􏼁

2
+
1
2

c v′′( 􏼁
2

� 0.

(41)

Some new localized and periodic solutions to equation
(41) are discussed using different approaches in the fol-
lowing sections.

2.2.1. First Ansatz in Terms of WSEFs. *e following ansatz
is introduced to find a periodic wave solution to equation
(41) in terms of WSEFs:

v � A + B℘, (42)

where ℘ ≡ ℘(ξ + ξ0; g2, g3), g2 and g3 denote the elliptic
invariants, while the other parameters A, B, g2, and g3 are
the constants and will be determined later.

Inserting the ansatz equations (42) into (40), we obtain

A
2α + 18cg2 + λ􏼐 􏼑 +(2AαB + 12β)℘ + αB

2
− 360c􏼐 􏼑℘2 � 0.

(43)

10
t
0

–10

0.2
0.0

–0.2
–0.4
–0.6

u

–10

x
10

0

(a)

–15 –10 –5 0 5 10 15

–0.5

0.0

0.5

x

u

σ*=0.0.0121
σ*=0.40117

(b)

Figure 1: *e profile of the periodic wave solution equation (35) to KE equation (2) plotted in (x, t) plane.

10
t
0

–10

0.4
0.2

–0.0
–0.2
–0.4

u

–20

x
20

0

(a)

–30 –20 –10 0 10 20 30

–0.5

0.0

0.5

x

u

σ*=0.0.0121

σ*=0.40117

(b)

Figure 2: *e profile of the solitary wave solution equation (36) to KE equation (2) is plotted in (x, t) plane.
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Equating the coefficients of ℘0, ℘, and ℘2 to zero and
solving the obtained system, we have

A � ±
β

����
10αc

􏽰 , B � ∓6
���
10c

α

􏽲

, andg2 �
− β2 − 10cλ

180c
2 . (44)

Note that g3 is an arbitrary constant. Using the initial
condition v(0) � v0, we can get

A + B℘ ξ0; g2, g3( 􏼁 � v0, (45)

which leads to

ξ0 � ℘− 1 v0 − A

B
; g2, g3􏼒 􏼓. (46)

By substituting the values of (A, B, g2) given in equation
(44) into the ansatz equation (42), we finally obtain the
solutions of cnoidal wave as

u1,2(x, t) � ±
β

����
10αc

􏽰 ∓6
���
10c

α

􏽲

℘ x + λt + ξ0;
− β2 − 10cλ

180c
2 , g3􏼠 􏼡,

(47)

and these solutions satisfy the evolution equation (3).
For the following choice,

g2 �
4
3
andg3 � −

8
27

, (48)

the solitary wave solutions are recovered:

u1,2(x, t) � ±
β

����
10αc

􏽰 ∓6
���
10c

α

􏽲

℘ x + λt + ξ0;
4
3
, −

8
27

􏼒 􏼓. (49)

2.2.2. Second Ansatz in Terms of WSEFs. *e following
rational hypothesis/ansatz is assumed to find some analytical
solution to equation (41):

v(ξ) � A +
B

1 + C℘
, (50)

where A, B, and C are the undetermined constants and
℘ ≡ ℘(ξ + ξ0; g2, g3).

Inserting the ansatz equations (50) into (41), we have

􏽘

6

j�0
Zj℘

j
� 0, (51)

where the coefficients Zj(j � 0, 1, . . . , 6) are defined in
Appendix D, and by solving the following system,

Z0 � 0, Z1 � 0, . . . , Z6 � 0, (52)

we obtain the nontrivial solution:

A �
60c + βC

����
10αc

􏽰
C

,

λ � −
β2

10c
−

6
5C

2 (
����
10αc

􏽰
BC + 180c),

c0 �
c

− (3/2)
����
10/α

√
86400c

3
+ β3C3

− 2160βc
2
C􏼐 􏼑 − 120BC(βC − 60c)

150C
3 ,

c1 �
1

400αc
2
C
4 − 800c

3 αB
2
C
2

+ 36
����
10αc

􏽰
BC + 3240c􏼐 􏼑􏽨

+ 56β2c3/2
C
2
(

���
10α

√
BC + 180

�
c

√
) + 2880βc

5/2
C(

���
10α

√
BC + 120

�
c

√
) + β4 − C

4
􏼐 􏼑􏽩,

g2 �

�������
(10α/c)

􏽰
BC + 180

15C
2 ,

g3 �
BC

15C
3 (

�������

(10α/c)

􏽱

+ 120).

(53)

*us, the traveling wave solutions to mKE equation (3)
are expressed by

u �
60c + βC

����
10αc

􏽰
C

+
B

1 + C℘ x − β2/10c + 6(
����
10αc

􏽰
BC + 180c)/5C

2
􏼐 􏼑t + ξ0;

�����
10α/c

􏽰
BC + 180/15C

2
􏼐 􏼑,

�����
10α/c

􏽰
+ 120/15C

3
􏼐 􏼑BC􏼐 􏼑

. (54)

Complexity 7



*e values of the constants B and C are arbitrary.
*e solitary wave solutions can be obtained from the

periodic solution equation (54) according to the following
choices:

g2 � 1/12, g3 � − 1/216,

g2 �
4
3
, g3 � −

8
27

.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(55)

For the choices equation (55), the soliton solutions are
obtained:

u �
β

����
10αc

􏽰 +
1
2

���
5c

2α

􏽲

4 −
9

1 + 6℘ x − β2 + 15c
2/10c􏼐 􏼑t + ξ0; (1/12), − (1/216)􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦, (56)

u �
β

����
10αc

􏽰 +

���
10c

α

􏽲

1 −
18

2 + 3℘ x − β2 + 15c
2/10c􏼐 􏼑t + ξ0; (4/3), − (8/27)􏼐 􏼑

⎛⎝ ⎞⎠. (57)

2.2.3. Dird Ansatz in Terms of JEFs. Using the following
ansatz in equation (41),

v(ξ) � A + B cn2, (58)

we have

2
t 0
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0
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 (u

1) –5
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Figure 3: *e profile of the cnoidal wave solution equation (47) to mKE equation (3) is plotted in (x, t) plane.
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􏽘

2n

j�0
Yjcn

j
� 0, (59)

where the coefficients Yj(j � 0, 2, 4, 6) are defined in Ap-
pendix E, and by solving the following system,

Yj � 0, (60)

we get

A � −
− β − 20cω + 40cmω

��
10

√ ��
α

√ �
c

√ , B �
6

��
10

√ �
c

√
mω

��
α

√ ,

λ � −
β2 + 240c

2ω2
+ 240c

2
m

2ω2
− 240c

2
mω2

10c
,

c0 �
1

15
��
10

√ ��
α

√
c
3/2

− 240βc
2ω2

+ 3200c
3ω3

+3200c
3
m

3ω3
− 240βc

2
m

2ω2

− 4800c
3
m

2ω3
+ 240βc

2
mω2

− 4800c
3
mω3

+ β3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

c1 � −
1

400αc
2

β4 − 1120β2c2ω2
− 12800βc

3ω3

+32000c
4ω4

+ 32000c
4
m

4ω4

− 12800βc
3
m

3ω3
− 64000c

4
m

3ω4

− 1120β2c2
m

2ω2
+ 19200βc

3
m

2ω3

+96000c
4
m

2ω4
+ 1120β2c2

mω2

+19200βc
3
mω3

− 64000c
4
mω4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(61)

cn ≡ cn(ξ, m) and ξ � x + λt + ξ0. Using equation (61), the following cnoidal wave solution
is obtained:

�
β + 20cω − 40cmω

��
10

√ ��
α

√ �
c

√

+
6

��
10

√ �
c

√
mω

��
α

√ cn
2 ��

ω
√

x −
t β2 + 240m

2
c
2ω2

− 240mc
2ω2

+ 240c
2ω2

􏼐 􏼑

10c
⎛⎝ ⎞⎠|m⎡⎢⎢⎣ ⎤⎥⎥⎦.

(62)

For letting m⟶ 1, solution equation (62) can recover
the soliton solution as

u �
β − 20cω
��
10

√ ��
α

√ �
c

√ +
6

��
10

√ �
c

√ ω
��
α

√

sec h
2 ��

ω
√

x −
t β2 + 240c

2ω2
􏼐 􏼑

10c
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(63)
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Furthermore, solution equation (54) can be reduced to
the following cnoidal wave solution using the relation

between WSEFs and JEFs [36] (more details are inserted in
Appendix F):

�
60c + βC + βCm − 120cm

����
10αc

􏽰
C(m + 1)

+

18
���
10c

􏽰
m

��
α

√
C(m + 1)

cn
2

��������
3

C(m + 1)

􏽳

x −
β2

10c
−
216 m

2
− m + 1􏼐 􏼑c

C
2
(m + 1)

2
⎛⎝ ⎞⎠t⎛⎝ ⎞⎠ + ξ0, m⎛⎝ ⎞⎠.

(64)

Also, the soliton solution can be obtained from solution
equation (64) for letting m⟶ 1:

u �
2βC − 60c

2
����
10αc

􏽰
C

+
9
C

���
10c

α

􏽲

sec h
2

���
3
2C

􏽲

x −
β2C2

− 540c
2

10cC
2 t􏼠 􏼡 + ξ0􏼠 􏼡.

(65)

*e propagation of higher-order ion-acoustic structures
in a collisionless and unmagnetized plasma consisting of
inertialess nonextensive electrons and positrons and inertial
warm ions and nonextensive electrons as well as positrons
[10]is investigated. El-Tantawy[10] derived both two-cou-
pled KdV equations and two-coupled modified KdV
(mKdV) equations for studying the KdV andmKdV solitons

2
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Figure 4: *e profile of the solitary wave solution equation (49) to mKE equation (3) is plotted in (x, t) plane.
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collisions. For some external perturbation or at some certain
conditions, the derivatives fifth-order should be taken into
consideration which leads to both KE equation (2) and mKE
(3). Now, to analyze the obtained solutions, we can use the
same values of the coefficients of mKdV equation (26) in
[10]. Based on this plasma model (α2 � α, β) �

(2.14663, 0.698771) at q � 0.6 and (α2 � α, β) �

(0.269511, 0.957799) at q � 1.2, where q indicates the
nonextensive parameter, the profile of the periodic solution
equation (47) is illustrated as shown in Figure 3 for the
parameter values (c, λ, g3, ξ0, v0) � (0.1, − 0.1, 5, 0, 0).
Moreover, the profiles of the solitary wave solutions equa-
tion (48) are shown in Figure 4 using the same parameters
used in Figure 3 replacing (g2, g3) � (4/3, − 8/27). It is clear
that the two solutions have opposite polarity, i.e., positive
and negative potential. Furthermore, it is noticed that both
amplitude and width increase with the increase of the
nonextensive parameter q.

3. Conclusions

New localized and periodic traveling wave solutions to the
generalized KE have been derived in detail using different
new approaches and ansatz. As a particular case, several
traveling wave solutions to both KE and mKE have been
obtained using (in)direct methods. For the indirect method,
KE has been solved with the help of Helmholtz equation.
After that, we can use any solution to the Helmholtz
equation in order to express the solution of the planar KE.
We used two different formulas for WSEFs to get some
periodic solutions to KE. In the direct method, a new ansatz
in the terms of WSEFs has been introduced for getting a
cnoidal solution to KE. In all cases and at certain conditions,
the periodic solutions have been reduced to the localized
solitary wave solutions. In the third (direct) method, the
periodic and solitary wave solutions have been derived in the
form of JEFs, and it was found that the obtained solutions
coincide with that obtained by means of the tanh method.
*e obtained solutions have been used for interpreting
several nonlinear structures that propagate in different
plasma models. Furthermore, two new hypotheses in terms
of WSEFs have been proposed to find some periodic so-
lutions to mKE. Also, the conditions for reducing the pe-
riodic solutions of mKE to the localized solitary waves have
been presented. *e obtained solutions have been employed
for investigating many nonlinear structures in different
plasma models.

Appendix

A.

*e values of the coefficients Fj(j � 0, 1, · · · 6) are given by

F0 � c1 + c0d0 +
λd

2
0

2
+
αd

3
0

6
+ βc2d

2
1 + 2Acc2d

2
1 + 8cc

2
2d

2
2,

F1 �
1
2
d1 2c0 + 2λd0 + αd

2
0 + 8Bcc2d1 + 8βc2d2 + 32Acc2d2􏼐 􏼑,

F2 � −
1
2

Aβd
2
1 + A

2
cd

2
1 − λd

2
1 − αd0d

2
1 − 2c0d2 − 2λd0d2

− αd
2
0d2 − 48Bcc2d1d2 − 8βc2d

2
2 − 32Acc2d

2
2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

F3 � −
1
6

2Bβd
2
1 + 10ABcd

2
1 − αd

3
1 + 12Aβd1d2 + 36A

2
cd1d2

− 6λd1d2 − 6αd0d1d2 − 160Bcc2d
2
2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

F4 � −
1
6

5B
2
cd

2
1 + 8Bβd1d2 + 80ABcd1d2 − 3αd

2
1d2

+12Aβd
2
2 + 48A

2
cd

2
2 − 3λd

2
2 − 3αd0d

2
2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

F5 � −
1
6
d2 36B

2
cd1 + 8Bβd2 + 104ABcd2 − 3αd1d2􏼐 􏼑,

F6 � −
1
18

d
2
2 140B

2
c − 3αd2􏼐 􏼑.

(A.1)

B

*e values of the coefficients Sj(j � 0, 1, · · · 6) are given by

S0 �
1
24

24a0c1 − 12a
2
1βg3k

3
+ 3a

2
1cg

2
2k

5
+ 48a

2
2cg

2
3k

5

− 48a1a2cg2g3k
5

+ 4αa
3
0k + 12a

2
0λ + 24c2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

S1 �
1
2
a1

− a1βg2k
3

− 4a2βg3k
3

− 3a2cg
2
2k

5
+ 24a1cg3k

5

+αa
2
0k + 2a0λ + 2c1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

S2 �
1
2

2a2c1 − 4a1a2βg2k
3

− 4a
2
2βg3k

3
− 3a

2
2cg

2
2k

5
+ 18a

2
1cg2k

5

+144a1a2cg3k
5

+ αa0a
2
1k + αa

2
0a2k + a

2
1λ + 2a0a2λ

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

S3 �
1
6

− 12a
2
2βg2k

3
+ 408a1a2cg2k

5
+ 480a

2
2cg3k

5

+12a
2
1βk

3
+ αa

3
1k + 6αa0a1a2k + 6a1a2λ

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

S4 �
1
2

168a
2
2cg2k

5
+ 16a1a2βk

3
− 60a

2
1ck

5
+ αa0a

2
2k + αa

2
1a2k + a

2
2λ􏼐 􏼑,

S5 � −
1
2
a2k − αa1a2 − 16a2βk

2
+ 432a1ck

4
􏼐 􏼑,

S6 � −
1
6
a
2
2k 1680ck

4
− αa2􏼐 􏼑.

(B.1)

C

*e values of the coefficients Wj(j � 0, 1, 2, 3) are given by
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W3 � 2sn(ξ, m)cn(ξ, m)dn(ξ, m)
��
ω

√
− 2C Cα − 1680m

2
cω2

􏼐 􏼑􏼐

W2 � − 3
BCα − 20Cmβω − 1040Cmcω2

− 120Bm
2
cω2

+ 2080Cm
2
cω2

⎛⎜⎝ ⎞⎟⎠

W1 �

− B
2α − 2ACα − 2Cλ + 32Cβω + 12Bmβω

− 64Cmβω + 512Ccω2
+ 240Bmcω2

− 3392Cmcω2

− 480Bm
2
cω2

+ 3392Cm
2
cω2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W0 �

− ABα − Bλ + 4Bβω − 12Cβω − 8Bmβω

+12Cmβω + 16Bcω2
− 240Ccω2

− 136Bmcω2

+720Cmcω2
+ 136Bm

2
cω2

− 480Cm
2
cω2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(C.1)

D

*e values of the coefficients Zj (j � 0, 1, 2 · · · 6) are given by

Z0 � 8αAB
3

+ 24ABλ + 24Ac0 + 2αB
4

− 96B
2
cC

4
g
2
3 + 48B

2
cC

3
g2g3 − 12βB

2
C
2
g3

+ 3B
2
cC

2
g
2
2 + 12B

2λ + 24Bc0 + 24c1 + 2αA
4

+ 8αA
3
B + 12αA

2
B
2

+ 12A
2λ

Z1 � 2C

6αA
4

+ 20αA
3
B + 24αA

2
B
2

+ 36A
2λ + 12αAB

3
+ 60ABλ+

72Ac0 + 2αB
4

− 72B
2
cC

3
g2g3 − 12βB

2
C
2
g3 + 27B

2
cC

2
g
2
2−

6βB
2
Cg2 + 144B

2
cCg3 + 24B

2λ + 60Bc0 + 72c1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z2 � C
2

30αA
4

+ 80αA
3
B + 72αA

2
B
2

+ 180A
2λ + 24αAB

3
+ 240ABλ+

360Ac0 + 2αB
4

− 12βB
2
C
2
g3 − 45B

2
cC

2
g
2
2−

24βB
2
Cg2 + 216B

2
cg2 + 72B

2λ + 240Bc0 + 360c1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z3 � 4C
2

10αA
4
C + 20αA

3
BC + 12αA

2
B
2
C + 60A

2
Cλ + 2αAB

3
C+

60ABCλ + 120Ac0C + 12βB
2

− 3βB
2
C
2
g2 + 120B

2
cC

2
g3−

84B
2
cCg2 + 12B

2
Cλ + 60Bc0C + 120c1C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z4 � 2C
2

15αA
4
C
2

+ 20αA
3
BC

2
+ 6αA

2
B
2
C
2

+ 90A
2
C
2λ+

60ABC
2λ + 180Ac0C

2
− 360B

2
c + 108B

2
cC

2
g2+

6B
2
C
2λ + 48βB

2
C + 60Bc0C

2
+ 180c1C

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z5 � 4C
3

3αA
4
C
2

+ 2αA
3
BC

2
+ 18A

2
C
2λ + 6ABC

2λ + 36Ac0C
2
+

216B
2
c + 12βB

2
C + 6Bc0C

2
+ 36c1C

2
⎛⎜⎝ ⎞⎟⎠,

Z6 � 2C
4 αA

4
C
2

+ 6A
2
C
2λ + 12Ac0C

2
+ 24B

2
c + 12c1C

2
􏼐 􏼑.

(D.1)
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E

*e values of the coefficients Yj (j � 0, 2, 4, 6, 8) are given by

Y0 � 1/12
αA

4
+ 6A

2λ + 12Ac0 + 24B
2
cω2

+24B
2
cm

2ω2
− 48B

2
cmω2

+ 12c1

⎛⎝ ⎞⎠,

Y2 � 1/12
4αA

3
B + 12ABλ + 24βB

2ω + 96B
2
cω2

+

192B
2
cm

2ω2
− 24βB

2
mω − 288B

2
cmω2

+ 12Bc0

⎛⎝ ⎞⎠,

Y4 � 1/12
6αA

2
B
2

− 24βB
2ω − 96B

2
cω2

+ 6B
2λ−

816B
2
cm

2ω2
+ 48βB

2
mω + 816B

2
cmω2

⎛⎝ ⎞⎠,

Y6 � 1/12 4αAB
3

+ 960B
2
cm

2ω2
− 24βB

2
mω − 480B

2
cmω2

􏼐 􏼑,

Y8 � 1/12 αB
4

− 360B
2
cm

2ω2
􏼐 􏼑.

(E.1)

F

Relation between the Jacobian cn elliptic function and the
Weierstrass elliptic function.

It is known that

℘′( 􏼁
2

� 4℘3 − g2℘ − g3, ℘ ≡ ℘ t; g2, g3( 􏼁. (F.1)

On the other hand, if v(t) � cn(
��
ω

√
t, m), we get

1
2

_v
2

− (1 − m)ω +(1 − 2m)ωv
2
(t) + mωv

4
(t) � 0. (F.2)

Define

w(t) � 1 +
B

1 + C℘ t; g2, g3( 􏼁
, (F.3)

then,
1
2

_w
2

− (1 − m)ω +(1 − 2m)ωw
2
(t) + mωw

4
(t)

�
B

(1 + C℘)4

B
3
mω + 4B

2
mω − BC

2
g3 + 4Bmω + Bω + 2ω+

C 4B
2
mω − BCg2 + 8Bmω + 2Bω + 6ω􏼐 􏼑℘+

+Cω(4Bm + B + 6)℘2 + 2C
2
(2B + Cω)℘3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(F.4)

Equating to zero the coefficients of ℘j(j � 0, 1, 2, 3) gives
an algebraic system, and by solving this system, we finally
have

B � −
6

4m + 1
,

C �
12

(4m + 1)ω
,

g2 � 1/12 16m
2

− 16m + 1􏼐 􏼑ω2
,

g3 � 1/216(2m − 1) 32m
2

− 32m − 1􏼐 􏼑ω3
.

(F.5)

*en,

cn(
��
ω

√
t, m)

� 1 −
6

(4m + 1) 1 + 12/(4m + 1)ω℘ t; (1/12) 16m
2

− 16m + 1􏼐 􏼑ω2
, (1/216)(2m − 1) 32m

2
− 32m − 1􏼐 􏼑ω3

􏼐 􏼑􏼐 􏼑
.

(F.6)

*is identity shows that the function cn is expressible
trough the function ℘. Now, if we know the function ℘, we
want to write it in terms of cn. To this end, we must write ω
and m in terms of g2 and g3. *is is not too easy. Define

z � 16m
2

− 16m + 1. (F.7)

Now, we eliminate ω and m from the system,

g2 � 1/12 16m
2

− 16m + 1􏼐 􏼑ω2
,

g3 � 1/216(2m − 1) 32m
2

− 32m − 1􏼐 􏼑ω3
,

z � 16m
2

− 16m + 1,

(F.8)

to obtain

27g
3
2 − 27g

3
2z + 4 g

3
2 − 27g

2
3􏼐 􏼑z

3
� 0. (F.9)

*is cubic is solvable by means of Tartaglia formula
which leads to

m �
1
4

(2 ±
�����
z + 3

√
),ω � 2

���
3g2

z

􏽲

. (F.10)

Finally, we solve the following equation for ℘(t; g2, g3):

1 +
B

1 + C℘ t; g2, g3( 􏼁
� cn(

��
ω

√
t, m). (F.11)

*e desired expression reads

℘ t; g2, g3( 􏼁 � −
ω
12

1 + 4m −
6

1 − cn(
��
ω

√
t|m)

􏼠 􏼡. (F.12)

In conclusion, if some ODE or some PDE have a solution
that is expressible in terms of the Jacobian cn function, then
such solution may also be written in terms of theWeierstrass
℘ function and vice versa. So, cnoidal waves and ℘ solutions
have the same meaning. Observe also that the last formula
allows us to obtain the main period of the Weierstrass
function in the form
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T �
4K(m)

��
ω

√ . (F.13)
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[21] U. Sevil Çulha, A. Daşcıoğlu, and B. Dilek Varol, “New exact
solutions of space and time fractional modified Kawahara
equation,” Physica A, vol. 551, Article ID 124550, 2020.
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