
Research Article
Travel Matrix Decomposition for Understanding Spatial Long-
Distance Travel Structure

Hiromichi Yamaguchi ,1 Mashu Shibata,2 and Shoichiro Nakayama3

1Institute of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan
2Graduate, School of Science and Engineering, Kanazawa University, Kanazawa, Japan
3Institute of Transdisciplinary Sciences, Kanazawa University, Kanazawa, Japan

Correspondence should be addressed to Hiromichi Yamaguchi; hyamaguchi@se.kanazawa-u.ac.jp

Received 15 September 2022; Revised 19 December 2022; Accepted 9 January 2023; Published 8 February 2023

Academic Editor: Hiroki Sayama

Copyright © 2023 Hiromichi Yamaguchi et al.Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Mobile phone location data enable us to obtain accurate and temporally detailed long-distance travel distribution. However, the
traditional long-distance travel distribution model cannot normally handle this detailed temporal information. Tis study proposes
an approach for handling temporally detailed information of long-distance travel distribution. Considering this approach, the origin-
destination matrix decomposes into two variables (indicators): destination amenity and travel cost. Tey can be interpreted as
composite indicators of several variables that are treated in the travel-destination choice multinomial logit model. Because they are
calculated only from the origin destination, we can discuss their detailed temporal variations. In this study, time changes in
destination amenities and travel costs of interprefectural travel in Japan are calculated to confrm the value of this approach. Tese
indicators have succeeded in describing the pattern of domestic long-distance travel in Japan. Tese quantifed indicators have
facilitated the understanding of the national land structure.Tey are useful as outcomemeasures for policy-making. Moreover, these
indicators explain the temporal applicability of the destination choice model. Specifcally, the results of destination amenities have
a large seasonal variation. Tis indicates that the parameters of the destination amenity model (i.e., the coefcients of the destination
variables) are not seasonally stable. Terefore, this must be considered when dealing with destination choice for long-distance travel.

1. Introduction

Travel behavior outside metropolitan areas is more difcult
to characterize than that within the metropolitan area, which
is often routine and stable. In this study, we call such travel
behavior outside the metropolitan area “long-distance
travel” and address its difculty caused by two features of
long-distance travel: the small frequency of trips per person
and the large variation in travel frequency among in-
dividuals. Tese characteristics make surveys with random
sampling questionnaires inefcient because most re-
spondents do not undertake long-distance travel during the
year. However, some people travel long distances at such
a high frequency that they cannot easily write a yearly re-
cord. Tus, few surveys can accurately capture country-
widelong-distance travel.

To solve these data limitations, several scholars have
developed techniques to complement the whole from small-
sized data. For example, the gravity model [1], which is
traditionally commonly used in transportation models,
describes simple regularity. It shows the relationship be-
tween trip distribution and the zone size/travel level of
service (LOS). Tis regularity was pointed out more than
70 years ago [2]. Tis model is commonly used in recent
studies (e.g., Lenormand et al. [3], Zhang et al. [4], Cordera
et al. [5], Chai et al. [6], and Grosche et al. [7]). Erlander and
Stewart [1] showed that the parameters of the gravity model
can be reasonably estimated even with samples as small as
1,000. Although their calculations are for inner-city trafc,
the results show the ability of the gravity model to com-
plement and predict the entire origin-destination (OD)
matrix with a small sample of data. Te disaggregated
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discrete choice model approach (e.g., Kato et al. [8], Yao and
Morikawa [9], and Fu et al. [10]), which deals with travel
destination choice, is of similar values. Tese models allow
us to understand complementary travel distribution and
predict its future values. Te data required to estimate the
coefcients are the disaggregated response results of the
questionnaire. Moreover, the required number of samples
for this estimation is sufciently smaller than that for all OD
trafc volume estimations.

Passively collected location data (e.g., mobile phone
data) can solve the sample size problem. Tere is the
available information on a large sample to create an OD
matrix for long-distance travel. Moreover, several studies
have already used mobile phone location data to study long-
distance travel [11–14]. Terefore, the requirement for
complementing the travel distribution by simple regularities
is smaller than it has been in the past.

However, attempts to applymobile phone location data to
the traditional model have the following problems. First, some
information that is readily available in the questionnaire is
lacking. For example, information about the “destination,”
purpose of the trip, and the transportation mode is not di-
rectly available. However, this will be less of a problem in the
future because several approaches have already been proposed
to infer this information (such as purpose and destination
identifcation) [13, 15, 16] and travel mode identifcation [17].
Second, the temporal detail of the model is constrained by the
explanatory variables. We can now use mobility information
with temporal and spatial details. On the contrary, the so-
cioeconomic and travel LOS indicators often do not have
sufcient temporal and spatial resolutions. Consequently, the
temporal detail of mobility data may be sacrifced in the
traditional approach. Pitombo et al. [18, 19] propose a more
accurate distribution model by applying decision tree algo-
rithms. Nevertheless, it has the same limitation for applying it
to the temporal detail. Terefore, several approaches have
been proposed to fnd new patterns (regularities) by applying
the factorization approach to mobility data [14, 20, 21].

Here, the combination of mobile phone location data and
traditional models is used to search for newly available in-
formation while avoiding the second problem. Tis study
proposes an approach based on this idea. Regarding this ap-
proach, temporally detailed information is treated by applying
a simple description by the traditional travel-destination choice
model. A key feature of this approach is that the two indicators,
namely, destination amenities and travel costs, are estimated
directly from mobile phone data, rather than as functions of
variables such as travel time or population. Destination
amenities and travel costs have diferent spatial impacts.
Terefore, these indicators can be estimated by a simple as-
sumption and an ODmatrix in whichmost of the elements are
flled. If multiday ODmatrices are used, these indicators can be
estimated for each of those days. Tus, we can determine
detailed temporal changes in travelers’ perceptions of desti-
nation amenities and travel costs. Tis information is difcult
to obtain using the model that describes them as a population
or travel time function. Tis model difers from other travel
destination choice models that use large-scale data records [22]
because these indicators are estimated directly. Te “pairwise

constant” and region dummy in themodels of Zhu and Ye [23]
and Kristofersson et al. [24] are conceptually partly similar to
the two indicators used here. Nonetheless, it has a diferent
meaning and spatio-temporal treatment.

Here, the proposed approach decomposes the wealth of
information from the large sample by focusing on spatial
patterns so that the travel costs and amenities due to unknown
factors are also refected. Tus, compared with the traditional
approach, the proposed approach is less capable of un-
derstanding the mechanism, but it provides additional in-
formation to understand the national land structure without
missing any information in the hypothesis setting phase.

To confrm the value of this approach, we calculate the
time changes in destination amenities and travel costs of
interprefectural travel in Japan. Te results confrm the
following two values: (1) the simple indicator describes the
pattern of long-distance travel in Japan and (2) the time
variability of these indicators informs the temporal appli-
cability of the destination choice model. Considering the
frst value, the information obtained here is consistent with
the expected (known) pattern. Tis indicates that we have
successfully quantifed the destination amenities and travel
costs as perceived by the traveler. In addition, for the travel-
cost indicator, we succeeded in revealing the national land
structure without generating complex LOS data for long-
distance travel.

Te second value clarifes the additional information
obtained from the proposed approach. Te time-series
features of destination amenities require attention because
this indicator is constantly changing, and it has a large
seasonal variation. Tis indicates that the parameters of the
destination amenity model (the coefcients of the destina-
tion variables), which are estimated by information biased
toward a particular season, are difcult to apply to other
seasons. Tis point must be considered when dealing with
destination choice for long-distance travel. To address this
concern, we can use mobile phone location data as a pow-
erful data source because of these data’s capability to provide
a sufcient sample at any given time. In addition, we also
succeeded in characterizing some seasonal variations in
people’s sensitivity to LOS.

Te rest of this study is structured as follows: Section 2
presents the approach of this study, which contains the OD
travel matrix data and themethodology used to calculate and
analyze the destination amenities and travel costs. Section 3
discusses the static results derived from the ODmatrix of all-
time points to clarify the spatial characteristics of the two
indicators. Section 4 illustrates the estimation of time trends
of the two indicators based on four years of daily data
(1,461 days), and it summarizes the characteristics of their
seasonal changes. Section 5 concludes the study. Finally, in
section 6, we discuss the value of the results obtained in this
study and the scope of application of the proposed approach.

2. Research Design

2.1. Data. We use the OD matrix data from “Mobile Spatial
Statistics” [25], a statistic of population distribution that uses
network-driven mobile phone network records. “Mobile
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Spatial Statistics” is also used in the studies of Kubo et al.
[26], Yamaguchi and Nakayama [14], and Hara and
Yamaguchi [27]. Tese aggregate data are generated from
the operational data of 85 million cellular phones provided
by NTT DOCOMO, Inc. Moreover, it enables the collection
Japan’s population distribution with an approximate hourly
frequency. We will analyze 1,461-day interprefectural OD
matrices that are created using the stay and residence in-
formation in the operational data. Tis is expressed in the
equation as follows:

Qd �

q1,1,d · · · q1,j,d · · ·

⋮ ⋱

qi,1,d qi,j,d

⋮ ⋱

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,∀(d ∈ D),

(1)

where d indicates the date (i.e., D � [2014.3.1, . . . , 2018.2.28].
In addition, i, j ∈ Z denote residence and travel destination,
respectively, and are aggregated for each of the 47 prefectures.
Terefore, qi,j,d is the estimated number of people staying in
zone j. Furthermore, their place of residence from the mobile
phone operation data is denoted by i. Tis study will be
conducted using only prefecture-based aggregate data; i.e., no
personal information will be handled. Tese aggregate data
were generated by NTT DOCOMO, Inc. from mobile phone
operational data after necessary processing to protect privacy
(deidentifcation, estimation, and disclosure limitation). Terada
et al. [25] explain the detailed procedures.

Here, we analyzed the aggregate data Qd, which were
generated from information during the specifc time period
13:00–14:00. Tis is when people most likely stay at their
travel destinations. Tis indicates that we assume that the
travel destination is the prefecture, where the traveler is
staying at 13:00–14:00. Tis assumption may deviate from
people’s perceptions of the destination. Tis study presents
an analysis under this assumption. Te proposed approach
does not depend on this time assumption, and we can apply
it directly if more accurate and detailed ODmatrices such as
those of Bachir et al. [28] are obtained.

Tus, Z is the set of all 47 prefectures in Japan. In this
study, interprefecture travel is treated as an example of long-
distance travel.Te administrative boundaries of prefectures
shown in Figure 1 are historically decided; in Japan, most
boundaries are set in straits or mountain ranges. As a result,
many of the locations coincide with the boundaries of the
daily living area, so this matrix shows a large number of
unusual trips. As can be seen from the scale in Figure 1, most
of the nonadjacent OD pairs are more than 100 km in linear
distance, which is also close to the defnition (larger than
100 km) adopted in Axhausen et al. [29].

2.2. Basic Characteristics of the Target OD Matrix. Here, we
summarize the basic characteristics of the data used in the
analysis. Te number of elements analyzed is 47×(47 − 1)×
1,461. In this set, only 19,138 (0.61%) of the combinations
were either not observed or confdential information owing

to the small size of the sample. Te data used in the analysis
are mostly flled with numbers greater than zero.

Here, we consider the original day-to-day dynamics of
the data. Figure 2 shows the day-to-day dynamics of the
number of travelers for the two OD pairs over a one-year
period.Tese fgures show the following two characteristics
of the time-series change for long-distance travel: (1) there
are several peaks in the period. However, they difer among
OD pairs. For example, the travel from Tokyo to Hokkaido
(a) has large short-term peaks in May, August, and January.
In contrast, the trip from Fukuoka to Tokyo (b) has rel-
atively long and weak peaks in April and late January. (2)
Te volume of of-peak travel also varies with season, even
on the same day of the week. For example, the travel from
Hokkaido to Tokyo (a) in July and February difers
signifcantly.

Te time trends shown here illustrate the difculty of the
approach to classify the dates into several groups since it is
difcult to establish a clear grouping. Special peaks are
observed inmore than fve periods, as shown in Figure 2.Te
number of peaks may increase after checking other OD
pairs. Furthermore, even if we focus on periods other than
the peaks and consider each day of the week, seasonal
diferences still have their impact. In addition, seasonal
variation is likely to be diferent for each OD pair. In
contrast, our approach allows us to understand the char-
acteristics of these complex temporal variations by
extracting information on two types of spatial patterns at all-
time points.

2.3. OD Matrix Decomposition Method. Tis section de-
scribes how to derive the two types of indicators by
decomposing the OD matrices using the concept of the
destination choice model.

We consider a multinomial logit model for long-distance
travel destination choice as follows:

0 250 500 km
Hokkaido
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Figure 1: Target 47 prefectures.
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Pi,d(j) �
exp Vi,j,d􏼐 􏼑

􏽐j∈Zexp Vi,j,d􏼐 􏼑
, (2)

Vi,j,d � ai,j,d + ci,j,d, (3)

where Pi,d(j) is the probability that a resident of prefecture i

will travel to prefecture j (stay at 13:00) on date d. Tis form
is the most basic multinomial logit model [30]. If i � j, then
it corresponds to the probability of “not traveling outside the
residence prefecture.” Tese variables will be directly esti-
mated in this study as unknown variables throughmaximum
likelihood.

Te systematic component of utility Vi,j,d in most des-
tination choice logit models is formulated as a linear sum of
the relevant indicators multiplied by the coefcients. Con-
sidering the approach, socioeconomic indicators of desti-
nations (destination variable) and the transportation level of
service (LOS) are applied as the relevant indicators. For
example, Marrocu and Paci [31] used the following variables
as destination variables for destination choice models of
long-distance travel: GDP, population density, natural en-
vironment (e.g., area of natural parks), and cultural and
recreational attractions (e.g., number of museum visitors
and restaurants). Tey also used the following variables as
transportation LOS: geographical distance and prices.
Similarly, Kato et al. [8] used the following variables as
destination variables for destination selection in Japan:
population, working population, GDP per capita, percentage
of employees in the service sector, number of accommo-
dations per area, and Hokkaido and Okinawa dummies.
However, the temporal variation of these indices is smaller
than that of the OD travel volume. Terefore, models using

the previously mentioned indices can only deal with tem-
porally aggregated behavior, such as the total value for one
year. Tey cannot deal with detailed temporal changes, such
as equation (1).

In contrast, this study calculates two types of indices,
namely, (ai,j,d and ci,j,d), at each time point d. Tese two
types of indicators are obtained by decomposing the OD
matrix information into two types of spatial patterns. In this
study, the same spatial pattern as in previous studies will be
used. For example, the indicators used in the model of
Marrocu and Paci [31] fall into the following two types of
spatial patterns: indicators defned per destination location
(GDP, population density, natural environment, and cul-
tural and recreational attractions) and indicators defned
per zone pair (transportation LOS).Te approach proposed
in this study estimates all indicator values themselves,
applying only the constraints that indicate the two types of
spatial patterns described previously, rather than pop-
ulation or other indicators. With this approach, two types
of more accurate indicators can be calculated for each
time point.

Tus, the time variation of interprefectural travel dis-
tribution can be explained by the time-series change of two
calculated indices (ai,j,d and ci,j,d). Here, the model’s form
corresponds to the logit model of destination choice as in
(2). Hence, the calculated indices (ai,j,d and ci,j,d) can be
interpreted as composite indices of multiple variables in
several destination choice models.

Te defnitions of the two indicators (ai,j,d and ci,j,d) are
calculated in this study, and their meanings are explained as
follows: frst, ai,j,d is assumed to be a variable defned for
each destination on each date, satisfying the following
equations:
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Figure 2: Day-to-day dynamics of the number of travelers for 2OD pairs. (a) (Residence zone and destination zone)� (Tokyo, Hokkaido).
(b) (Residence zone and destination zone)� (Fukuoka, Tokyo).
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ai,j,d � ak,j,d,∀(k, j, d) ∈ ([Z − j􏼈 􏼉] × Z × D), (4)

ai,i,d � 0, ∀(i, d), ∈ (Z × D). (5)

Second, (4) indicates that the same value applies in the
case of the same travel destination, excluding the i � j

component. Tird, (5) shows that this indicator is zero when
“not traveling outside the prefecture” (with i � j). Index ai,j,d

is the composite index of the destination variables as de-
scribed.Tis indicator is expected to account for cultural and
recreational attractions, population, and economic size as
pointed out by Marrocu and Paci [31]. Subsequently, we will
refer to index ai,j,d as the “travel destination amenity.”

Let ci,j,d be a variable defned for each OD pair (i, j) and
let it satisfy the following equations:

ci,j,d � cj,i,d,∀(i, j, d) ∈ (Z ×[Z − j􏼈 􏼉] × D), (6)

ci,i,d � 0, ∀(i, d) ∈ (Z × D). (7)

Furthermore, (6) shows that the variable remains con-
stant though the OD direction is reversed. (7), together with
(5), sets the deterministic utility of “not traveling outside the
prefecture” to zero (fi,i,d � 0,∀(i, d) ∈ (Z × D)). Te vari-
able set by Kato et al. [8] for each OD pair (i, j), regardless of
such direction, is a log-sum variable derived from the mode
choice model. Tis variable is the expected utility of the
mode choice result obtained by calculating and synthesizing
transportation LOS, such as travel time, fare, frequency, and
transit time for each mode. Te ci,j,d calculated in this study
is also an index calculated by synthesizing such multiple
transportation LOSs. Subsequently, index ci,j,d will be re-
ferred to as “travel cost.”

In this study, these two types of variables are unknown,
and the value that maximizes the log-likelihood is estimated
as follows:

max
Ad,Cd( ) 􏽘

i∈Z
􏽘
j∈Z

qi,j,d lnPi,d(j)􏼐 􏼑,∀d ∈ D,

s.t.(2) − (7), (14),

Ad �

0 a1,2,d · · · a1,47,d

a2,1,d 0 · · · a1,47,d

⋮ ⋮ ⋱

a2,1,d a1,2,d 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Cd �

0 c1,2,d · · · c1,47,d

c1,2,d 0 · · · c2,47,d

⋮ ⋮ ⋱

c1,47,d c2,47,d 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(8)

where (Ad,Cd) cannot be uniquely determined for all the
variables owing to rank defciency. Tis is because, in this
model, the following relation holds for any k.

Ad + Cd � Ad + kX( 􏼁 + Cd − kX( 􏼁.

X � 1 − E �

0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1

⋮ ⋮ ⋮ ⋱

1 1 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(9)

Tis issue can be resolved by fxing one variable, either
Ad or Cd.

Terefore, we will estimate the unknown variables with
one additional constraint:

ai,(j�Tokyo),d � 0,∀(i, d) ∈ (Z − j􏼈 􏼉 × D). (10)

Tis indicates that Tokyo’s destination amenity is fxed at
zero, and all the other variables are calculated at their relative
values. Notably, the destination amenity and travel cost
presented as follows are relative values estimated under the
constraints of (10). Tus, the absolute values are mean-
ingless, and we need to focus only on spatial relationships of
values. More care needs to be observed when comparing the
same value to other periods since the change in value in-
cludes the change in destination amenity in Tokyo. In this
study, we focus on indicators of spatial diferences that are
comparable even under this constraint.

Te method described here is unique as it focuses on
spatial patterns on the OD matrices. Te two composite
indices obtained here are identifed only according to the
spatial characteristics shown in the equations (4)–(7). Te
other basic approaches to analyze matrices (such as principal
component analysis) cannot handle indices such as Cd. Tis
is because the basic matrix decomposition is focused on
columns and rows. However, the travel OD matrix is
characterized by the fact that its diagonal components have
signifcantly diferent meanings from any other matrix (or
table) data. Moreover, they are strongly related to elements
whose directions are opposite. Our proposed approach is
unique as it extracts components that are tailored to the
nature of such travel information.

Te proposed decomposition approach corresponds to
a simple case of decomposing a matrix of odds ratios into
two spatial patterns as well. Te decomposed components
can be interpreted as the components of the utility function
of the destination choice behavior in the multinomial logit
model. If destination amenities and travel costs are con-
sistent with the assumptions of the spatial pattern, we obtain
two complete sets of indicators that consider travelers’
sensitivities as well. We should note that the information
obtained in the following sections resulted from calculations
based on these assumptions.

2.4. Analytical Procedures for Japanese Interprefecture Travel
Data. In this study, the proposed approach is applied to
Japanese interprefecture data to clarify its characteristics.

At frst, we apply the aggregated data in (11) to verify the
static characteristics of the interprefectural OD matrix while
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confrming the validity of the proposed approach. Tis is
expressed as follows:

Qall � 􏽘
d∈D

Qd. (11)

By applying this matrix Qall to the proposed approach,
the average destination amenity aj,all and travel cost ci,j,all
can be calculated.

In this study, the characteristics of the calculated in-
dicators are presented through several fgures and regression
analysis. For destination amenities, the following regression
analysis is applied as follows:

aj,all � α0,all + α1,all ln Pj􏼐 􏼑 + α2,all ln Wj􏼐 􏼑 + ej,all,∀j ∈ Z, (12)

where Pj is the population of prefecture j and Wj is the
number of employees in the lodging industry in prefecture j.
Te source for the population is the 2015 census; the source
for the number of employees is the 2014 economic census
[32]. Tis number of employees is considered to indicate the

size of the service industry for visitors, such as the tourism
industry, in each prefecture.

Te following regression analysis is applied to the es-
timated travel cost in order to clarify the relationship with
transportation LOS.

ci,j,all � β0,all + β1,allSi,j + β2,allHi,j + e
′

i,j,all,∀(i, j) ∈ ([Z − j􏼈 􏼉] × Z), (13)

where Si,j and Hi,j are explanatory variables for the travel
LOS between prefectural ofces, respectively. Si,j is the
straight-line distance between the prefectural ofces, and
Hi,j is the shortest travel time using multiple transportation
modes (air, rail, bus, and ships). For Hi,j, we applied the
values published in the national government statistics [33].

Ten, by applying the daily matrix to the proposed
approach, destination amenities and travel costs are

calculated for each date. Te variation of the two indicators
over time is discussed, showing the correlation coefcients of
the estimates and the coefcients of the regression analysis
(shown as follows). Te regression analysis is basically the
same simple model as in the static case but applied to all
days, respectively.

aj,d � α0,d + α1,d ln Pj􏼐 􏼑 + α2,d ln Wj􏼐 􏼑 + ej,d,∀(j, d) ∈ (Z × D). (14)

Here, since the assumption in (10) afects only the
constant term (α0,d), we can compare the other coefcients
(α1,d, α2,d) among diferent dates d. A similar regression

analysis is also performed for the estimated travel cost Cd as
follows:

ci,j,d � β0,d + β1,dSi,j + β2,dHj + e
′

i,j,d,∀(i, j, d) ∈ ([Z − j􏼈 􏼉] × Z × D). (15)
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3. Decomposition Results of the Static
OD Matrix

In this section, we describe the characteristics of the pro-
posed decomposition method, showing the results of ap-
plying the proposed approach to ODmatrix data aggregated
at only one point in time, as shown in (11).

3.1. Diference between the Observed and Estimated Results.
We compare the log-ratio matrix of the observed data Ball to
Aall + Call to verify the validity of the decomposition. More
importantly, Ball is the matrix defned by (16) and (17) as
follows:

Ball �

b1,1,all · · · b1,j,all · · ·

⋮ ⋱

bi,1,all bi,j,all

⋮ ⋱

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

bi,j,all � ln
qi,j,all

qi,i,all
􏼠 􏼡, (17)

where bi,j,all has the following relationship from (2) to (3):

bi,j,all ≈ ai,j,all + ci,j,all. (18)

Terefore, a comparison between the right and left sides
of (18) presents the ability of two diferent indicators
(Ad,Cd) for representing a long-distance travel distribution.

Figure 3 confrms the following three features observed
in the OD table Ball: (1) the diagonal components are all zero
as defned in (17). (2) Te closer the component to the
diagonal component, the larger the value is (likely to be
selected as a travel destination). Moreover, the farther the
component from the diagonal component, the smaller the
value is (less likely to be selected as a travel destination). Te
zones in this fgure are arranged based on the prefecture
codes assigned from northeast to southwest. Te adjacent
zones are spatially close to each other. Terefore, the
aforementioned characteristics indicate that several travelers
choose neighboring zones as their travel destinations. (3)
Only the component (column) with Tokyo and Osaka as
destinations has large values for most residential areas,
regardless of location. Tis feature indicates that Tokyo and
Osaka are the top travel destinations of several travelers
despite their spatial distance. Tis may be because Japan’s
major economic functions are concentrated in these two
cities.

A comparison between Figures 3 and 4 confrms that
they are approximately in agreement. Tis fnding can also
be confrmed from the scatter plot of Figure 5 and the
correlation coefcient (r � 0.997). Tese results indicate
that the characteristics of the OD matrix Ball between
prefectures can be explained by the two components of the
estimated travel cost to the migration Call and destination
amenity matrices Aall.

In our decomposition method, the two types of spatial
patterns represented by the two matrices are fully accounted
for, as we estimate all elements of matrices with minimal
spatial constraints. Under this assumption, the residuals,
excluding the observation error, can only be caused by the
following two reasons (cases where the model assumptions
are not satisfed): (1) travel costs difer depending on the
direction. For instance, the perceived LOS difers because of
diferent time values. (2) Te destination values vary by the
residential zone. For example, Hokkaido’s destination value
is greater for people in metropolitan areas than for people in
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Figure 3: Observed matrix Ball.

Fukuoka

Osaka

Tokyo

Hokkaido

Re
sid

en
ce

 zo
ne

Tokyo Osaka FukuokaHokkaido
Travel destination zone

-10

-8

-6

-4

-2

0

Figure 4: Estimated matrix (Aall + Call).

r = 0.997 

-12

-10

-8

-6

-4

-2

0

Es
tim

at
ed

 v
al

ue
 (A

al
l +

 C
al

l)

-10 -8 -6 -4 -2 0-12
Observed value (Ball)

Figure 5: A scatter plot of the observed log-ratios(Ball) and es-
timated (Aall + Call).

Complexity 7



rural areas. Figure 5 indicates that the efects of these dif-
ferences are signifcantly small in the context of Japan’s OD
matrix size. We disregard them and focus only on other
information (destination amenities and travel costs) to
clarify their characteristics.

3.2. Estimated Results of the Destination Amenity.
Figure 6 shows the estimation results of the destination
amenity Aall. Te fgure reconfrms the meaning of the three
constraint equations for destination amenity, namely, (4),
(5), and (10). First, constraint (4) implies that the destination
amenity of each prefecture is the same for all the residential
areas (excluding the diagonal component). Second, con-
straints (5) and (10) imply that the diagonal component and
destination amenity of Tokyo are zero.Te estimation results
of Figure 6 indicate that the diagonal component and
destination amenity of Tokyo are zero.

Subsequently, the diferences in the destination ame-
nities of each prefecture are examined. Te destination
amenity Aall indicates the attractiveness of a destination
toward travelers. For example, the probability of choosing
a destination is expected to be proportional to the number of
trips related to businesses, weddings, funerals, and other
relationship-based trips. Figure 7 confrms this relationship.
It shows the relationship between the estimated travel
destination amenity and each prefecture population. Te
fgure also confrms that the destination amenity of each
zone is strongly correlated with the logarithm of the pop-
ulation. Terefore, the destination amenity is mainly de-
termined by the population size. Tis result is consistent
with a previous study that developed an inter-regional travel
demand model for Japan based on a traditional approach
Kato et al. [8].

In contrast, there are several exceptions. For example,
Tokyo, Hokkaido, and Okinawa are located above the re-
gression line. Tis indicates that they have high destination
amenities. Tese prefectures have a higher value considering
the urban functions and tourist attractions than the pop-
ulation size. Tis indicates that they can strongly attract
tourists. On the contrary, regions such as Kanagawa, Sai-
tama, and Nara prefectures are below the regression line
(low destination amenity). Tus, they have a weak ability to
attract travelers relative to population size.

Terefore, the ranking of the destination amenity by
prefecture in Table 1 is examined. Te top and bottom fve
prefectures in this table show two types of rankings. Te
ranking on the left is the estimated destination amenity,
which is highly correlated with the population size as
confrmed in Figure 7. Te ranking on the right is the re-
siduals from a simple regression by population as shown in
Figure 7. Terefore, the ranking lists the prefectures with
high- and low-estimated travel destination amenities per
population size.Terefore, Okinawa, Hokkaido, andNagano
prefectures have high destination amenities per population
size, in addition to Tokyo. Tese zones are recognized as
resort areas, excluding Tokyo. Tese results indicate that the
destination amenity is a quantitative index that integrates
multiple attractions related to long-distance travel.

In contrast, Saitama and Nara prefectures have the
smallest population-corrected destination amenity. Tese
zones are adjacent to large cities similarly, such as Tokyo and
Osaka. Terefore, several people in these prefectures com-
mute to Tokyo and Osaka for work. When meeting those
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Table 1: Rank of destination amenity.

Ranks Destination amenities

Population
size-corrected

destination amenity
(diference from the
regression line of

Figure 7)
1 Tokyo +0.00 Okinawa +0.91
2 Hokkaido − 0.65 Hokkaido +0.71
3 Osaka − 0.75 Tokyo +0.62
4 Aichi − 1.09 Nagano +0.59
5 Fukuoka − 1.25 Yamanashi +0.40
43 Shimane − 2.98 Ibaraki − 0.40
44 Kochi − 3.07 Kanagawa − 0.46
45 Tokushima − 3.13 Chiba − 0.52
46 Tottori − 3.19 Saitama − 0.72
47 Nara − 3.28 Nara − 0.81
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from other prefectures, they may often prefer tomeet at their
workplace (Tokyo or Osaka) because of better accessibility
and recreational attraction. Consequently, the destination
amenity (ability to attract travelers) is smaller than the
population size. Moreover, the destination amenities of
Tokyo and Osaka are largely based on this mechanism.

In addition, Table 2 shows the results of the regression
analysis defned in (12). Table 2 shows that these two var-
iables are each statistically positively signifcant, as expected.
Te value of R2 indicates that these two variables can explain
most of the destination amenity variation. Te results show
that the results obtained by aggregating all periods are al-
most identical to the conclusions obtained with the tradi-
tional approaches. On the other hand, the value of our
approach in terms of destination amenities will become clear
in the next section, where a similar model is applied to
several time points.

3.3. Estimated Results of Travel Cost. We examine the esti-
mation results of the travel cost matrix Call from Figure 8.
Te diagonal component is zero based on the condition in
(7). In addition, the matrix is fully symmetric based on the
condition in (6). Te farther the distance from the diagonal
component, the larger the absolute value of the travel cost
tends to be. Each zone in Figure 8 is arranged in the same
order as that in Figure 3 (i.e., from northeast to southwest).
Terefore, the farther a pair of prefectures from the diagonal
component, the farther the actual Euclidean distance is. Te
travel costs shown in Figure 8 are also close to the actual
Euclidean distances.

An examination of the zone pairs of Tokyo departures
and arrivals shows that the absolute values are relatively
small, including the distant zones.Tis observation indicates
that convenient transportation is available to most areas in
Tokyo. Terefore, the air transportation network at Haneda
Airport has a strong infuence.

Terefore, a close examination of the diagonal compo-
nents shows certain blocks with small absolute values of
travel cost.Te two yellow-colored squares in the lower right
corner of Figure 8 represent the four and seven prefectures
in Shikoku and Kyushu islands, respectively. Tis fgure
indicates that there are a lot of mutual travel activities inside
a similar island. Other blocks from the southwest (from the
lower right of Figure 8) can be identifed as regional blocks.

Te exponential value of this estimated travel cost Call is
used as the distance. Moreover, each prefecture is plotted on
the two-dimensional coordinate to describe this distance
matrix in detail. Here, the positions of Tokyo and Osaka are
fxed, and the coordinates of each prefecture are calculated
to match the ratio of the distances between the prefectures
on the two-dimensional plane and that of the estimated
travel cost exp (− Call). Figure 9 shows the location plot of
each prefectural ofce using the original coordinates.
Considering this fgure, only the major rail links (high-speed
rail (HSR) in purple) are shown as links connecting the
nodes as shown in Figure 10.

Figure 10 shows the following three characteristics of the
estimated travel cost: (1) Japan’s transportation network is

centered on Tokyo, and the shape of the country derived
from the estimated travel cost is a circle centered on Tokyo.
Tis structure is formed because the travel cost is defned by
the LOS of air routes over a certain distance. Moreover,
direct fights are available from Haneda Airport to ap-
proximately all the prefectures. (2) Regarding the circular
structure, the city axis on the Pacifc Ocean and Sea of Japan
sides are located on the inner and outer sides, respectively.
Te cities on the Sea of Japan side, such as Akita, Ishikawa,
and Tottori, are located on the outer side of the circle. Te
distances between them are farther from those on the Pacifc
Ocean side. Tey are also distant from other cities in Japan.
Tis pattern approximately refects the shape of the current
HSR network. (3) Te cities along the Tokaido HSR (Tokyo-
Osaka) and Tohoku HSR (Tokyo-Miyagi-Aomori) lines do
not move away from Tokyo in a linear direction. Tey rather
move in a distorted fashion. Here, the zones where express
trains (Nozomi, Hayabusa) stop and have high-frequency
service tend to be relatively close to the center although they
are far from Tokyo. Te travel cost derived in this study is an
index that includes detailed LOS, such as those that have
been mentioned.

Ten, Table 3 shows the results of the regression analysis
defned in (13). Table 3 shows that these two variables are
each statistically negatively signifcant, as expected. On the
other hand, the value of R2 indicates that 25% of variances
remain as a residual after being explained by these two
variables. Te residuals are expected to refect other in-
formation such as service frequency, fares, and diferences
between transportation modes. However, it is not easy to
generate data to create a model that can discuss these de-
tailed issues.Te proposed approach allows us to understand
the state of transportation service levels in the country as
a whole, shown in Figure 10, without detailed data
preparation.

4. Time-Series Change in the Two
Decomposed Indicators

Te time variability of intercity travel in Japan can be de-
scribed by time-series changes in the two indicators pro-
posed and defned in this study. Terefore, this section
presents a calculation of the two indices for each day and
checks the time-series changes for 1,461 days.

First, we compare the estimated indices with those
calculated from the all-time aggregate and OD matrix in
Section 4. Te correlation coefcients are calculated for each
date. Here, the correlation coefcient is not afected by the
assumption in (10) since the constant term is irrelevant.
Table 4 shows the mean, one and fve percentiles, and
minimum values of the correlation coefcients for
1,461 days.

Te correlation coefcient value of the destination
amenity indicates that the average value is large (at 0.961),
whereas the correlation coefcient is smaller than 0.877 at
approximately 5% (approximately 70 days). Furthermore,
the correlation coefcient is smaller than 0.584 at approx-
imately 1% (approximately 18 days). Tis fnding indicates
that the magnitude of travel destination amenities among
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the prefectures is signifcantly diferent from the average
level at a certain time point.

Figure 11 shows the time trend of this correlation co-
efcient value. Tis fgure confrms that the correlation
coefcient has been fuctuating approximately around the
same value every year. Terefore, the seasonal variation is
larger than the interannual variation in the travel destination
amenity. Te correlation coefcient values are small in three
periods. Tese are grayed out in Figure 11. Considering the
left to right, these periods are Golden Week (GW and
consecutive national holidays), Obon (religious holidays in

Japan), and New Year holidays. Among these periods, Obon
and New Year holidays have smaller correlations than the
other periods. Tus, the distribution of the destination
amenity (attractiveness of travelers) in each prefecture
signifcantly difers from the average.

Subsequently, the correlation coefcients of travel costs
in Table 4 are examined.Te correlation coefcients between

Table 2: Te regression analysis result of the destination amenity.

Estimate t-Stat
α0,all Intercept − 13.508∗∗ − 22.593
α1,all ln (Population) 0.312∗∗ 4.098
α2,all ln (Number of employees in lodging industry) 0.725∗∗ 7.695

Number of observations (prefecture) 47
R2 0.909

Level of signifcance: ∗∗1% and ∗5%.
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Figure 8: Estimated travel cost (Call) matrix.
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Figure 10: Spatial location of each prefecture by the estimated
travel cost.

Table 3: Te regression analysis result of travel cost.

Estimate t-Stat
β0,all Intercept − 2.560∗∗ − 35.893
β1,all Distance (100 km) − 0.638∗∗ − 32.943
β2,all Minimum travel time (hour) − 0.0940∗∗ − 13.204
Number of observations (prefecture

pairs) 1066

R2 0.741
Level of signifcance: ∗∗1% and ∗5%.

Table 4: Distribution of correlation coefcients between the
destination value at one day and one of the all-time points summed.

Destination amenities Travel cost
Average value 0.961 0.983
5 percentiles 0.877 0.969
1 percentile 0.584 0.942
Minimum value 0.474 0.930
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the travel costs at each date and the average values at the all-
time points are 0.930, including those at the minimum
points. Tis value is signifcantly large at the all-time points.
Terefore, the relative distance between the prefectures
indicated in Figure 10 is approximately the same at the all-
time points.

Next, we applied the regression analysis (defned in (14))
to obtain more detailed time-series features of destination
amenities. Te value of R2 for each day in Figure 12(c)
indicates that the destination amenity for the three peak
periods (GW, Obon, and New Year holidays) is hardly
explained by the two variables. Tus, the results indicate the
requirement of a diferent model for these periods. Fur-
thermore, the estimated coefcients in Figures 12(a) and
12(b) show that the parameters of the model difer signif-
icantly depending on the time period. For example, the
population coefcients are statistically insignifcant in the
three peak periods and relatively large in April and late
January. Te coefcient of the number of employees also
shows large changes depending on the season as well as the
day of the week.Tus, because of the large seasonal variation
in destination amenities, the model with only a few
groupings of periods in the traditional approach may be
applicable only at certain limited points in time. Te esti-
mated aj,d provided us with these important caveats on the
characteristics of destination amenities and the trend of time
variation in Japan.

A similar regression analysis (defned in (15)) is also
performed for the estimated travel costCd.Te value ofR2 for
each day in Figure 13(c) indicates that variances of ap-
proximately 25% remain in the residuals in all dates. Te
estimated coefcients in Figures 13(a) and 13(b) show some
seasonal diferences, although the correlation is high as shown
in Table 4. For example, the coefcient of travel time is small
in the New year and Obon periods. Tis indicates a lower
resistance to travel to places that take more time in these
periods. Tus, the trend is diferent during GW (early May)
when the coefcient of distance is smaller, not that of time.

5. Discussion

Calculating the two indicators in the proposed approach has
the following benefts.

First, it evidences the temporal stability of the travel
destination choice model in Japan. Te spatial diference of
the travel cost is constant over time (as shown in Table 4),

which is a favorable characteristic. Tis indicates that the
coefcients estimated from the data at one point can be
applied at other points. Moreover, seasonal diferences in
destination amenities were found. Tis fnding raises an
important concern for several destination choice models.
Tis is because it indicates the possibility of the coefcients
of the destination variables changing signifcantly from
season to season.Tus, a model estimating from data that are
biased toward a particular period cannot be applied to
a broader point in time. Obtaining such data through
questionnaires is difcult because of people’s memory ca-
pacity and survey cost. To address this issue, we passively
collected large sample data, such as mobile phone location
data. Tese data are valuable because they easily provide
a large sample over a long period.

Secondly, such a quantitative and simple description of
the spatio-temporal characteristics of long-distance travel
behavior is useful for transportation policy. Te calculated
travel costs demonstrate the structure of the country as
perceived by the people. Figure 10 clearly shows the current
status of long-distance transportation networks. Tis will be
helpful in future discussions. In addition, the destination
amenity identifed here quantifes the ability of each pre-
fecture to attract travelers. Tis may be a useful outcome
measure for strategies to attract travelers because it can
attract people from all over Japan. It can attract those who
are less susceptible to the infuence of few limited origins.

Furthermore, the decomposition approach proposed in
this study is not limited to long-distance travel. It can be
applied to any OD matrix data for which most of the ele-
ments are larger than zero. However, the analysis of OD
matrix data for daily trafc, where many of the infuencing
factors have already been identifed and where the phe-
nomenon is stable over time, may not yield many new
fndings. Tus, we believe that the proposed approach is well
suited for understanding highly variable patterns such as
long-distance travel.

Te approach and results described in this study have
some limitations. To confrm the validity of the pattern
obtained in this study, it is desirable to analyze the efect of
assuming a time period set at t � 13.Te critical limitation of
this approach is the difculty of applying the policy simu-
lation. Tis is because the model does not contain variables
that can be controlled directly. To discuss the efects of future
policies, we determine that a model with trafc LOS and
destination variables is more appropriate, which is similar to
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Figure 11: Time-series changes in correlation coefcients between the destination amenity at one day and one of the all-time points
summed.
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the case with traditional models. Applying the proposed
approach has an advantage for calculating the outcome
measures and confrming the prediction model’s time sta-
bility as discussed. In addition, the results obtained in this
study may be limited to long-distance travel in Japan.
Particularly, more analyses are required to answer the
question, “Do the warnings discussed here apply to other
countries or other types of trips?” Tis question can be
answered by applying the approach proposed in this study to
other multipoint OD matrices.

6. Conclusion

Tis study proposes a method for decomposing the long-
term and daily interprefectural OD matrix into two types of
spatial patterns. Te indices calculated in the decomposition
of this study are referred to as the destination amenity and
travel costs. Tese are identifed by the diferences in the
infuence space patterns on the OD matrix, and these pat-
terns correspond to the variables treated in the traditional
destination choice model. Terefore, the two indices (des-
tination amenities and travel costs) are composites of several
variables treated in any destination choice model.

Using mobile phone location data, we can derive detailed
time-series changes in these indices because they can be
calculated directly from the OD matrices. Tis study ana-
lyzes the changes in the two indices of interprefecture travel
in Japan for over 1,461 days.

By calculating the two indicators in the proposed approach,
the characteristics of interprefectural travel in Japan are briefy
described as follows: (1) the destination amenity is strongly
correlated with the population size. Tis value indicates zone

attractiveness toward travelers. (2) Hokkaido, Okinawa, and
Tokyo have higher destination amenities than the population
size. Hence, they are attractive travel destinations, in addition to
their population size. (3) Tese destination amenities change
signifcantly with the seasons. Terefore, seasonal variations
should be taken into account when modeling destination
amenities. (4) Te calculation results of the travel costs show
that Japan’s national land structure is circular, with Tokyo at
the center. Prefectures facing the Pacifc Ocean are located
inside the circle, whereas those facing the Sea of Japan are
located at the outer edge of the circle. Long-distance trans-
portation services are relatively unimproved in prefectures
facing the Sea of Japan. (5) Additionally, it was found that this
travel cost structure shows little variation over time, unlike
destination amenities.
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distribution model for regional railway services considering
spatial efects between stations,” Transport Policy, vol. 67,
pp. 77–84, 2018.

[6] D. Chai, D. Zhang, Y. Sun, and S. Yang, “Research on the city
network structure in the yellow river basin in China based on
two-way time distance gravity model and social network
analysis method,” Complexity, vol. 2020, Article ID 6680954,
19 pages, 2020.

[7] T. Grosche, R. Klophaus, and A. Seredyński, “Market con-
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