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*e reach-avoid game theory is an ideal tool to handle the conflicts among intelligent agents and has been previously studied
assuming full state information and no time limits on the players in the past decades. In this article, we extend the problem by
requiring the defender to detect the attacker and adding maximum operation time constraints to the attacker.*e attacker aims to
reach the target region without being captured or reaching its time limit. *e defender can employ strategies to intercept the
attacker only when the attacker is detected. A geometric method is proposed to solve this game qualitatively. By analyzing the
geometric property of the Apollonian circle and the detection range, we give the barrier under the condition that the attacker is
initially detected and the attacker’s shortest route which guarantees its arrival at the target region when it is initially outside the
detection range. *en, a barrier that separates the game space into two respective winning regions of the players is constructed
based on the shortest route and the time limit of the attacker. *e main contributions of this work are that this paper provides the
first attempt to introduce the abovementioned two concepts simultaneously, which makes the game more practical, and we
provide the complete solution of the game in all possible situations.

1. Introduction

*e differential game theory is first introduced in 1965 to
analyze the interception of incoming aircraft by missiles [1].
*is theory has strong aerospace connotations [2–8]. *e
conflicts and cooperation among multiple aircrafts or
spacecrafts can be formulated as differential game problems.
For example, Tang et al. [7] solved the problem of spacecraft
interception and proposed switching strategies based on the
differential game theory. Pachter et al. [3, 4] used the game
theory to investigate the interception of an air threat by two
attacking missiles, and the situation that an attacking missile
pursues a target aircraft, while a defending missile tried to
intercept the attacking missile. Liu et al. [6] proposed a novel
cooperative guidance law of a leader-follower multiagent
system based on robust multiagent differential games. Ye
et al. [5] investigated a proximate satellite pursuit-evasion
game and obtained the open-loop solution to the game.
*ere are two kinds of differential games introduced by
Isaacs in his book.*e first kind of game is called the game of

degree, in which there is a continuous payoff function and
the adversarial players try tominimize or maximize the value
of the function, respectively. *e game of degree theory
parallels optimal control theory greatly and the existing
control theories can be utilized to solve this kind of problem
[5, 6]. *e second kind of game is called the game of kind, in
which we are only interested in which player can win the
game, rather than finding an equilibrium value of a certain
function. Unlike the game of degrees, there is still no mature
method to solve the game of kind problems. *is means that
there are many blanks to be filled in this research direction
and they are worth studying. In this work, we investigate a
typical kind of these games, the reach-avoid game. In a
classic reach-avoid game, the attacker or the evader tries to
reach the target area and avoids being captured by its op-
ponent, while its opponent, which is often named the de-
fender or the pursuer, strives to prevent it from reaching its
goal by intercepting it or delay its intrusion indefinitely. *is
kind of a game has received a great deal of interest because it
can be utilized to handle a wide range of problems in many
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realistic situations [9–16]. For example, in the military field,
the scenarios where an interceptor missile intercepts an
offensive missile to protect national borders, or an attacking
bomber invades a target area protected by some antiair
weapons, can be formulated as a reach-avoid game.

Referring to Isaacs’ book [1], the key point of this kind of
question is to obtain a hypersurface in the game space, which
is called the barrier. *is hypersurface divides the game
space into two disjoint parts: the winning region of the
attacker and that of the defender. In the literature, the
Hamilton–Jacobi–Isaacs approach (HJI approach) is ideal
for solving the low-dimensional game. By solving an HJI
partial differential equation, the optimal strategies of the
players can be obtained, as well as the winning regions of the
players. Up till now, lots of seminal works have been put
forward about reach-avoid differential games and many
variations of this kind of game have been proposed. For
example, Margellos and Lygeros [17] developed a framework
for formulating reach-avoid games with nonlinear dynamics
as optimal control problems. Bhattacharya et al. [18, 19]
studied a visibility-based target-tracking game in the pres-
ence of a circular obstacle. *e barrier was constructed by
using Isaacs’ techniques according to the symmetry of the
environment in reduced state space. *e authors of [20]
obtained the barrier of the lifeline game by integrating the
HJI partial differential equations. *ey proposed a resultant
force method for the attacker to balance the active goal of
reaching the lifeline and the passive goal of avoiding capture.
In the past few years, lots of work focused on the reach-avoid
game with multiple players [21–24]. *is kind of game is a
significant research topic and is also difficult to analyze due
to the raising dimension of the state space, the complex
cooperative interactions among the players in the same
team, and the conflicting and complicated goals of the
players in different teams. Chen et al. [25, 26] provided a
graph-theoretic maximum matching approach to decom-
pose the multiplayer reach-avoid game into several sub-
games with two players and merged the pairwise outcomes
of the subgames for a solution of multiplayer version. Based
on the time derivative of an appropriately defined risk
metric, Selvakumar and Bakolas [27] provided a nonlinear
state feedback strategy for the evader in a multiplayer reach-
avoid game. A decentralized, real-time algorithm for the
cooperative pursuit of a single evader by multiple pursuers
was presented based on the idea of minimizing the area of
the generalized Voronoi partition of the evader by Zhou
et al. [21]. Yan et al. [28] considered a reach-avoid game with
two defenders and one attacker on a rectangular domain. In
the work, they proposed a geometric approach to construct
the related barrier analytically. Also, they fused the game of
kind and the game of degree by defining some payoff
functions, and the optimal strategies of the players can be
obtained simultaneously. *ey further studied a new mul-
tiplayer reach-avoid game of assigning tasks to guarantee the
most evaders intercepted based on their previous work and
obtained the solution of this game between two adversarial
teams with an arbitrary number of players in a general
convex planar domain. *e authors of [29–31] introduced a
new kind of reach-avoid games with multiple homogeneous

intruders and defenders, which is called the perimeter-de-
fense game. In this game, the defenders are confined to the
boundary of the target area.*ey decomposed the game into
games of local subteams and reduced the design of the
defense strategy to an assignment problem to handle the
complexity brought by the high dimensionality of the joint
state space. Apart from adding the number of players in-
volved in the game, the so-called target-attacker-defender
game is also a significant kind of game in this research field.
In a TAD game, the attacker aims to capture the target and
avoid being intercepted by the defender, while the defender
and the target cooperate to prevent the attacker from
reaching its goal. *is kind of game can be considered a
special kind of the reach-avoid game whose target area is
moveable. A pursuit-evasion-defense differential game in
dynamic constrained environments was investigated
through the solution of a double-obstacle HJI variational
inequality by Fisac and Sastry [32]. Oyler et al. [33] pre-
sented the TAD game in the presence of obstacles which is
more suitable to analyze realistic situations than the general
differential game. Liang et al. [34] studied a two-pronged
pursuit-evasion problem, and based on the explicit policy
method, they give the complete expression of the barrier.
*ey provided a further study on strategies’ switch of the
players for cooperative target defense [35].

All these works have made seminal contributions to the
research of the reach-avoid game. However, most of these
works consider only the situation when both sides of the
game have full state information of the other. In a realistic
situation, the agent must be equipped with sensors to acquire
information about the environment nearby and the detec-
tion ranges of the sensors are always limited. In this work, we
assume that the defender is equipped with a radar with a
limited detection range and the attacker has full state in-
formation of the defender, including the radius of its de-
tection range. *is assumption corresponds to the realistic
military conflict in which the attacker has the initiative and
the defender side has less information than its opponent
when the attacker plans its attack. *e defender can get
access to the position and velocity information of its op-
ponent only when the attacker is inside its detection range.
*is assumption makes the game more realistic than the
classic games andmore valuable to investigate. Furthermore,
only a few works have considered the maximum operation
times of the players involved in the game. For example, Yan
et al. [36] considered the aforementioned constraints in the
differential game. In fact, due to the limited energy of the
agents, the time requirements of their missions, and other
practical constraints, the operating times of the agents are
always limited. Motivated by this fact, a kind of reach-avoid
game with a time limit is considered in this article. Since the
defenders are always deployed near the target area, which is
friendly to them, and the attackers come from their bases far
away from the target area, it is reasonable to assume that the
defender has adequate energy to support its operation
during the game. *erefore, we only consider the time limit
of the attacker in this article. In this work, the players have
simple motion in a two-dimensional plane, which is par-
titioned by a straight line called the target line into two
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disjoint parts: the target region and the play region. *e
objective of the attacker is to reach the target region before
reaching its maximum running time or being captured.
Contrarily, the defender employs strategies when the at-
tacker is detected to intercept the attacker or forces the
attacker to terminate in the play region. It can be easily
found that if there is no constraint on the attacker, the
attacker can always adopt strategies to bypass its opponent’s
detection range and ensure its victory. So, we need to make
restrictions on the attacker. Due to the increasing complexity
of terminal conditions caused by the time limit and detection
range, the classic Hamilton–Jacobi–Isaacs approach is not
suitable to handle the problem proposed here. To overcome
these disadvantages, instead of using the classical approach,
this paper introduces a geometric method to solve the new
kind of reach-avoid game qualitatively and obtain the
complete barrier of the game. *e shortest trajectories that
guarantee the victory of the attacker are also provided in this
article.

We divide the game into two parts. *e first part is that
the attacker is initially located inside the detection range of
the defender and the second part is the attacker is located
outside that. *e main contributions of this article are as
follows.

(1) For the first part, we prove that the attacker cannot
leave the detection range of the defender, which is a
common conclusion that can be used in other games
considering the time limit and detection range with
different game setups. Also, we obtain the expres-
sions of the related barrier.

(2) We investigate the possible equilibrium terminal
states of the game and prove that if the attacker is
located on the part of the barrier outside the de-
tection range, it must reach the target line at its time
limit by employing its optimal strategy. *is means
that the optimal strategy of the attacker must be
moving along the shortest trajectory that guarantees
its arrival at the target line without being intercepted
in advance. *is is a common conclusion in all the
reach-avoid games with different game setups con-
sidering the time limit and detection range. It shrinks
the possible set of the game’s terminal states and
reduces the difficulty of solving the problem.

(3) Using the properties of the circle and the form of the
players’ optimal strategies obtained via the HJI
differential equations, we acquire the optimal
strategies and the related optimal trajectories of the
attacker according to its initial location. *e optimal
trajectories of the attacker obtained in this work are
valid when the defender is equipped with radar of
which the detection range is circular or seekers of
which the detection area is sectorial.

(4) By comparing the optimal trajectories and the time
limit of the attacker, the barrier of the reach-avoid
game with a time limit and detection range for the
second part is constructed and illustrated. Com-
bining the barriers of the first part and the second

part, the complete barrier of the reach-avoid game
with a time limit and detection range is obtained.

To our best knowledge, it is the first time that someone
brings the time limit and the detection range to the reach-
avoid game simultaneously. *e introduction of these
concepts makes the game more complex and more practical
than most of the previous works in this research direction.
*e solution obtained in this article can be used to quickly
judge the result of the game via the initial configuration of
the game and can handle practical situations which have
real-time requirements.

*e rest part of this article is organized as follows. In
Section 2, the formulation of the reach-avoid game with a
time limit and detection range is presented and the game is
divided into two parts, the part where the attacker is inside
the detection range and the part that the attacker is outside
the detection range. In Section 3, the possible neutral ter-
minal states of the game are provided and the barrier of the
former part of the reach-avoid game is constructed utilizing
a geometric method. In Section 4, we prove that the optimal
trajectory of the attacker is the shortest trajectory that
guarantees the arrival at the target line when it is outside the
detection range, and we give the expressions of the optimal
trajectories in all possible situations. In Section 5, the barrier
of the game is provided and illustrated based on the optimal
trajectories obtained and the time limit of the attacker. In
Section 6, some numerical simulations are provided to prove
the correctness of the barrier obtained in this work. Finally,
in Section 7, the conclusion and future work are
summarized.

For the ease of the reader, some of the important no-
tations with summarized descriptions are listed in Table 1.
*ese notations will also be explained in detail in the rest of
the paper.

2. Problem Formulation

2.1. !e Reach-Avoid Game with a Time Limit and Detection
Range. In this section, the problem formulation of the
reach-avoid game with a time limit and detection range is
provided. *e attacker A and the defender D move in a
planar environment Ω � R2, as is shown in Figure 1. *e
planar space is separated by the target line, which is a straight
line and is denoted as T, into two parts: the play region ΩP

and the target region ΩT. It can be seen that all the possible
target areas in practical situations can be approximated by
polygons whose boundaries consist of line segments. *us, it
is essential to investigate the reach-avoid game with the
aforementioned game setup. In this article, both players are
considered as mass points with simple motion and they are
initially located in the play region ΩP. A Cartesian coor-
dinate system is built with the origin and the x-axis located
on the target line T. *us, ΩP � x, y|y> 0􏼈 􏼉,
ΩT � x, y|y< 0􏼈 􏼉, and T � x, y|y � 0􏼈 􏼉. *e states of the
players at the time t are denoted by their Cartesian coor-
dinates xA � [xA(t), yA(t)]T and xD � [xD(t), yD(t)]T. We
assume that the origin of the coordinate system is below the
initial position of D. *is means that xD(0) � 0, and this
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assumption does not influence the solution to the problem.
*e state of the game is given by x � [xT

A, xT
D]T, and the state

space of the game is R4. In this article, we assume that the
players have a simple motion with speeds vA(t), vD(t), re-
spectively. *e maximum speeds of the players are two
constants, which are denoted as vA, vD, respectively. *is
model and the game environment are typically encountered
in the games of Isaacs and there exist many seminal works
analyzing practical conflicts based on them [3, 4, 12]. *e
maximum speed of the defender is assumed to be larger than
that of the attacker, and the speed ratio between these two
players is defined as α � vA/vD < 1. *eir control variables
are their instantaneous heading angles
ϕA(t),ϕD(t) ∈ [− π, π). *e dynamics of the players are
expressed as follows:

_x �

_xA(t)

_yA(t)

_xD(t)

_yD(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

vA(t)cos ϕA(t)

vA(t)sin ϕA(t)

vD(t)cos ϕD(t)

vD(t)sin ϕD(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� f(x). (1)

*e defender can respond to the attacker’s strategy in-
stantly and the control variables ϕA,ϕD are selected si-
multaneously and can change instantaneously.

In practical application, due to the constraints like the
limited energy, the time requirements of the attacker’s
missions, and so on, the maximum operating time of the
attacker is always limited. Since the defender is always
deployed near the target area which is friendly to it, we
assume that the defender has adequate energy to support its
operation. Also, the defender can employ state feedback
strategies against the attacker only when it has access to the
position of the attacker. *e defender stays still before it
detects the attacker via the sensors it equipped. *e shape of
the sensor’s detection area, for example, the radar, is usually
circular. *e detection area of the defender considered in
this work is shown in Figure 1. We assume that the attacker
knows the detection range and location of its opponent. *is
assumption is reasonable since the attacker often has the
initiative when it plans its attack in the conflict and the
defender often has less information than its opponent in
realistic situations. Also, we assume that the defender cannot
foresee the intrusion to show the initiative of the attacker.

Table 1: Notation table.

Symbol Description
Ω � R2 Game domain
xA � [xA(t), yA(t)]T *e position of A at time t

x � [xT
A, xT

D]T *e state of the game
S � SA ∪SD *e set of the game’s terminal states
B *e barrier of the game with a time limit and detection range
tA *e maximum operating time of A

RA � vAtA *e maximum range of A

IP *e point where A enters the detection range
(RD, θP) *e polar coordinate of IP

Pl *e left one of the intersection points of IPD-based Apollonian circle and T

T ⊂ Ω *e target line
xD � [xD(t), yD(t)]T *e position of D at time t

α< 1 Speed ratio vA/vD

SN *e set of the game’s neutral terminal states
BT *e barrier of the game with a time limit only
RD *e radius of the defender’s detection range
yD,0 *e y-coordinate of the defender’s initial position
IF *e point where A reaches the boundary of the detection range for the first time
(RD, θF) *e polar coordinate of IF

xl *e x-coordinate of the point Pl

T

A

ϕA ϕD
D

y
ΩP

ΩT

Circle of Detection

x

Figure 1: *e reach-avoid game with a time limit and detection range.
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*us, when the attacker is initially outside the detection
range, the defender does not know the existence of the
attacker and cannot adopt any strategies against it. In this
situation, _xD � 0 and _yD � 0. However, if the attacker is
once detected and then leaves the detection range, the de-
fender will exhibit a random walk until it finds the attacker.

Let tA be the maximum operating time of A. Since vA is a
constant, the possible maximum range of A is a constant and is
denoted as RA � vAtA. From the time limit and simple motion
of A, we can learn that the possible terminal position set of the
attacker, which is called the reachable area of the attacker
(RAA), is a circle with the center located at xA.*e radius of this
circle is RA. Let RD be the detection radius of D. *e boundary
of the detection range is called the circle of detection. *e
condition that the defender finds the attacker is given as follows:

D � x
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
xA(t) − xD(t)

����
����2<RD􏼨 􏼩, (2)

where ‖ · ‖2 stands for the Euclidean norm in R2. *e RAA
and the detection range of the defender are shown in
Figure 1.

In this article, only point capture is considered, which
means that the interception happens when the separation
between the attacker and the defender becomes zero. Sup-
pose that the game terminates at the time tf, which cannot
be larger than tA. *e capture set of this game is given as
follows:

C � x
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
xA tf􏼐 􏼑 − xD tf􏼐 􏼑

�����

�����2
� 0, tf⩽tA􏼨 􏼩. (3)

*e terminal set of the game can be denoted as follows:

S � SA ∪SD. (4)

*e subspace SA is defined as follows:

SA � x|yA tf􏼐 􏼑⩽0, xA(t) − xD(t)
����

����2> 0, t⩽tf⩽tA􏽮 􏽯. (5)

If the game state terminates in SA, the attacker wins the
game. Contrarily, the defender wins if the game state ter-
minates in SD, which is

SD � x|yA(t)> 0, x tf􏼐 􏼑 ∈ C, t⩽tf􏽮 􏽯∪ x|yA tf􏼐 􏼑> 0, x tf􏼐 􏼑 ∉ C􏽮 􏽯.

(6)

*us, the target of the attacker is to drive the game state x
into SA, while the defender tries to force the state of the
game into SD. Since the reach-avoid game terminates im-
mediately when the attacker enters theΩT, in this article, we
assume that the initial position of the attacker lies in the play
region ΩP to ensure that the game exists [37].

2.2. Main Problem. In this article, we mainly focus on
solving the reach-avoid game with a time limit and detection
range qualitatively. *is kind of problem is known as the
game of kind and it requires us to answer the question that
which player wins the game with a given game space Ω and
T, the initial positions of the attacker and the defender, the
maximum speeds of the players vA and vD, the time limit tA,

and the detection radius RD. Referring to Isaacs’ book, to
solve this problem, we need to construct the hypersurface
called the barrier B in R4 based on the aforementioned
information. When the initial position of D is fixed, the
barrier degenerates into a 2-dimensional curve that can be
illustrated. *e barrierB divides the game space Ω into two
disjoint parts: the attack dominance region (ADR) and the
defense dominance region (DDR).*ese concepts of regions
were introduced by Yan et al. [28], which are similar to the
concepts of the capture zone and the escape zone in Isaacs’
book. If the game state is located in ADR, the attacker can
ensure the successful arrival atΩT without being intercepted
by the defender or reaching its time limit, irrespective of the
strategies that the defender employs. On the contrary, if the
state of the game is located in DDR, the attacker cannot
reach its goal, which ensures the victory of the defender.

When the state of the game lies on the barrier B, the
attacker must apply the optimal control variables v∗A and ϕ∗A
to ensure the state stays outside the DDR, while the defender
must choose its optimal strategies v∗D and ϕ∗D to prevent the
state of the game from getting into the ADR. Both players
adopt their optimal strategies and the game achieves an
equilibrium outcome. *is outcome is called the neutral
state of the game and is regarded as a situation where neither
the attacker nor the defenders win the game. Although it
may guarantee the victory of one player, any tiny change
could lead to a different result in the game. *is kind of
situation is also regarded as the equilibrium outcome. *e
set of the game’s neutral statesSN consists of three parts and
can be delineated as [37].

SN,1 � x|yA tf􏼐 􏼑 � 0, xA tf􏼐 􏼑 − xD tf􏼐 􏼑
�����

�����2
� 0, tf < tA􏼚 􏼛,

SN,2 � x|yA tf􏼐 􏼑 � 0, xA tf􏼐 􏼑 − xD tf􏼐 􏼑
�����

�����2
≠ 0, tf � tA􏼚 􏼛,

(7)

SN,3 � x|yA tf􏼐 􏼑 � 0, xA tf􏼐 􏼑 − xD tf􏼐 􏼑
�����

�����2
� 0, tf � tA􏼚 􏼛.

(8)

*e first part of the set SN,1 indicates that when the
players both adopt their optimal strategies, they coincide
with each other once the attacker reachesT before reaching
its time limit. *e equilibrium outcome is caused by the
capture. *e second part SN,2 indicates that the attacker
reaches its goal at time tA without being intercepted. *e
equilibrium outcome is caused by its time limit here. *e
third part is the aggregation of the other two kinds of
equilibrium outcomes. In general, the barrier is constructed
based on the set of neutral states. However, it is obvious that
the set of the game is complex and it is difficult to construct
the barrier via Isaacs’ classic approach since sketching the
boundary of the terminal set is a challenge [34].

Also, different from the traditional reach-avoid game
which usually assumes that the attacker and the defender
have full access to the positions of each other, in this work,
the location of the attacker is unknown to the defender if the
attacker stays outside the detection range. *us, when the
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attacker is outside the detection range, this game degenerates
into an optimization problem related to the attacker and this
degeneration increases the difficulty of the game. Since there
is a time limit of the attacker, the optimal strategy of the
attacker is to find the shortest path toward T when it re-
mains undetected. Due to the existence of this degeneration,
two situations need to be discussed.

(1) *e attacker is initially located inside the detection
range, which means that ‖xA(0) − xD(0)‖2<RD.

(2) *e attacker is initially located outside the detection
range, which means that ‖xA(0) − xD(0)‖2>RD.

In the following part of the article, we will discuss these
two situations to form the complete solution of the reach-
avoid game considered in this work.

3. The Reach-Avoid Game When the Attacker
Is inside the Detection Range

In this section, we investigate the reach-avoid game with a
time limit and detection range when the attacker is initially
located inside the detection range. For simplicity, time t will
be omitted in the rest part of the article. It is obvious that at
the beginning of the game, in this situation, the attacker and
the defender can adopt strategies against their opponent and
the game is a traditional reach-avoid game. *is leads to the
following theorem:

Theorem 1. When the attacker is inside the detection range,
the optimal trajectories of the players are straight lines, and
the attacker remains inside the detection range during the rest
of the game process.

Proof. Referring to Isaacs’s book, we can easily obtain the
optimal strategies of the players via the HJI approach. *e
attacker strives to reach the target line without being
intercepted before reaching its time limit. *e payoff
function of the game can be expressed as follows:

J x, vA, vD, ϕA,ϕD( 􏼁 � G x tf􏼐 􏼑, tf􏽨 􏽩

+ 􏽚
tf

0
F x, vA, vD,ϕA, ϕD, t􏼂 􏼃dt,

G x tf􏼐 􏼑, tf􏽨 􏽩 � a1 xA tf􏼐 􏼑 − xD tf􏼐 􏼑
�����

�����2
− a2yA tf􏼐 􏼑,

(9)

where a1 > 0 and a2 > 0 are weighting coefficients. *e
function G[x(tf), tf] represents the payoff related to the
terminal state of the game, and the function
F[x, vA, vD,ϕA, ϕD, t] represents the payoff accumulated
during the game process. Since we are only interested in the
outcome of the game, which is only related to the terminal
state, we have F[x, vA, vD,ϕA, ϕD, t] � 0. If the attacker tries
to win the game, it needs to adopt proper strategies to
maximize the payoff function. On the contrary, the defender
strives to minimize the function J. *us, the value of the
game is as follows:

V x, ϕA, ϕD( 􏼁 � min
ϕD,vD

max
ϕA,vA

J x, vA, vD, ϕA,ϕD( 􏼁. (10)

By adding this payoff function, the game can be con-
sidered a minimax optimization problem. From the dy-
namics of the players, which is equation (1), and the calculus
of variations, we can obtain the Hamiltonian of this dif-
ferential game, which is as follows:

H x, λ, vA, vD,ϕA, ϕD( 􏼁 � F + λT
_x � λT

f(x)

� λ1vA cos ϕA + λ2vA sinϕA

+ λ3vD cos ϕD + λ4vD sinϕD,

(11)

where λ � (λ1, λ2, λ3, λ4) ∈ R4 is the corresponding co-state
vector. Since the Hamiltonian and the dynamics of the game
are decoupled in control variables vA, ϕA and vD,ϕD,
according to the HJI approach, we have as follows:

H x, λ, v
∗
A, v
∗
D,ϕ∗A, ϕ∗D( 􏼁 � min

ϕD,vD

max
ϕA,vA

H x, λ, vA, vD, ϕA, ϕD( 􏼁

� max
ϕA,vA

min
ϕD,vD

H x, λ, vA, vD,ϕA, ϕD( 􏼁.

(12)

*us, the optimal strategies of the players can be
expressed as follows:

cosϕ∗A �
λ1
ρ1

,

sinϕ∗A �
λ2
ρ1

,

ρ1 �

������

λ21 + λ22
􏽱

,

v
∗
A � vA,

cosϕ∗D � −
λ3
ρ2

,

sinϕ∗D � −
λ4
ρ2

,

ρ2 �

������

λ23 + λ24
􏽱

,

v
∗
D � vD,

H x, λ, ϕ∗A, ϕ∗D( 􏼁 � vA

������

λ21 + λ22
􏽱

− vD

������

λ23 + λ24
􏽱

.

(13)

Additionally, the co-state dynamics are as follows:

_λ � −
zH

zx
� 0. (14)

Hence, all the co-states are constant and the optimal
heading angles ϕ∗A, ϕ

∗
D remain constant during the game

process. In other words, the players’ optimal trajectories are
straight lines. Also, according to equation (13), when the
attacker is detected, the attacker and the defender will move
at their maximum constant speeds during the game process.
*is theorem is also obtained and utilized in many works
which have similar game setups [2–4, 37]. In fact, when the
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attacker is initially located in the detection range, the
original game in this work becomes the game that has al-
ready been studied by Yan et al. [36].

Referring to Isaacs book [1], the attacker and the de-
fender ultimately coincide with each other when adopting
the aforementioned strategies, irrespective of the situation
that A reaches the target region or its time limit. All the
possible intersection points in this situation form a circle
with a center at
O � ((xA − α2xD)/(1 − α2), (yA − α2yD)/(1 − α2)) and ra-
dius of rO � (α/(1 − α2))‖xA − xD‖2. *is circle is called the
Apollonian circle. Since they ultimately coincide with each
other along straight lines, it is obvious that the distance
between the attacker and the defender monotonically de-
creases to zero. *erefore, once the attacker enters the de-
tection range, it remains inside the detection range during
the rest of the game. *e proof is completed. □

Lemma 1 (see [1]). For a pair of straight-moving agents, the
planar space can be partitioned into two disjoint parts by the
related Apollonian circle. Moreover, all the points inside the
circle can be reached by the attacker before the defender

regardless of the attacker’s time limit. Consider the definition
of the Apollonian circle: since the attacker and the defender
ultimately coincide with each other when they adopt their
optimal strategies obtained in !eorem 1, the attacker can
never reach any point outside the Apollonian circle once it is
detected. Moreover, if the Apollonian circle intersects with the
target region, the attacker can ensure its victory by moving
directly toward any point which is inside both the Apollonian
circle and the target region, regardless of its time limit.

From *eorem 1, we can learn that when the attacker is
initially located inside the detection range, the game con-
sidered in this work is the same as the game with a time limit
of the attacker only.*e existence of the defender’s detection
range does not influence the game process in this situation. It
should be noticed that the game with a time limit only has
already been studied in former work [36]. *e optimal
trajectories of the players are straight lines, which are ob-
tained in both *eorem 1 and Yan et al.’s work [36], and we
give the expressions without proof here. *e barrier of the
reach-avoid game with a time limit only, which is denoted as
BT, is given by the following equation:

B
T

� (x, y)|x
2

+ 1 −
1
α2

􏼠 􏼡y
2

+ 1 − α2􏼐 􏼑y
2
D,0 � 0, x ∈ − p1, p1( 􏼁􏼨 􏼩

∪ (x, y)| x −

�����������

RA

α
􏼒 􏼓

2
− y2

D,0

􏽳

⎛⎝ ⎞⎠

2

+ y
2

� R
2
A, x ∈ p1, p2􏼂 􏼁

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

∪ (x, y)| x +

�����������

RA

α
􏼒 􏼓

2
− y2

D,0

􏽳

⎛⎝ ⎞⎠

2

+ y
2

� R
2
A, x ∈ − p2, p1( 􏼃

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

∪ (x, y)|y � RA, x ∈ − ∞, − p2( 􏼃∪ p2, +∞􏼂 􏼃􏼈 􏼉,

(15)

when yD,0 <RA/α, where yD,0 � yD(0),

p1 � (1 − α2)
������������

(RA/α)2 − y2
D,0

􏽱

; and p2 �

������������

(RA/α)2 − y2
D,0

􏽱

.
When yD,0⩾RA/α, the barrier of the given game is as

follows:

B
T

� (x, y)|y � RA􏼈 􏼉. (16)

From equation (16), we can learn that if yD,0⩾RA/α, the
initial position of D does not influence the barrier. *us, in
the rest of this article, we mainly focus on the situation that
yD,0 <RA/α. Some useful conclusions were acquired in Yan’s
work [36] that will be utilized to handle the problem con-
sidered in this article hereinafter, and we give these con-
clusions without proof. Due to the symmetry, we investigate
the barrier in the condition that xA > 0 only. Analogous
analysis can be done for the situation when xA⩽0.

Lemma 2. If A is located on the barrierBT with yA(0) � RA,
the defender has no influence on the attacker, and the optimal
trajectory of A is to move vertically downward to T. In this

situation, A reachesT at time tA. !e equilibrium outcome of
the game is caused by the attacker’s time limit only here.
Furthermore, from the time limit of A, the equations (16) and
(17), we can find out that the space (x, y)|y>RA􏼈 􏼉 is always
inside the DDR because the maximum range of the attacker is
RA.

*e barrier of the game with a time limit of the attacker
only is illustrated in Figure 2. *e part of the barrier when
the attacker is inside the detection range can be easily ob-
tained from equations (15) and (16), which are expressed in
the following theorem.

Theorem 2. !e barrier when the attacker is initially located
inside the detection range is the part of the barrier BT inside
the detection range.!is part of the barrier can be expressed as
follows:

B
inner

� (x, y)|(x, y) ∈BT
,

������

x
2

+ y
2

􏽱

<RD􏼚 􏼛. (17)
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Proof. *is theorem is obvious and the proof is omitted
here. □

Also, there is a simple theorem about the expression of
the barrier and the parameter RD.

Theorem 3. For a point (xB, yB) on the barrier, if
xB . . . min p2, RD􏼈 􏼉, yB � RA. Furthermore, if RD satisfies
that

RD . . .

���������������������

1 + α2􏼐 􏼑

α2
⎛⎝ ⎞⎠R

2
A − 2RAyD,0

􏽶
􏽴

, (18)

where the barrier of the game considered in this article isB �

BT.

Proof. It is obvious that if there is no defender, the shortest
path for the attacker to get toT ismoving vertically downward.
When xB . . . RD and the attacker moves vertically downward,
all the points on the attacker’s trajectory are outside the de-
fender’s detection range. In other words, the defender cannot
adopt any strategy against its opponent in this situation. *us,
the part of the barrier here satisfies that yB � RA and the
attacker reaches T at tA. According to Lemma 2, if xB . . . p2,
the defender cannot influence the attacker when it moves
vertically downward toT. So, if xB . . . min p2, RD􏼈 􏼉, yB � RA.

From the conclusion obtained above in this proof, we
can learn that the fourth part of the equation (15) is always a
part of the barrier B related to the game considered in this
work. According to *eorem 2, if the first three parts of the
equation (15) are inside the detection range, these parts of
the barrier are also the components of B. *us, in this
situation, the whole barrier of the game satisfies B � BT.
*e condition that the first three parts are inside the de-
tection range is that the point (p2, RA) is inside the detection
range, which can be expressed as follows:

RD . . .

��������������

p
2
2 + RA − yD,0􏼐 􏼑

2
􏽲

�

���������������������

1 + α2􏼐 􏼑

α2
⎛⎝ ⎞⎠R

2
A − 2RAyD,0

􏽶
􏽴

.

(19)

*us, we complete the proof. □

4. TheOptimalStrategiesof theAttackeroutside
the Detection Range without a Time Limit

In the rest part of the article, we will investigate the part of
the barrier outside the detection range. Different from the
situations discussed above, when the attacker is outside the
detection range, the part of the reach-avoid game before the
attacker enters the detection range is an optimization
problem related to the attacker only. Moreover, in the re-
lated optimization problem, the attacker’s optimal trajec-
tories can be any kind of curve, rather than just a straight
line. If we want to obtain the barrier of the game, we need to
obtain the attacker’s optimal strategies in all possible situ-
ations first. It is obvious that the attacker’s initial position,
the parameters RD, yD,0, and RA all influence the related
trajectory. According to equation (16), Lemma 2, and
*eorem 3, we only need to discuss the situation when
RD <

����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
and yD,0 <RA/α in the

following.
Let us first consider the attacker’s initial position. To

simplify the problem, we divide the space outside the de-
tection range of the defender into two different areas. *e
division is shown in Figure 3. *e Area1 consists of the area
that satisfies x ∈ (− ∞, − RD)∪ [RD, +∞] and the area below
the detection range. *e second area is above the detection
range with x ∈ (− RD, RD). When A is initially located in
Area1, its optimal strategy is moving vertically downward.
*is is the shortest trajectory to the target line and D cannot
detect A when it moves along the related trajectory.

When A is initially located in Area2, however, it cannot
move vertically downward without remaining undetected
during the game process. *e possible trajectories of the
attacker here can be divided into two types:

(1) All parts of the attacker’s trajectory are outside the
detection range. *is kind of trajectory is called the
bypassing trajectory.

(2) Some part of the attacker’s trajectory is inside the
detection range. *is kind of trajectory is called the
penetrating trajectory.

As mentioned in Section 2.2, the barrier is generally
constructed based on the set of the game’s neutral states in
this research direction. However, the possible terminal set of
the game in this work is complex, which increases the
difficulty of solving the game.*us, it is necessary to analyze
and simplify the neutral terminal set SN to make the game
solvable. For the first type, since the attacker remains un-
detected during the game, the defender cannot capture the
attacker, and the related neutral terminal set belongs toSN,2.
For the second type, we have the following theorem.

Theorem 4. If the attacker moves along a penetrating tra-
jectory, the possible related neutral states cannot be in SN,1.

Proof. We use reduction to absurdity to prove this theorem.
Suppose that there is some position of the attacker that the
related optimal strategies of the attacker lead to the terminal
states in SN,1. Since the attacker adopts strategies of the

BT

x = p1

x = p2

RA

DDR

ADRT

D

Figure 2:*e barrier of the reach-avoid game with a time limit ofA

only.
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second type, according to *eorem 1, the part of the at-
tacker’s optimal trajectory inside the detection range must
be a straight line. Let IP be the intersection point of the
optimal straight line inside the detection range and the
boundary of the detection range. *is point is called the
penetration point.

As shown in Figure 4, if the optimal strategies of the
players lead to the terminal states inSN,1, whichmeans A and
D coincide with each other on T before tA, according to the
definition of Apollonian circle, the possible terminal positions
of A and D can only be Pl � (xl, 0) or Pr � (xr, 0). Pl and Pr

are the left and right intersection points of the target line and
the IPD-based Apollonian circle. Let t1 be the terminal time
in this situation and Cout be the related optimal trajectory
outside the detection range. We have t1 < tA. Notice that
xD(0) � xD(t2) � 0, xO(t2) � xIP

/(1 − α2)>xIP
.*us, it can

be easily found out that the distance between IP and Pr is
longer than that between IP and Pl. Considering that all the
points on T between Pl and Pr are inside the IPD-based
Apollonian circle, the attacker can reach any one of these
points without being intercepted, regardless of its time limit. If
the terminal neutral position is Pr, the attacker can reach any
point between Pl and Pr along the trajectory Cout and the
straight line between IP and that point within t1. *is new
trajectory leads to the victory of the attacker without reaching
the time limit. So, the terminal neutral position cannot be Pr.

Next, we investigate the situation that the terminal
neutral position is Pl. *ere always exists some point PN on
the right of Pl satisfies that |IPPN| − |IPPl|< vA(tA − t1).
Since PN is located between Pl and Pr, the attacker can reach
the target line along Cout and line IPPN without being
captured or reaching its time limit. In other words, the
attacker can always find a better strategy to avoid making the
game states terminate in SN,1 and the possible neutral states
cannot be in SN,1. *e proof is complete. □

*us, the set of the game’s neutral states SN consists of
SN,2 and SN,3 when A is initially outside of the circle of
detection. *is means that if the attacker is on the barrier
outside the detection range, it must reach its time limit once
it reaches the target line. From this conclusion, we can learn
that the optimal trajectory of the attacker must be the
shortest trajectory which guarantees the arrival of the

attacker atTwithout being intercepted in advance, nomatter
which kind of trajectory it is. If the optimal trajectory is not
the shortest, there are always some other trajectories that
ensure the arrival of A at T within tA. Moreover, the related
possible neutral terminal set is SN,1 here, which contradicts
*eorem 4. It can be seen that the shortest path which
guarantees the arrival atTwithout being captured in advance
has nothing to do with the time limit. If we obtain the shortest
path, the barrier can be easily constructed based on the length
of the related path and the attacker’s maximum range RA.

To construct the barrier of the game and reduce the
complexity of the investigation, we need to analyze the
aforementioned attacker’s shortest paths in all possible
situations first. We start with the bypassing trajectory. Here,
we give a simple conclusion which will be utilized in the
following part of the article.

Lemma 3. As shown in Figure 5, for a point P1 outside a
certain circle and a point P2 on the boundary of the circle, the
shortest path between them without penetrating the circle is as
follows:

LS �
P1P2, P2 ∈ Ω1,

P1Pi + P2Pi, P2 ∈ Ω2,
􏼨 (20)

where i ∈ L, R{ }, PL and PR are two tangent points of which
the corresponding tangent lines cross point P1. !e point Pi is
one of the tangent points which is nearer to P2.

According to the theorems given above, we can easily
obtain the optimal bypassing trajectory. Here, we give the
optimal trajectory without proof.

Lemma 4. If the initial location of the attacker is inside Area1
shown in Figure 3, the optimal strategy of it is moving vertically
downward. If the attacker is initially located in Area2, the
optimal strategy without penetrating the circle of detection
consists of three parts. !e first part is moving toward the lower
one of the tangent points of which the related tangent lines cross
A. !en, the second part is moving along the circle of detection
to point on the circle of which the y-coordinate is yD,0.
Moreover, the third part is moving vertically downward to T.

*en, we carry on investigating the penetrating trajec-
tory. Since a part of the attacker’s optimal trajectory is inside

Circle of Detection

Area2

Area1

D
RD

Figure 3: *e division of the space outside the detection range.

Circle of Detection

Apollonius Circle

D

A

IP

o
Cout

Pl Pr

Figure 4: *e position relation between the IPD-based Apollonian
circle and the target line.

Complexity 9



the detection range here, when A moves along the trajectory,
theremust be a point IF at which the attacker contacts the circle
of detection for the first time. *e coordinate of this point is
denoted as (xF, yF). Also, there must be an intersection point
of the circle of detection and the part of the optimal trajectory
inside the detection range. *is point is denoted as IP and the
coordinates of IP can be expressed as (xP, yP).

It is obvious that the penetrating trajectory consists of
two parts: the part before reaching IF and the part after
reaching IF. Lemma 3 has already proposed the optimal
trajectory of the former part and we focus on finding the
optimal trajectory of the latter part. Noticing that IF and IP

may not be the same point. So, the penetrating trajectory can
be further divided into two subtypes:

(1) *e first touching point IF and the penetration point
IP are the same. *e related trajectory is called the
directly penetrating trajectory.

(2) *e first touching point IF and the penetration point
IP are different points. *e related trajectory is called
the bypassing-penetrating trajectory.

It is obvious that if IF and IP are different points, the
optimal path that connects these two points is the arc IFIP

⌢

with a radius of RD. Moreover, it is indisputably that IP is
below the point IF. So, the part of trajectory after reaching IF

is the combination of the arc IFIP

⌢
and the part of trajectory

after reaching IP. *e former part is simple. In the following
part, we need to answer the questions of what the optimal
trajectory of A is after the attacker reaches IP and where the
optimal IP is to propose the optimal trajectory of the part
after it reaches IF.

As mentioned above, the parameters RD, yD,0, and RA all
influence the related trajectory and need to be analyzed. To
obtain the possible shortest penetrating trajectory, we need
to find out the condition that ensures the existence of this
kind of trajectory first. From Lemma 4, we can learn that the
point IP must be located in Area2 shown in Figure 3. *is
means that yP⩾yD,0. According to Lemma 2, the space
(x, y)|y >RA􏼈 􏼉 is always inside the DDR. *us, if the at-
tacker can enter the detection range and acquire an equi-
librium outcome, yP should satisfy that yP <RA. *e
conditions yP⩾yD,0 and yP <RA cannot be met simulta-
neously when yD,0⩾RA. So, if the attacker can move along a
penetrating trajectory and reach the target line, there must

have yD,0 <RA. *is also means that if yD,0⩾RA, the attacker
can only move along the bypassing trajectory.

Also, we can learn from Lemma 1 that the attacker can
never reach any point outside the Apollonian circle once it is
detected. So, if the IPD-based Apollonian circle does not
intersect with T and A enters the detection range from IP,
the attacker can never reach T and the defender wins the
game. *us, the attacker can enter the detection range only
when the IPD-based Apollonian circle intersects with T.
*is condition means that the lowest point on the related
Apollonian circle is on T or inside ΩT, which can be
expressed as follows:

yO − rO �
yP − α2yD,0

1 − α2
−

α
1 − α2

�����������������

xP( 􏼁
2

+ yP − yD,0􏼐 􏼑
2

􏽲

⩽0.

(21)

Simplifying this in the equation, we have as follows:

y
2
P −

α2

1 − α2
x
2
P⩽α

2
y
2
D,0. (22)

In the rest part of this section, we will analyze the
possible situations related to the parameters RD, yD,0, and
RA and the attacker’s optimal trajectories in these situations.
*is means we need to answer the question of which kind of
trajectory the attacker should choose based on the values of
the parameters and provide the precise form of the related
paths. From inequality (22), we have a simple conclusion.

Theorem 5. If RD ∈ (0, ((1 − α2)/α)yD,0), the attacker
cannot enter the detection range without losing the game. In
this situation, the attacker can only move along the bypassing
trajectory to bypass the defender’s detection range.

Proof. Let us investigate the inequality (22). Similarly, we
only consider the situation when xP > 0. It is convenient to
build a polar coordinate system to help investigate the
optimal trajectory in this situation. Let the pole be located on
(0, yD,0), and the polar axis be parallel to the x-axis of the
Cartesian coordinate system. *e coordinates of IP can be
expressed as (RD, θP). *e polar coordinate of IF is denoted
as (RD, θF). Moreover, we have the following equation:

RD cos θi � xi,

RD sin θi � yi − yD,0,
􏼨 (23)

where i ∈ P, F{ }. From the definition of the point IP we can
learn that the distance between IP and D when the attacker
enters the detection range is RD. So, the inequality (22) can
be rewritten as follows:

f1 θP( 􏼁 � RD sin θP + yD,0􏼐 􏼑
2

−
α2

1 − α2
RD cos θD( 􏼁

2⩽α2y2
D,0,

(24)

where θP ∈ [0, π/2]. *e function f1(θP) increases mono-
tonically with the raising of θP. So, if minf1(θP)> α2y2

D,0,
the inequality (22) is never true. Moreover, the attacker can
only move along the bypassing trajectory to bypass the

PL
PR

P1

P4

P3

P2

A

A

(A)
Ω1

Ω2

Figure 5: *e shortest path between a point outside and a point on
the circle without penetrating it.
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detection range here. *is situation can be expressed as
follows:

minf1 θP( 􏼁 � f1(0) � y
2
D,0 −

α2

1 − α2
R
2
D > α

2
y
2
D,0, (25)

which can be rewritten as follows:

RD <
1 − α2

α
yD,0. (26)

*us, we complete the proof.
When there exists some point IP that satisfies condition

(22) and xP > 0, according to the proof of *eorems 1 and 4,
the optimal trajectory of A after it reaches IP must be a
straight line connecting IP and some point Pend on T. As
shown in Figure 4, this point Pend is Pl, the left intersection
point of the related Apollonian circle and T, when Pl is on
the right of IP. Moreover, the point Pend is the point below IP

when Pl is on the left of IP. *e optimal trajectory of A

depends on the location of Pl. Let xl be the x-coordinate of
Pl. Here, we give an important theorem.

Theorem 6. If RD ∈ ((
�����
1 − α2

√
/α)yD,0,

�����������
((1 + α2)/α2)

􏽰

R2
A − 2RAyD,0 ) and yD,0 <RA, the optimal trajectory of A

must be the penetrating trajectory when it is located in Area2.

Proof. First, as stated above, if the attacker can move along
the penetrating trajectory, yD,0 must be smaller than RA.
Assume there exists some point IP inside Area2 that meets
the condition that the related Pl is on the right of IP. When
xP > 0 and the attacker moves along the circle of detection
from IF to (RD, yD,0) (PR to P3 in Figure 5), it must reach
that IP before reaching the point (RD, yD,0). Moreover, the
optimal trajectory inside the detection range is moving
vertically downward from that point, which is shorter than
moving to the point (RD, yD,0) and then moving downward.
*is means that the bypassing trajectory is not optimal here.

From Figure 4, it can be easily found out that, if the point
Pl related to the point (RD, yD,0) is on the left of (RD, yD,0),
there must exist a certain IP that meets the condition given
above. *is means that when the variable RD satisfies the
following condition,

xP − xl � RD −
RD

1 − α2
−

����������������

α
1 − α2

RD􏼒 􏼓
2

− y
2
D,0

􏽳

⎛⎝ ⎞⎠ �

����������������

α
1 − α2

RD􏼒 􏼓
2

− y
2
D,0

􏽳

−
α2RD

1 − α2
> 0, (27)

the optimal trajectory of A must be the penetrating tra-
jectory. *is inequality can be rewritten as follows:

RD >

�����
1 − α2

􏽰

α
yD,0.

(28)

According to *eorem 3, we are investigating the op-
timal trajectory with RD <

����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱

here. It is essential to compare the variables (
�����
1 − α2

√
/α)yD,0

and
����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
to judge whether there is

an interval between these two variables or not. From the
condition that guarantees the existence of the penetrating
trajectory, we have yD,0 <RA. *is means that

z

zRA

1 + α2

α2
R
2
A − 2RAyD,0􏼠 􏼡 � 2

1 + α2

α2
RA − yD,0􏼠 􏼡> 2 RA − yD,0􏼐 􏼑> 0. (29)

It can be seen that the variable����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
increases monotonically with

the raising of RA. So, we have as follows:
����������������

1 + α2

α2
R
2
A − 2RAyD,0

􏽳

>

���������������

1 + α2

α2
y
2
D,0 − 2y

2
D,0

􏽳

�

�����
1 − α2

􏽰

α
yD,0.

(30)

*us, the interval between these two variables exists and
the proof is completed. *e conclusion when xP < 0 can be
obtained easily due to the symmetry and the related proof is
omitted here.

Here, the attacker’s optimal trajectory when RD ∈ [((1 −

α2)/α)yD,0, (
�����
1 − α2

√
/α)yD,0] remains unsolved. *is is the

most complicated situation because the bypassing trajectory,
the directly penetrating trajectory, and the bypassing-

penetrating trajectory are all possible. We need to investigate
the length of these three kinds of trajectories simultaneously.
Instead of directly analyzing this complicated situation, we
will discuss the two subtypes of the penetrating trajectory in
the interval of RD shown in *eorem 6 first. It is essential to
judge which one is better to obtain the attacker’s optimal
trajectory, and the analysis will lead to a significant con-
clusion that can help analyze the unsolved situation men-
tioned above.

Theorem 7. In the situation that xP > 0,
RD ∈ ((

�����
1 − α2

√
/α)yD,0,

����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
), and

yD,0 <RA, if the point IF satisfies that θF > θ1, the optimal
trajectory of the attacker is a bypassing-penetrating Trajec-
tory. If the point I F satisfies that θF⩽θ1, the optimal
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trajectory of the attacker is a directly penetrating trajectory.
!e variable θ1 meets the following condition:

zl

zθP

|θP�θ1 � RD. (31)

*e variable l is the distance between the penetrating
point IP and the left intersection point Pl shown in Figure 4.
*ere exists a certain angle θ2 < θ1 that satisfies

RD cos θ2 �
RD cos θ2
1 − α2

−

����������������������������

α
1 − α2

RD􏼒 􏼓
2

− yD,0 +
RD sin θ2
1 − α2

􏼠 􏼡

2

􏽶
􏽴

.

(32)

If IF satisfies θF⩽θ2, the optimal trajectory of the attacker
inside the circle of detection is moving vertically downward.

When xP < 0, if the point IF satisfies that θF < π − θ1, the
optimal trajectory of the attacker is a bypassing-penetrating
trajectory. Moreover, if the point I F satisfies that θF > π −

θ1, the optimal trajectory of the attacker is a directly pen-
etrating trajectory.

Proof. Let us investigate the situation that xP > 0 first. As
stated above, if the attacker can move along a penetrating
trajectory, the IPD-based Apollonian circle should have at
least one intersection point withT. *e point IP satisfies the
condition that the related Apollonian circle andT have only
one intersection point, and the x-coordinate of I1P is
xP/(1 − α2)>xP. From *eorem 6, we can learn that when
RD > (

�����
1 − α2

√
/α)yD,0, the left intersection point Pl related

to the point (RD, yD,0) is on the left of the point (RD, yD,0).
*is means that when IP moves clockwise from I1P to
(RD, yD,0), there must exist some point I2P of which the
related left intersection point Pl is below it. *is situation is
shown in Figure 6. *us, if the attacker moves along a
bypassing-penetrating trajectory, the intersection point IP

on this trajectory cannot be below I2P. *is means that if IF

moves clockwise from I1P to I2P, the optimal trajectory inside
the detection range should be the line segment connecting IP

and the related Pl. Consider that the x-coordinate of I2P
equals that of the related Pl, the polar angle of I2P should
satisfies that

xl − x I
2
P􏼐 􏼑 �

RD cos θ2
1 − α2

−

����������������������������

α
1 − α2

RD􏼒 􏼓
2

− yD,0 +
RD sin θ2
1 − α2

􏼠 􏼡

2

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − RD cos θ2 � 0. (33)

Defining function f2(θ2) � x1 − x(I2P), we have

f2 θ2( 􏼁 �
α2RDcosθ2
1 − α2

−

����������������������������

α
1 − α2

RD􏼒 􏼓
2

− yD,0 +
RDsinθ2
1 − α2

􏼠 􏼡

2

􏽶
􏽴

�
RD

1 − α2
α2cosθ2 −

��������������������

α2 − 1 − α2􏼐 􏼑η + sinθ2􏼐 􏼑
2

􏽲

􏼠 􏼡

�
RD

1 − α2
1 − α4􏼐 􏼑sin2θ2 + 2 1 − α2􏼐 􏼑η􏼐 􏼑sinθ2 + α4 + 1 − α2􏼐 􏼑η􏼐 􏼑

2
− α2􏼒 􏼓

α2cosθ2 +

��������������������

α2 − 1 − α2􏼐 􏼑η + sinθ2􏼐 􏼑
2

􏽲 ,

(34)

where η � yD,0/RD ∈ (0, α/
�����
1 − α2

√
). *e denominator of

nf2(θ2) is always positive. Hence, if f2(θ2) � 0, the nu-
merator of the function f2(θ2) equals zero. *e numerator
of f2(θ2) is the equation of a parabola related to sin θ2. From
equation (34), we can learn that

α2 − sin θP + 1 − α2( 􏼁η( 􏼁
2⩾0, (35)

which is

sin θP ∈ 0, α − 1 − α2􏼐 􏼑η􏽨 􏽩. (36)

Substitute the ends of the interval shown above into
f2(θ2), we have
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f2 θ2( 􏼁|sin θ2�α− 1− α2( )η �
α2RD

1 − α2
cos θ2 > 0,

f2(0) �
RD

1 − α2
α2 −

��������������

α2 − 1 − α2􏼐 􏼑η􏼐 􏼑
2

􏽲

􏼠 􏼡<
RD

1 − α2
α2 −

��������������

α2 − α
�����
1 − α2

√
􏼐 􏼑

2
􏽲

􏼠 􏼡 � 0.

(37)

Hence, there is only one unique θ2 satisfying equation
(33). All the points (RD, θ) satisfying θ< θ2 meet the con-
dition that xl <x(I2P), which means if the attacker chooses
one of these points as IP, the optimal trajectory of the

attacker inside the circle of detection is moving vertically
downward.

Next, we investigate the parameter θ1. *e distance
between IP and Pl is as follows:

l θP( 􏼁 �

�������������

xP − xl( 􏼁
2

+ y
2
P

􏽱

�

�����������������������������������������������������������������������

RD cos θP −
RD cos θP

1 − α2
+

�����������������������������

α
1 − α2

RD􏼒 􏼓
2

−
RD sin θP

1 − α2
+ yD,0􏼠 􏼡

2

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+ RD sin θP + yD,0􏼐 􏼑
2

􏽶
􏽵
􏽴

�
αRD

1 − α2

��������������������������������������������

cos θP −

���������������������

α2 − sin θP + 1 − α2( 􏼁η( 􏼁
2

􏽱

􏼒 􏼓
2

+ 1 − α2􏼐 􏼑
2
η2

􏽳

.

(38)

We take two possible IP between I1P and I2P into con-
sideration, the polar angle of the first IP is θP and that of the
second one is θP − Δθ, Δθ> 0. *is means that the second
point is below the first one. From Lemma 3 we can learn that
the optimal trajectory between these two points is an arc

with a radius of RD. *e distance of the trajectory from the
first point to T is l(θP) and the corresponding distance of
the second one is l(θP − Δθ) − RDΔθ. We define the function
as follows:

L θP( 􏼁 �
l θP( 􏼁 − l θP − Δθ( 􏼁 − RDΔθ

Δθ
�

l θP( 􏼁 − l θP − Δθ( 􏼁

Δθ
− RD. (39)

*us, when Δθ⟶ 0+, the equation (39) becomes

L θP( 􏼁|Δθ⟶ 0 �
zl θP( 􏼁

zθP

− RD. (40)

When L(θP)> 0, the trajectory related to the first pos-
sible IP is longer than that of the second point, which means
that the second one is better, and vice versa. So, if there exists
some point (RD, θ1) that L(θ1) � 0 and IF is above θ1, the
attacker should move clockwise from IP to (RD, θ1) and

D

Pl

IP
2

IP
1

IF

A1
o1

A2

o2

Pl

Figure 6: *e positions of I1P, I2P and the related Apollonian circles.
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enters the detection range there. If IF is below (RD, θ1), the
attacker should enter the detection from this point, which
means IF and IP are the same point. *us, it is essential to
check whether this point (RD, θ1) exists.

Substituting equation (38) into function zl(θP)/zθP, we
have

zl θP( 􏼁

zθP

�
αRD

1 − α2
g3 θP( 􏼁

g1 θP( 􏼁

����������������������

1 + 1 − α2􏼐 􏼑
2
η2/ g2 θP( 􏼁( 􏼁

2
􏽲 ,

(41)

where

g1 θP( 􏼁 �

���������������������

α2 − sin θP + 1 − α2􏼐 􏼑η􏼐 􏼑
2

􏽲

, (42)

g2 θP( 􏼁 � cos θP −

���������������������

α2 − sin θP + 1 − α2􏼐 􏼑η􏼐 􏼑
2

􏽲

, (43)

g3 θP( 􏼁 � sin θP + 1 − α2􏼐 􏼑η􏼐 􏼑cos θP − sin θP

���������������������

α2 − sin θP + 1 − α2􏼐 􏼑η􏼐 􏼑
2

􏽲

. (44)

It can be easily found out from (42) that g1(θP) decreases
monotonically with the raising of θP. Equation (43) can be
rewritten as follows:

g2 θP( 􏼁 � cos θP −

���������������������

α2 − sin θP + 1 − α2􏼐 􏼑η􏼐 􏼑
2

􏽲

􏼠 􏼡

cos θP +

���������������������

α2 − sin θP + 1 − α2􏼐 􏼑η􏼐 􏼑
2

􏽲

cos θP +

���������������������

α2 − sin θP + 1 − α2􏼐 􏼑η􏼐 􏼑
2

􏽲 ,

�
2 1 − α2􏼐 􏼑η sin θP + 1 − α2􏼐 􏼑η􏼐 􏼑

2
+ 1 − α2

cos θP + g1 θP( 􏼁
.

(45)

Since g1(θP) and cos θP decrease monotonically with the
raising of sin θP, g2(θP) is monotonically increasing. Con-
sider that min

η
g2(0) � g2(0)|η�0 � 1 − α> 0, we

haveg2(θP)> 0 and the denominator of equation (41) de-
creases monotonically.

*en, let us investigate equation (44). We define p �

(1 − α2)η ∈ (0, α
�����
1 − α2

√
). We take the derivative of equa-

tion (44) related to sinθP we have

zg3 θP( 􏼁

zsinθP

�
z

zsinθP

sinθP + p( 􏼁

���������

1 − sin2θP

􏽱

− sinθP

��������������

α2 − sinθP + p( 􏼁
2

􏽱

􏼒 􏼓

�

���������

1 − sin2θP

􏽱

− sinθP + p( 􏼁
sinθP���������

1 − sin2θP

􏽱 −

��������������

α2 − sinθP + p( 􏼁
2

􏽱

+ sinθP

sinθP + p( 􏼁
��������������

α2 − sinθP + p( 􏼁
2

􏽱

�

���������

1 − sin2θP

􏽱

−

��������������

α2 − sinθP + p( 􏼁
2

􏽱

+ sinθP

sinθP + p( 􏼁
��������������

α2 − sinθP + p( 􏼁
2

􏽱 −
sinθP + p( 􏼁
���������

1 − sin2θP

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(46)

Notice that
���������

1 − sin2θP

􏽱

>
���������

α2 − sin2θP

􏽱

>
��������������

α2 − sinθP + p( 􏼁
2

􏽱

. (47)

Substituting inequality (47) into equation (46), we have
as follows:

zg3 θP( 􏼁

z sin θP

> 0. (48)

*is means that g3(θP) increases monotonically, and we
have g3(θP)⩾g3(0) � (1 + (1 − α2)η)> 0. Consider that the
denominator of equation (41) decreases monotonically, the
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equation (41) is a monotonic increasing function. Notice
that sin θP ∈ [0, α − (1 − α2)η), the maximum and mini-
mum value of this function is as follows:

max
θP

zl θP( 􏼁

zθP

<
zl θP( 􏼁

zθP

|sin θP⟶ α− 1− α2( )η � +∞,

min
θP

zl θP( 􏼁

zθP

�
zl θP( 􏼁

zθP

|sin θP�0 �
αRD

1 − α2
1 −

�������������

α2 − 1 − α2􏼐 􏼑
2
η2

􏽱

􏼒 􏼓 1 − α2􏼐 􏼑η􏼐 􏼑

��������������

α2 − 1 − α2􏼐 􏼑
2
η2

􏽱 ���������������������������������

1 −

��������������

α2 − 1 − α2( )
2η2

􏽱

􏼒 􏼓
2

+ 1 − α2􏼐 􏼑
2
η2

􏽲 .

(49)

Consider the definition p � (1 − α2)η ∈ (0, α
�����
1 − α2

√
).

*e second equation of (49) can be rewritten as follows:

min
θP

zl θP( 􏼁

zθP

�
αRD

1 − α2
1

������

α2 − p
2

􏽱 ���������������������

1/ 1 −

������

α2 − p2
􏽱

􏼒 􏼓
2

+ 1/p2
􏽲 .

(50)

It can be easily found that minzl(θP)/zθP increases
monotonically with the raising of p. *us,

max
p

min
θP

zl θP( 􏼁

zθP

􏼠 􏼡< min
θP

zl θP( 􏼁

zθP

􏼠 􏼡|p�α
���
1− α2

√ �
αRD

1 − α2
1

α2
����������������������

1/ 1 − α2􏼐 􏼑
2

+ 1/α2 1 − α2􏼐 􏼑

􏽲 � RD.
(51)

Since min
θP

zl(θP)/zθP <RD, max
θP

zl(θP)/zθP >RD and

function zl(θP)/zθP increases monotonically, there is only
one special value θ1 that meets the following condition:

zl θP( 􏼁

zθP

|θP�θ1 � RD. (52)

*us, we prove the existence and the uniqueness of the
special value θ1.

Next, we investigate the relationship between variables
θ1 and θ2. Assume that θ2 > θ1. If IF satisfies θF � θ2,
according to the definition of the variable θ1, the optimal
trajectory of the attacker when θ2 > θ1 is moving clockwise
from point (RD, θ2) to (RD, θ1) and then moving vertically
downward. However, from the definition of θ2, we can find
that if the attacker moves vertically downward from the
point (RD, θ2), it can guarantee its arrival atT, and the latter
trajectory is shorter than the former one.*is contradicts the
definition of θ1. *us, there always has the condition that
θ1 > θ2.

*us, if the point IF satisfies that θF > θ1, the optimal
trajectory of the attacker is a bypassing-penetrating trajec-
tory. If the point I F satisfies that θF < θ1, the optimal
trajectory of the attacker is a directly penetrating trajectory.
Moreover, if IF satisfies that θF⩽θ2, the optimal trajectory of

the attacker is moving vertically downward from there. *e
conclusions when xP < 0 can be acquired easily from sym-
metry are omitted here, and we complete the proof. □

Now, we can analyze the situation that
RD ∈ (((1 − α2)/α)yD,0, (

�����
1 − α2

√
/α)yD,0). With *eorem 7

obtained, this complicated situation is solvable now.

Theorem 8. In a situation where RD ∈ (((1 − α2)/α)yD,0,

(
�����
1 − α2

√
/α)yD,0), the optimal trajectory of the attacker is the

bypassing trajectory.

Proof. Let us investigate the two kinds of penetrating tra-
jectories first. Consider the situation that xP > 0, xF > 0. *e
variables η and p defined in the proof of *eorem 7 meets
the following condition:

η �
yD,0

RD

∈
α

�����
1 − α2

􏽰 ,
α

1 − α2
􏼠 􏼡,

p � 1 − α2􏼐 􏼑η ∈ α
�����

1 − α2
􏽱

, α􏼠 􏼡.

(53)

According to equation (50) and condition (53), the
minimum value of min

θP

zl(θP)/zθP here satisfies that

Complexity 15



min
θP

zl θP( 􏼁

zθP

> min
p

min
θP

zl θP( 􏼁

zθP

􏼠 􏼡>min
θP

zl θP( 􏼁

zθP

|p�a
���
1− α2

√ �
zl θP( 􏼁

zθP

|θP�0,p�a
���
1− α2

√ � RD. (54)

Since zl(θP)/zθP is a monotonic increasing function, the
function L(θP) is always larger than zero in this situation.*is
means that the directly penetrating trajectory is always longer
than the bypassing-penetrating trajectory. Notice that
sin θP ∈ [0, α − (1 − α2)η), if the attacker’s trajectory is the
bypassing-penetrating trajectory, A should move clockwise
from IF to point (RD, yD,0) and then move along a line
segment connecting (RD, yD,0) and the left intersection point
of T and the related Apollonian circle. According to in-
equalities (27) and (28), when RD < (

�����
1 − α2

√
/α)yD,0, the left

intersection Pl related to the point (RD, yD,0) meets the
condition that xl >RD. From the proof of *eorem 3, we can
learn that if there exists some point on the attacker’s optimal
trajectory of which the x-coordinate is RD, it needs to move
vertically downward from that point. *us, the optimal
trajectory ofA in this situation is moving clockwise from IF to
point (RD, yD,0) and thenmoving vertically downward. It can
be easily found out that the optimal described above is exactly
the bypassing trajectory. *us, we complete the proof. □

Now, the optimal trajectories of the attacker in all
possible situations are obtained. *e optimal trajectories are
summarized as follows:

(1) When yD,0⩾RA, the optimal trajectory of the attacker
is the bypassing trajectory.

(2) When yD,0 <RA and
RD ∈ ((

�����
1 − α2

√
/α)yD,0,

���������
((1 + α2)/

􏽰

α2)R2
A − 2RAyD,0 ), the optimal trajectory of A is the

penetrating trajectory.*e penetrating trajectory can
be further divided into two subtypes in this situation
according to *eorem 7.

(3) When yD,0 <RA and RD⩽(
�����
1 − α2

√
/α)yD,0, the op-

timal trajectory of A is the bypassing trajectory.

When RD >
����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
, according to

*eorem 3, the barrier of the game is the same as the
barrier with a time limit of the attacker only. Since the
solution to the problem has already been obtained, it is
unnecessary to investigate the attacker’s optimal trajec-
tory in this situation. Moreover, it is worth noticing that
the optimal trajectory obtained in this section is still valid
if the defender is equipped with an infrared seeker or
vision sensor of which the detection area is usually a
sector rather than a circle. *e only difference is that we
need to further compare the special points
(RD, θi), i ∈ 1, 2, 3{ } with the endpoints of the sector’s arc
to build the optimal trajectory. For example, as shown in
Figure 7, if the polar angle of the endpoint E1 is larger
than the corresponding θ1 and θ3, part of the attacker’s
optimal trajectory is moving vertically downward from a
point E1 rather than moving clockwise to point (RD, θ1).
And if the polar angle of the endpoint E2 is between θ1
and θ2, the optimal trajectory is the same as that under the
condition that the defender has a circular detection range.

With the optimal trajectories in all possible situations
obtained, we can now investigate the barrier of the game
considered in this article.

5. Game of Kind

In this section, we give the complete solution to the reach-
avoid game with time limit and detection range. *e ex-
pressions of the related barrier in all possible situations are
provided. *e situations are classified based on the pa-
rameters RD, yD,0, and RA. Consider that the barrier
whenRD⩾

����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
is obtained in *e-

orem 3 and depicted in Figure 2; in this section, we mainly
focus on the situation that
RD <

����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
. Also, we only analyze

the situation that xA > 0, the barrier satisfying xA⩽0 can be
obtained easily via symmetry.

5.1. !e Reach-Avoid Game with a Time Limit and Detection
Range When yD,0⩾RA. According to Section 4, we can find
that the attacker can enter the detection range and reach the
target area only when the penetrating point IP satisfies θP > 0.
*is means that the point IP satisfies yP >yD,0. Consider that
the area (x, y)|y⩾RA􏼈 􏼉 is always inside the DDR. When
yD,0⩾RA, we have yP⩾RA and there is no possible IP that the
attacker can enter the detection range from it and reach the
lineT. Hence, the attacker can onlymove along the bypassing
trajectory under this condition.

Additionally, we need to investigate the position relation
between the circle of detection and the barrier BT with a
time limit only to judge whether the part of the barrier with
expression (17) exists. Assume that the circle of detection has
intersection points with barriers BT.*e intersection points
must meet the condition that

x
2

+ y − yD,0􏼐 􏼑
2

� R
2
D,

x
2

+ 1 −
1
α2

􏼠 􏼡y
2

+ 1 − α2􏼐 􏼑y
2
D,0 � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(55)

Simplifying equation (55), we have as follows:

y
2

α2
− 2yD,0y + α2y2

D,0 � R
2
D,

y

α
− αyD,0􏼒 􏼓

2
� R

2
D.

(56)

Notice that the coordinates of the points on BT meets
the condition that y> 0, the solution of equation (56) is as
follows:

y � α2yD,0 + αRD. (57)
Substituting equation (57) into the first equation in (56),

and we have
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x
2

+ α2 − 1􏼐 􏼑yD,0 +(α − 1)RD􏼐 􏼑 α2 − 1􏼐 􏼑yD,0 +(α + 1)RD􏼐 􏼑 � 0.

(58)

Since yD,0⩾0, α ∈ (0, 1), and RD > 0, we have
((α2 − 1)yD,0 + (α − 1)RD)< 0. Consider that x2⩾0, if
equation (58) has real roots, it needs to meet the condition
that

α2 − 1􏼐 􏼑yD,0 +(α + 1)RD > 0, (59)

which is

(1 − α)yD,0 <RD. (60)

So, the barrier considered in this subsection can be
divided into two situations: the one with (1 − α)yD,0⩾RD

and the one with (1 − α)yD,0 <RD. Both situations need to
be discussed in detail.

5.1.1. !e Reach-Avoid Game with a Time Limit and De-
tection Range When (1 − α)yD,0⩾RD. Let us first investigate
the former situation. In this situation, there exist at most one
intersection point between BT and the circle of detection,
which means the part of barrier with expression (17) does
not exist. Considering that the optimal trajectories of the
attacker must be the bypassing trajectory, the complete
barrier in this situation is as follows:

B � (x, y)|y � yD,0 −

�������

R
2
D − x

2
􏽱

, x ∈ [− m, m]􏼚 􏼛∪ (x, y)|y � yA, x ∈ (− ∞, − m)∪ (− m, +∞)􏼈 􏼉, (61)

where m �

���������������

R2
D − (RA − yD,0)

2
􏽱

. *e related barrier is
depicted in Figure 8. Comparing the barrier B with the
barrier BT which contains only the time limit of A, we can
find that the existence of the detection range expands the
area of ADR, which means it benefits the attacker. It is
obvious that if yD,0⩾RA, the expression of the barrier is y �

RA. *e defender cannot influence the barrier under this
condition.

5.1.2. !e Reach-Avoid Game with a Time Limit and De-
tection Range When (1 − α)yD,0 <RD. Next, we investigate
the situation when (1 − α)yD,0 <RD. In this situation, the
circle of detection has two intersection points with BT,
which are denoted as IR � (xIR

, yIR
) and IL � (− xIR

, yIR
).

When yIL
<RA, according to *eorem 2, the complete

barrier is as follows:

B � (x, y)|(x, y) ∈BT
, x ∈ − xIR

, xIR
􏽨 􏽩􏽮 􏽯∪ (x, y)|y � yD,0 −

�������

R
2
D − x

2
􏽱

, x ∈ − m, − xIR
􏼑∪ t xIR

, m􏼐􏽨 􏽩􏼚 􏼛

∪ (x, y)|y � RA, x ∈ (− ∞, − m)∪ (m, +∞)􏼈 􏼉.

(62)

*e related barrier is depicted in Figure 9.

5.2. !e Reach-Avoid Game with a Time Limit and Detection
Range When yD,0 <RA. According to Subsection 5.1, when

RD⩽(1 − α)yD,0, the expression of the barrier is equation
(61). Hence, we consider only the situations with
(1 − α)yD,0 >RD here. Moreover, this situation can be
further divided into two situations and we will analyze them
individually.

A1

E1 (RD, θ3)

(RD, θ1)

(RD, θ2)

A2

E2

Figure 7: *e optimal trajectories of the attacker with a sectorial detection range.
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5.2.1. !e Reach-Avoid Game with a Time Limit and De-
tection Range When RD ∈ (1 − α,

�����
1 − α2

√
/α]yD,0.

Consider that 1 − α<
�����
1 − α

√
<

�����
1 − α

√
/α, we first investigate

the situation that RD ∈ (1 − α,
�����
1 − α2

√
/α]yD,0. According to

Section 4, the optimal trajectory of the attacker here is the
bypassing trajectory. If an attacker is initially located on the
barrier and its optimal trajectory is the bypassing trajectory,
its initial position should satisfy that

h2(x, y) � lF(x, y) + RD θF

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yD,0 � vAtA, (63)

where

lF(x, y) �

����������������������������������

x − RDcosθF( 􏼁
2

+ y − RDsinθF + yD,0􏼐 􏼑􏼐 􏼑
2

􏽲

.

(64)

*e first part of the equation represents the length of the
segment connecting the initial position and the related first
touching point IF. *e second part is the length of the arc
connecting IF and point (RD, yD,0). Also, the third part is the
length of moving vertically downward towardT. When A is
initially located on the barrier, the total length of the three
parts should be RA. According to the definition of bypassing
trajectory, the segment AIF is a segmental tangent line of the
circle of detection, and the point IF is the related tangent
point. Hence, the corresponding barrier should be as
follows:

B � (x, y)|(x, y) ∈BT
, x ∈ − xIR

, xIR
􏽨 􏽩􏽮 􏽯∪ (x, y)|x � RDcosθ, y � RDsinθ + yD,0, θ ∈ π − θhigh, π − θ3,􏼐 􏼑∪ θ3, θhigh􏼐 􏼑􏽮 􏽯

∪ (x, y) h2(x, y) � vAtA, x ∈ − p2, − RDcosθhigh􏽨 􏼑∪ RDcosθhigh, p2􏼐 􏽩
􏼌􏼌􏼌􏼌􏼌 􏽯∪ t (x, y)|y � RA, x ∈ − ∞, − p2( 􏼁∪ p2, +∞( 􏼁􏼈 􏼉,􏼚

(65)

DDR

D

ADR

BT

B

T

Figure 8: *e barrier of the game with yD,0⩾RA and (1 − α)yD,0⩾RD.

DDR

D

ADR

BT

B

T

Figure 9: *e barrier of the game with yD,0⩾RA and (1 − α)yD,0 <RD.
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where θ3 � arc tan((yIR
− yD,0)/xIR

) is the polar angle of the
intersection points of BT and the circle of detection in the
polar coordinate system defined in *eorem 5, the variable
θhigh satisfies that

RDθhigh + yD,0 � vAtA θhigh⩾0 . (66)

*e corresponding barrier is depicted in Figure 10. *e
local enlarged figure of Figure 10 is illustrated in Figure 11.
*e part of the barrier outside the circle of detection on the
left consists of two parts.

5.2.2. !e Reach-Avoid Game with a Time Limit and De-
tection Range When RD > (

�����
1 − α2

√
/α)yD,0. Next, we in-

vestigate the situation thatRD > (
�����
1 − α2

√
/α)yD,0 and xA > 0.

It should be noticed that if the attacker enters the circle of

detection with IP satisfying θP > θ3, it cannot reach T

successfully. Hence, the optimal trajectory of A between IF

and point (RD, θ3) is the bypassing trajectory. According to
*eorem 7, the optimal trajectory of the attacker is the
penetrating trajectory here. *e related barrier is compli-
cated and needs to be discussed in different conditions.

First, we consider the situation that the variables θ1, θ2,
and θ3 satisfy θ3⩾θ2. Here, if the variable θF meets the
condition θF⩾min θ1, θ3􏼈 􏼉, the optimal trajectory of A after
arriving at IF is moving clockwise from point (RD, θF) to
IP � (RD, min θ1, θ3􏼈 􏼉) and then moving along the segment
IPPl. If an attacker is initially located on the barrier and its
optimal trajectory is the penetrating trajectory in this sit-
uation, its initial position should satisfy that

h3(x, y) �

lF(x, y) + RD θF − min θ1, θ3􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + l min θ1, θ3􏼈 􏼉( 􏼁, θF >min θ1, θ3􏼈 􏼉,

lF(x, y) + l θF( 􏼁, θF ∈ θ2, min θ1, θ3􏼈 􏼉􏼂 􏼃,

lF(x, y) + RD sin θF + yD,0􏼐 􏼑, θF ∈ 0, θ2( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(67)

*e function l(θ) is defined as equation (38), and the
function lF(x, y) is defined as equation (64). *e optimal
trajectory of each condition in expression (67) is illustrated
in Figure 12.

*e related barrier in this situation can be acquired by
comparing the length of the optimal trajectories shown
above and the time limit tA and is given by the following
expression:

B � (x, y)|(x, y) ∈BT
, x ∈ − xIR

, xIR
􏽨 􏽩􏽮 􏽯∪ (x, y)|x � RD cos θ, y � RD sin θ + yD,0, θ ∈ π − θhigh, π − θ3,􏼐 􏼑∪ θ3, θhigh􏼐 􏼑􏽮 􏽯,

∪ (x, y)|h3(x, y) � vAtA, x ∈ − RD cos θ2, − RD cos θhigh􏽨 􏼑∪ RD cos θhigh, RD cos θ2􏼐 􏽩􏽯,􏽮

· ∪ t (x, y)|y � RA, x ∈ − ∞, − RD cos θ2( 􏼁∪ RD cos θ2, +∞( 􏼁􏼈 􏼉.

(68)

Moreover, the related barrier is depicted in Figures 13
and 14. It can be found that the part of the barrier outside the
circle of detection shown in Figure 14 consists of three parts.

*en, we consider the situation that the variables θ1, θ2,
and θ3 satisfy θ2⩾θ3. In this situation, the attacker needs to
move along the boundary of the circle of detection from IF to
the point (RD, θ3) and then enters the circle of detection.
However, we notice that the point (RD, θ3) is located on the
barrier BT, and the time that costs the attacker to reach T

from the point (RD, θ3) is tA, which means A cannot move
from IF to (RD, θ3) and then reach T within its time limit.
*us, in this situation, the barrier of the game satisfies B �

BT, which is illustrated in Figure 2.
Now, the complete barrier of the original game with a

time limit and detection range in all possible situations is
provided. *e situations and the related barrier are pre-
sented in Table 2.

6. Numerical Simulation

In this section, we give several numerical simulations to
prove the correctness of the barrier obtained in this work. As
stated in Lemma 4, if the attacker is initially located inArea1,
it needs to move vertically downward. In this situation, if
yA(0)<RA, it wins the game, and vice versa. *e result is
simple and the simulations related to this situation are
omitted.

Case 1. *e initial positions of the defender and the at-
tacker are xD � (0, 5), xA,1 � (1, 2.3), which is inside ADR,
and xA,2 � (− 1.5, 2.8), which is inside DDR. *e speeds of
the players are vA � 1 and vD � 2, respectively. *e
maximum operating time of A is 3 and the maximum
detection range of D is 3. *us, the barrier of the game in
this situation satisfies equation (62). *e Apollonian circle
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DDR

D

ADR

BT

B

T

Figure 10: *e barrier of the game with yD,0 <RA and RD ∈ (1 − α,
�����
1 − α2

√
/α]yD,0.

DDR

B

y = RA

ADR

Figure 11: *e local enlarged figure of the part of Figure 10 surrounded by the black box.

D

A1

(RD, θ3)
(RD, θ1)

(RD, θ2)

IF, 1

IF, 3

A3

(a)

D

(RD, θ3)
(RD, θ1)

(RD, θ2)IF, 2

A2

(b)

Figure 12: *e optimal trajectories under different conditions when RD > (
�����
1 − α2

√
/α)yD,0. (a) *e optimal trajectories when the attacker’s

position meets the first or third condition in equation (67). (b) *e optimal trajectories when the attacker’s position meets the second
condition in equation (67).
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related to A1 intersects the target line while that of A2 does
not. Consequently, the attacker A1 can ensure its winning
by moving straight toward any point on the part of T
within the Apollonian circle, and the attacker A2 is
intercepted. *e results of the games are shown in
Figure 15.

Case 2. *e initial positions of the defender and the attacker
are xD � (0, 2.5) and xA � (4.3, 3.8), which is inside ADR,
respectively. *e maximum operating time of A is 4 and the
maximum detection range of D is 4.5. *e speed of the
attacker is vA � 1 and the speed ratio is α � 0.5. In this
situation, the expression of the related barrier is (66). As is

DDR

ADR

BT

B

T

D

Figure 13: *e barrier when min θ1, θ3􏼈 􏼉⩾θ2.

DDR

ADR

BT

B

Figure 14: *e local enlarged figure of the part of Figure 13 surrounded by the black box.

Table 2: *e barrier of the reach-avoid game with a time limit and detection range.

Condition Barrier
yD,0 ∈ (RA/α, +∞) Equation (16)

yD,0 ∈ [RA, RA/α]

RD ∈ (0, (1 − α)yD,0] Equation (61) and Figure 8

RD ∈ ((1 − α)yD,0,
����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
] Equation (62) and Figure 9

RD ∈ (
����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
, +∞) Equation (15) and Figure 2

yD,0 ∈ [0, RA)

RD ∈ (0, (1 − α)yD,0] Equation (61) and Figure 8

RD ∈ ((1 − α)yD,0, (
�����
1 − α2

√
/α)yD,0] Equation (65) and Figure 10

RD ∈ ((
�����
1 − α2

√
/α)yD,0,

����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
]

θ3⩾θ2: Equation (67) and Figure 13

θ2⩾θ3: Equation (15) and Figure 2

RD ∈ (
����������������������
((1 + α2)/α2)R2

A − 2RAyD,0

􏽱
, +∞) Equation (15) and Figure 2
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shown in Figure 16, the attacker moves along the bypassing
trajectory and wins the game. *e length of the trajectory is
3.9179, which is less than vAtA � 4. In this situation, the
attacker remains undetected during the game process.
Hence, the defender cannot adopt any strategy against the
attacker.

Case 3. *e initial positions of the defender and the attacker
are xD � (0, 1) and xA � (4.2, 3.8), which is inside ADR,
respectively. *e maximum operating time of A is 4 and the
maximum detection range of D is 5. *e speed of the at-
tacker is vA � 1 and the speed ratio is α � 0.6. In this sit-
uation, the expression of the related barrier is (68). *us, the
attacker should move along a bypassing-penetrating tra-
jectory to win the game, the penetrating point IP is (RD, θ1)
defined in equation (31). *e result of the game is shown in
Figure 17. *e attacker can choose some point on the target
line inside the Apollonian circle related to the point (RD, θ1)

to move toward and win the game. *e total length of the
trajectory is 3.9240, which is less than vAtA � 4.

If the attacker enters the detection range before reaching
(RD, θ1), it may lose the game. *is situation is shown in
Figure 18. Although the attacker moves toward Pl to save
time, it cannot reach the target line before reaching its time
limit.

Case 4. *e initial positions of the defender and the attacker
are xD � (0, 1) and xA � (4.05, 3.95), which is inside DDR.
*e rest part of the game configurations is the same as that in
Case 3. As is shown in Figure 19, in this situation, if A moves
along the bypassing trajectory, it must terminate inside ΩP

and lose the game. If A moves along the bypassing-pene-
trating trajectory, it needs to acquire the shortest path by
entering the circle of detection from the point (RD, θ1).
However, as is illustrated, the shortest path is still longer
than the maximum range A, which means the defender can
ensure its winning here.
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Figure 15: *e numerical simulation of the barrier related to
equation (62).
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Figure 16: *e numerical simulation of the barrier related to
equation (65).
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Figure 17: *e numerical simulation of the barrier related to
equation (68).
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Figure 18: *e situation when the attacker loses the game.
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*e numerical simulations given above prove the cor-
rectness of the barrier constructed in this work. With the
complete barrier obtained, the agent participating in the
game can judge whether it can win the game or not via the
initial configuration of the game easily and adopt proper
strategies against its opponent. If the attacker is located in
ADR, it can guarantee its victory by moving along the
optimal trajectory obtained in Section 4. Moreover, if it is
located in DDR, it can either choose to abort its mission or
sacrifice itself against the defender to help its teammate, if
exists, win the game.

7. Conclusion

In this article, we investigate the solutions to the reach-
avoid game with a time limit and detection range on an
unbounded planar domain. *is is the first attempt to add
both the maximum operating time of the player and the
detection range constraint into the classic reach-avoid
game at the same time. *e main achievements are listed as
follows:

(1) We prove that the attacker cannot leave the detection
range of the defender once it is detected, and we
obtain the expressions of the barrier when the at-
tacker is initially located inside the detection range.

(2) We investigate the possible equilibrium terminal
states of the game and prove that if the attacker is
located on the part of the barrier outside the de-
tection range, it must reach the target line at its time
limit when it moves along its shortest possible path
toward the target line. *is is a common conclusion
in the reach-avoid game with a time limit and de-
tection range and it shrinks the possible set of the
game’s terminal states and reduces the difficulty of
solving the problem.

(3) Using the properties of the circle and the form of the
players’ optimal strategies obtained via HJI

differential equations, we acquire the optimal
strategies and the related optimal trajectories of the
attacker participating in the reach-avoid game with a
time limit and detection range according to its initial
location in all possible situations. Moreover, these
trajectories are still valid when the defender is
equipped with an infrared seeker or vision sensor of
which the detection range is usually a sector.

(4) By comparing the length of the attacker’s optimal
trajectory and its time limit, we obtain the expres-
sions of the barrier with a time limit and detection
range in all possible situations for the first time.
Moreover, all the possible barriers are illustrated.

To our best knowledge, it is the first time that someone
brings the time limit and the detection range to the classic
reach-avoid game simultaneously. *e introduction of these
concepts makes the game more complex and more practical
than most of the previous works in this research direction.
Based on the expressions of the barrier obtained in this
article, the results of the game can be obtained immediately
when the initial configurations are given. So, the barrier
obtained in this article can be utilized to evaluate the bat-
tlefield situation which has critical real-time requirements.
In future, more practical and complex dynamic models,
rather than simple motion, will be considered. Also, the
game with a complex environment such as consisting of
obstacles will also be one of our focuses.
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