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In this paper, the pth moment exponential synchronization problems of drive-response stochastic memristor neural networks are
studied via a state feedback controller. Te dynamics of the memristor neural network are nonidentical, consisting of both
asymmetrically nondelayed and delayed coupled, state-dependent, and subject to exogenous stochastic perturbations. Te pth
moment exponential synchronization of these drive-response stochastic memristor neural networks is guaranteed under some
testable and computable sufcient conditions utilizing diferential inclusion theory and Filippov regularization. Finally, the
correctness and efectiveness of our theoretical results are demonstrated through a numerical example.

1. Introduction

Neural networks, which simulate the structure of neurons and
synapses in the human brain with mathematical models and
combines multilevel conduction to simulate the in-
terconnection structure of neurons, have now beenwidely used
in artifcial intelligence. On one hand, the development of the
neural network is based on the understanding of biological
brain to simulate its working mechanismmore closely, such as
the proposal and development of the third generation artifcial
neural network-spiking neural network; the mathematical
modeling to simulate the nerve conduction system in the brain
and the goal is to understand the way of brain signal trans-
mission in order to help understand the way the brain works
from the perspective of computational simulation.

Memristor is one of the best ways for hardware to realize
synapses in artifcial neural networks. Te frst nanoscale
memristor device is made and set of a boom in memristor
research in 2008. Memristors have been utilized as electronic
synaptic devices and exhibit a migration of ions that bear
striking resemblance to the difusion procedure of

neurotransmitters across neural synapses. Tis has led to the
common tendency of utilizing memristors to character
synapses in neural networks, which is broadly employed to
store synaptic weights. Extensive experiments have shown
that synapses in neural networks simulated by memristors
will have great promising advantages. To be specifc, the
memristor, as a fundamental passive device, has nanoscale
size and nonvolatility, achieving the consecutive changes in
synaptic weights during the simulation of neural synapses,
and also facilitating the integration of computation and
storage. Moreover, a neural network structure that is highly
integrated can be built by virtue of the memristors, which
endow artifcial neural networks with the ability not only to
learn and memorize but also to perform more various
functions.

And then, themodeling of thememristor neural network
for the study of its rich dynamic behavior has become a hot
research direction because of its broad application prospect.
Over the past decade or so, the research studies put more
energy into such a few aspects, such as signal processing [1],
intelligent vehicle [2], and chaotic circuits [3].

Hindawi
Complexity
Volume 2023, Article ID 1335184, 10 pages
https://doi.org/10.1155/2023/1335184

https://orcid.org/0000-0002-6810-8945
https://orcid.org/0000-0003-4220-8005
mailto:wuxuefei@szpt.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1335184


During the past decade, there has been an increasing
interest in diverse synchronization problems in complex
dynamical networks considering their extensive applications
in practice [4–16]. Te process of synchronization in
a network of dynamic nodes refers to the convergence of all
nodes towards a shared behavior, which is driven by specifc
coupling and/or control protocols. So far, a number of re-
sults associated with the synchronization of memristor
neural networks have been shown [17–24]. Furthermore,
based on the consideration of synchronization efciency, the
selection and improvement of the control strategy is still the
focus of our attention. What is worth celebrating is that,
many peers have provided abundant case references and
conclusions for synchronization problems, including state
feedback control [25], impulsive control [26], and quantized
control [27]. And the practical application about drive-
response stochastic memristor neural networks is more
widespread and useful than the memristor neural networks
due to the inevitability of unknown stochastic factors, for
example, as the authors expound in their studies about the
stochastic memristor neural networks and their synchro-
nization [26, 28, 29], the MNN’s dynamical behavior is
exceptionally sensitive to unexpected stochastic disturbance
due to frequent changes, which are caused by signal
transmission anomalies or external environmental factors.

More relevant research results are as follows: Guo et al. [30]
discussed the synchronization issue of multiple memristor
neural networks with time delays by establishing two new
integrate-diferential inequalities. Zhu et al. [31] studied the
synchronization problem of the master and slave memristor
neural networks via an event-based impulsive scheme and
considered certain state-dependent triggering conditions of
nonlinear and linear continuous-time dynamic systems. We
have noticed that the pth moment synchronization is more
general than the mean square synchronization, where the power
p does not need to be greater than 1 since it still gives a metric
value for the random variables. For p � 1, this is also referred to
as convergence in the mean sense and for p � 2, this is referred
to as convergence in the mean square sense.

As another unexpected factor, time delay is a must to be
dealt within the synchronization control process of most
complex dynamic networks, including drive-response sto-
chastic memristor neural networks, as it can negatively afect
the signal transmission and dynamic behavior. Te time
delay neural network is an architecture of multilayer arti-
fcial neural networks that is specifcally designed for clas-
sifying patterns with shift-invariance, and for modeling the
context at each layer of the network. Moreover, stochastic
disturbance and uncertainty occur in some random envi-
ronments and infuence the performance and synchroni-
zation efciency of the system [32].

Based on the discussion mentioned above, the main
contributions are outlined as follows: this paper studies the
pth moment exponential synchronization of the drive-
response stochastic memristor neural networks with time-
varying delay. In addition, our model is extended to in-
corporate the stochastic perturbations, thereby increasing its
generality and comprehensiveness compared to previous
studies. Diferent from the mean-square synchronization
and almost sure synchronization, we consider the pth
moment exponential synchronization of the drive-response
memristor neural networks with stochastic perturbations.
By using the diferential inclusion theory and the Filippov
regularization, certain more general synchronization criteria
are obtained. Te proposed feedback control, the second
term of which is capable of eliminating the infuences of both
mismatched and state-dependent arguments, is simpler and
more fexible than the existing results.

Te organization of this paper is as follows: in Section 2,
we present the model of the drive-response memristor
neural network subject to stochastic perturbations, along
with some defnitions and assumptions. Te sufcient
condition for the moment synchronization is derived in
Section 3. Section 4 includes numerical simulations.

2. Preliminaries and Problem Definition

2.1. Notations. Let R and Rn be the set of real numbers and
the n − dimensional Euclidean space, respectively. Given
a vector or matrix, ‖·‖ denotes its standard 2-norm and |·|

implies the entries’ absolute values, that is, |A| � (|aij|)m×n,
let λmin(A) be the smallest eigenvalue of A. Te maximum
element of a vector x is denoted as max x{ } and set
1, 2, . . . , n{ } is defned as N.

Let (Ω, F, Ft t≥0, P) be a complete probability space
equipped with a fltration Ft t≥0, that is, right continuous
with F0 and contains all the P − null sets. C([− τ, 0]; Rn) shall
denote the collection of continuous functions ϕ from [− τ, 0]

to Rn with the uniform norm ‖ϕ‖2 � sup− τ≤s≤0 ϕ(s)Tϕ(s) and
C2

F0
([− τ, 0]; Rn) the family of all F0 measurable,

C([− τ, 0]; Rn)-valued stochastic variables ξ � ξ(θ): − τ{

≤ θ≤ 0} such that 
0
− τ Ε|ξ(s)|2ds≤∞, where Ε means the

corresponding expectation operator regarding the given
probability measure Ρ.

2.2. Problem Formulation. A memristor neural network
subject to stochastic perturbations and time-varying delays
is formulated by the stochastic diferential functional
equations [33].

dx i(t) � − di(xi(t))xi(t) + 
n

j�1
aij(xj(t))fj(xj(t))+ 

n

j�1
bij(xj(t))fj(xj(t − τj(t)))

⎫⎪⎬

⎪⎭
dt

⎧⎪⎨

⎪⎩

+ σi(xi(t))dw(t), i, j ∈ N,

(1)
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where xi(t) ∈ R is ith system’s voltage, di(xi(t)) > 0 stands
for the reset rate, fj(·) is an active function, τj(t) is the
varying time delay, σi(xi(t)) denotes the noise strength
function, ω(t) represents the standard one-dimensional
Brownian motion satisfying Εdω � 0 and Ε(dω)2 � dt,
and the connection weights aij(xj(t)) and bij(xj(t)) are
defned as follows:

di(xi(t)) �
1
Ci



N

j�1

1
R

f

ij

+
1

R
g

ij

⎛⎝ ⎞⎠ + Wi xi(t)( ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
di,

�di,

⎧⎪⎨

⎪⎩

xi(t)


≤Ti,

xi(t)


>Ti,

aij xj(t)  �
W

a
ij xj(t) 

Ci

sgnij �

aij,

�aij,

⎧⎪⎨

⎪⎩

xj(t)


≤Ti,

xj(t)


>Ti,

bij xj(t)  �
W

b
ij xj(t) 

Ci

sgnij �

bij,

�bij,

⎧⎪⎨

⎪⎩

xj(t)


≤Ti,

xj(t)


>Ti,

sgnij �

1,

− 1,

⎧⎪⎨

⎪⎩

i≠ j,

i � j,

(2)

where Wi(xi(t)) is the memductance of memristor parallel
with capacitor Ci, Wa

ij and Wb
ij are the memductances of the

memristor R
f
ij and R

g
ij, Ti > 0 is the switching jump bound,

and di, �di, aij, �aij, bij, and �bij are constants with di ≠ �di,
aij ≠ �aij, and bij ≠ �bij. We assume that 0< τ1 ≤ τi(t)≤ τ2 <∞
for all t≥ 0, i ∈ Ν and the identical condition of equation (1)
satisfes xi(t) � Φi(t) ∈ C([t0 − τ2, t0], R).

Let x(t) � [x1(t), x2(t), ..., xn(t)]T, D(x(t)) � diagn

di(xi(t)) , A(x(t)) � (aij(xj(t)))n×n, B(x(t)) � (bij(xj

(t)))n×n, f(x(t)) � diagn×1 fi(xi(t)) , f(x(t − τ(t)))

� diagn×1 fi(xi(t − τi(t))) , and σ(x(t)) � [σ(x1(t)), σ
(x2(t)), ..., σ(xn(t))]T. Ten, system (1) can be written in the
vector form as follows:

dx(t) � − D(x(t))x(t) + A(x(t))f(x(t)) + B(x(t − τ(t)))f(x(t − τ(t))) dt

+ σ(x(t))dω(t),
(3)

and the response stochastic memristor neural networks with
controllers are as follows:

dy(t) � − D(y(t))y(t) + A(y(t))f(y(t)) + B(y(t − τ(t)))f(y(t − τ(t))) + U(t) dt

+ σ(y(t))dω(t),
(4)

where y(t) � [y1(t), y2(t), . . . , yn(t)]T, U(t) � di agn×1
ui(t) di(yi(t)), aij(yi(t)),and bij(yj(t)) are defned simi-
larly, and ui(t) represents the controller to be developed
later. yi(t) � ψi(t) ∈ C([t0 − τ2, t0], R) is the initial condi-
tions for system (4). Usually, ψi(t)≠ϕi(t) for i ∈ Ν.

Our objective is to achieve the pth moment exponential
synchronization by designing a suitable controller ui(t).

Defnition 1. Te drive system (3) and response system (4)
are said to be pth moment exponentially synchronized if
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N

i�1
Ε‖x(t) − y(t)‖

p ≤Ke
− κt

, (5)

where K> 0 and κ> 0, for any initial data
x(t0), y(t0) ∈ Cb

F0([− τ, 0]; Rn).

Remark 2. Compared with the exponential synchronization
[18, 19, 30], the pth moment exponential synchronization is
used to measure the systems’ subject to the stochastic noise,
which is in practice. Te pth moment exponential syn-
chronization is more general than the mean square syn-
chronization [34], where p � 2.

Te control scheme is designed as follows:

U(t) � − Ke(t) − ηsgn(e(t)), (6)

where K � diagn ki  in which ki and η will be
determined later.

Remark 3. Te control is basic and useful to deal with the
pth moment exponential synchronization problem, which
includes two terms the frst term adjusting by a proportional
gain constantK is proportional control to produce an output
value that is proportional to the current error value and the
second term adjusting by a proportional gain constant μ is
capable of eliminating the infuences of mismatched and
state-dependent arguments concurrently, which is simpler
and more fexible than the existing results.

Utilizing the diferential inclusion theory and the Fili-
ppov regularization, equation (1) has been rewritten as
follows:

dxi(t) ∈ − �co di,
�di xi(t) + 

n

j�1
�co aij, �aij fj xj(t)  + 

n

j�1
�co bij,

�bij fj xj t − τj(t)   + si

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

+ σi xi(t)( dω(t), i, j ∈ Ν.

(7)

Terefore, some measurable functions
θ1i (t) ∈ �co[0, 1]θ2ij (t) ∈ �co[0, 1] and θ2ij(t) ∈ �co[0, 1] exist
from the measurable selection theorem [35] such that

dxi(t) � − θ1i (t)di + 1 − θ1i (t) �di xi(t) + 
n

j�1
θ2ij(t)aij + 1 − θ2ij(t) �aij fj xj(t)  + 

n

j�1
θ3ij(t)bij + 1 − θ3ij(t) �bij fj xj t − τj(t)   + si

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

dt + σi xi(t)( dω(t), i, j ∈ N.

(8)

Te response system (4) can be similarly written as
follows:

dyi(t) � − θ4i (t)di + 1 − θ4i (t) �di yi(t) + 

n

j�1
θ5ij(t)aij + 1 − θ5ij(t) �aij fj yj(t)  + 

n

j�1
θ6ij(t)bij + 1 − θ6ij(t) �bij 

⎧⎪⎨

⎪⎩

fj yj(t − τ(t))  + si

⎫⎬

⎭dt + ui(t) + σi yi(t)( dω(t), i, j ∈ N,

(9)

with certain measurable functions θ4i (t) ∈ �co[0, 1],
θ5ij(t) ∈ �co[0, 1], and θ6ij(t) ∈ �co[0, 1].

Denote ei(t) � yi(t) − xi(t) and take the following error
stochastic memristor neural network into consideration.
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dei(t) � − θ4i (t)di + 1 − θ4i (t) �di yi(t)

+ θ1i (t)di + 1 − θ1i (t) �di xi(t)

+ 
n

j�1
aij(t)fj ej(t) 

+ 
n

j�1
∆aij(t)fj xj(t) 

+ 

n

j�1

bij(t)fj ej t − τj(t)  

+ 

n

j�1
∆bij(t)fj xj t − τj(t)   + ui(t)

⎫⎪⎬

⎪⎭
dt

+ ui(t) + σi ei(t)( dω(t), i, j ∈ N,

(10)

where fj(ej(t))� fj(yj(t)) − fj(xj(t)), aij(t) � θ5ij(t)aij +

(1 − θ5ij(t))�aij, ∆aij(t) � (θ5ij(t) − θ2ij(t))(aij − �aij),
fj(ej(t − τj(t))) � fj(yj(t − τj(t))) − fj(xj(t − τj(t))),
and bij(t) � θ6ij(t)bij + (1 − θ6ij(t))�bij.

∆bij(t) � θ6ij(t) − θ3ij(t)  bij − �bij , σi ei(t)(  � σi yi(t)(  − σi xi(t)( . (11)

Set e(t) � [e1(t), e2(t), ..., en(t)]T.Ten, the error system
(10) is converted into the following form:

de(t) � − D1(t)y(t) + D2(t)x(t) + A(t)f(e(t)) + ∆A(t)f(x(t)) + B(t)f(e(t − τ(t))) + ∆B(t)f(x(t − τ(t))) + U(t) dt

+ σ(e(t))dω(t),

(12)

where D1(t) � diagn θ4i (t)di + (1 − θ4i (t))�di , D2(t) �

diagn θ1i (t)di + (1 − θ1i (t))�di , ∆A(t) � (∆aij(t))n×n, A(t)

� (aij(t))n×n, B(t) � (bij(t))n×n, ∆B(t) � (∆bij(t))n×n,f
(e(t)) � diagn×1

fi(ei(t)) , f(e(t − τ(t))) � diagn×1
fi(ei(t − τ(t)))  and σ(e(t)) � diagn×1 σi(ei(t)) , and

U(t) � diagn×1 ui(t) .

Assumption 4. fi(·), σi(·), and i ∈ 1, 2, ..., n{ } are measur-
able, satisfying the Lipschitz condition, i.e., there exist
positive constants li and hi such that

fi(x) − fi(y)


≤ li|x − y|,

σi(x) − σi(y)


≤ hi|x − y|,
(13)

for all x, y ∈ R. And there exist positive constants mi, i ∈ Ν
such that

fi(x)


≤mi, (14)

for all x ∈ R.

Lemma 5. For any x, y ∈ Rn and scalar ε> 0, we have

x
T

y + y
T
x≤ εxT

x + ε− 1
y

T
y. (15)

Lemma 6 (see [36]). Let v(t) ≥ 0 over the interval
t ∈ (− ∞, +∞) and

D
+
v(t)≤ α(t)v(t) + β(t) sup

t− τ(t)≤s≤t
v(s) for t> t0, (16)

where D+v(t) � �limh⟶0+(v(t+h)− v(t))/h, τ(t)> 0, α(t)≤ 0, and
β(t)≥ 0 are continuous functions. If there exists a positive
constant δ such that

α(t) + β(t)≤ − δ < 0 for t≥ t0, (17)
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then

v(t)≤ sup
− ∞≤s≤t0

v(s)e
− μ∗

t − t0( , (18)

where μ∗ � inf
t≥t0

μ: μ + α(t) + β(t)eμτ(t) � 0 .

Lemma 7 (see [36]). Considering an n − dimensional sto-
chastic diferential equation, we have

dx(t) � f(t, x(t), x(t − τ))dt + σ(t, x(t), x(t − τ))dω(t).

(19)

Let C2,1(R+ × Rn; R+) denote the family of all non-
negative functions V(t, x) on R+ × Rn, which are twice
continuously diferentiable in x and once diferentiable in t.
If V ∈ C2,1(R+ × Rn; R+), defne an operator LV from R+ ×

Rn to R by

LV(t, x(t)) � V(t, x(t)) + Vx(t, x(t))f(t, x(t), x(t − τ))

+
1
2
Tr σ(t, x(t), x(t − τ))

T
Vxx

(t, x(t))σ(t, x(t), x(t − τ))],

(20)

where Vt(t, x) � zV(t, x)/zt, Vxx(t, x) � (z2V(t, x)/
zxixj)n×n, and Vx(t, x) � (zV(t, x)/zx1, ..., zV(t, x)/zxn). If
V ∈ C2,1(R+ × Rn; R+), then for any ∞> t> t0 ≥ 0,

EV(t, x(t)) � EV t0, x t0( (  + E 
t

t0

LV(s, x(s))ds, (21)

as long as the expectations of the integrals exist.

3. Main Result

Tis section investigates the pth moment exponential syn-
chronization of the proposed systems.

Te selection of the gain K and η to guarantee the pth
moment exponential synchronization of system (1) with
system (4) will be given in the following theorem:

Theorem  . We assumed that Assumption 4 is satisfed. If
the gain K satisfes

K> − �D + ρAL + ρ2BL
2

+ 1 + h
2

 In,

η � max D T + μA + μB( M ,
(22)

where uA, uB, ρA, and ρB are positive constants satisfying
‖ A (t)‖≤ ρA, ‖ B (t)‖≤ ρB, ‖∆A(t)‖≤ μA, and ‖∆B(t)‖≤ μB.

�D � diag min d1
�d1 , ..., min dn

�dn  ,
D � diag |d1 − �d1|, ..., |dn − �dn| , T � (T1, ..., Tn)T,
h � max1≤i≤n hi , and M � diagn mi , then system (1) and
system (4) can reach the pth moment exponential synchro-
nization with control scheme (6).

Proof. We denote V(t) � ‖e(t)‖p. Considering Lemma 7
with system (12), we get

dV(t) � LV(t)dt + p‖e(t)‖
p− 2

y
T
(t)σ(e(t))dω(t). (23)

Integrating from t0 to t and taking the expectations, it
holds

EV(t) � EV t0(  + E 
t

t0

LV(s)ds, (24)

in which

LV(t) �
p

2
‖e(t)‖

p− 2 2y
T
(t) − D1(t)y(t) + D2(t)x(t) + A(t)f(e(t)) + ∆A(t)f(x(t)) + B(t)f(e(t − τ(t)))

+∆A(t)f(x(t − τ(t))) + U(t) + σ
T

(e(t))σ(e(t)))

≤
p

2
‖e(t)‖

p− 2 2y
T
(t) − �De(t) + diag sgnT

(e(t))  D T + A(t)f(e(t)) + ∆A(t)f(x(t)) + B(t)f(e(t − τ(t)))

+∆B(t)f(x(t − τ(t))) − Ke(t) − ηn(e(t)) + σ
T

(e(t))σ(e(t)).

(25)

Because η � max D T + (μA + μB)M  in (6), one has

2y
T
(t) ∆A(t)f(x(t)) + ∆B(t)f(x(t − τ(t))) + Insgn(e(t)) D T − ηsgn(e(t))(  + σ

T

(e(t))σ(e(t))

≤ 2 yT
(t)



 D T + μA + μB( M(  − ηy
T
(t)sgn(e(t)) + h

2
‖e(t)‖

2

≤ 2 y
T
(t)



 D T + μA + μB( M − η1n(  + h
2
‖e(t)‖

2 ≤ h
2
‖e(t)‖

2
.

(26)
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By means of Lemma 5 and (25), inequality (26) turns to

LV(t)≤
p

2
‖e(t)‖

p− 2 2y
T
(t) − �D + ρAL + 1 + h

2
 In − K e(t) + ρBL

����
����
2
‖e(t − τ(t))‖

2


+ ε +
h
2

2
 ‖e(t)‖

2
+
1
ε

D T + μA + μB( M
����

����
2


≤
p

2
‖e(t)‖

p− 2 2y
T
(t) − �D + ρAL + 1 + ε +

h
2

2
In  − K e(t) + ρBL

����
����
2
‖e(t − τ(t))‖

2
 

≤ − a‖e(t)‖
2

+ b‖e(t − τ(t))‖
2

≤ − aV(t) + b sup
t− τ(t)≤ s≤ t

V(s),

(27)

where a � pλmin
�D − ρAL − (1 + h2)In + K , b � p‖ρBL‖2/2.

Using Assumption 4, we get

p‖e(t)‖
p− 2

y
T

(t)σ(e(t)) ≤phV(t). (28)

By virtue of (27) and (28), we can get

dV (t)≤ − aV(t) + b sup
t− τ(t)≤s≤t

V(s) dt + phV(t)dω(t).

(29)

Using the assumptions of identical conditions for the
drive and response drive-response stochastic memristor
neural networks, there exists a positive constantN0 such that
‖e(t)‖≤N0 for t ∈ [t0 − τ2, t0]. Te stochastic diferential
function is given as

dW(t) � − aW(t) + bN
2
0 dt + phW(t)dω(t), (30)

under the identical initial condition as V(t). Applying the
results with respect to the existent and unique solutions for
stochastic diferential equations, it follows that equation (30)
involves an only solution W(t) for t ∈ [t0, t0 + τ1] with
ΕW(t)<∞. Clearly, ΕV(t)≤ΕW(t)<∞, t ∈ [t0, t0 + τ1],
and from (27), we also have ΕLV<∞ for t ∈ [t0, t0 + τ1]. It
follows that

Ε
d

dt


t

t0

LV(s)ds � ΕLV(t)<∞. (31)

And hence, by using the properties between the de-
rivative and expectations of a random variable (see [35, 36]),
we get

Ε
d

dt


t

t0

LV(s)ds �
d

dt
Ε

t

t0

LV(s)ds . (32)

Note that (24) and (27) imply that

dΕV(t)

dt
�

d

dt
Ε

t

t0

LV(s)ds  � Ε
d

dt


t

t0

LV(s)ds

≤ − aΕV(t) + b sup
t− τ(t)≤s≤t

ΕV(s)

≤ − aΕV(t) + b sup
t0− τ2≤s≤t0

ΕV(s).

(33)

As a result, in light of Lemma 6,

ΕV(t)≤ sup
t0− τ2≤s≤t0

ΕV(s) e− λ t− t0( ), (34)

and thus,

Ε‖e(t)‖
p ≤ sup

t0− τ2≤s≤t0
Ε‖y(s)‖p

 e− λ t− t0( ), (35)

for t ∈ [t0,t0 + τ1], where λ � inf t≥ t0
λ: λ − a + beλ(t)τ � 0 

by condition (22). Since

d‖e(t)‖
p ≤ − a‖e(t)‖

p
+ b sup

t0+τ1− τ2≤s≤t0+τ1
Ε‖y(s)‖

p
 e

− λτ1
 dt

+ 2h‖e(t)‖
2dω(t)

≤ − a‖e(t)‖
2

+ bN
2
0 dt + 2h‖e(t)‖

pdω(t),

(36)

for t ∈ [t0 + τ1, t0 + 2τ1], one derives

Ε‖e(t)‖
p ≤ sup

t0+τ1− τ2≤s≤t0+τ1
Ε‖y(s)‖

p
 e

− λ t− t0− τ1( )

≤ sup
t0− τ2≤s≤t0

Ε‖y(s)‖
p

 e
− λ t− t0( ),

(37)

where t ∈ [t0 + τ1, t0 + 2τ1], and so

Ε‖e(t)‖
p ≤ sup

t0− τ2≤s≤t0
Ε‖y(s)‖

p
 e

− λ t− t0( ), (38)
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where t ∈ [t0, Nτ1] for any natural numbers N following the
mathematical induction. By using H€older′s inequality, (see
[36] p.5) one can obtain

Ε‖e(t)‖
p ≤ sup

t0− τ2≤s≤t0
Ε‖y(s)‖

p
 

p/2

e
− pλ/2 t− t0( ), (39)

where t ∈ [t0, T] for any constants T> t0. □

Remark 9. We present a rigorous proof of the main result in
this paper, where the moment inequalities and martingale

inequalities are crucial in demonstrating the above-
mentioned theorem. Te pth moment exponential syn-
chronization is more general than the mean square case.

4. Numerical Examples

Tis part presents one numerical example to demonstrate
the main result. We consider a drive memristor neural
network [33] with 5 nodes and parameters T � 2, τ(t) �

0.01et/(et + 1) and

A �

4.1 1 1.1 0.7 1.3
1 1.1 0.9 1.2 0
1.1 0.9 2 1.5 0.8
0.7
1.3

1.2
0

1.5
0.8

2.6
1.1

1.1
0.8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�A �

2.1 1 1.1 0.7 1.5
0.7 1.4 2.4 3.1 2.8
2.2 2.9 3 4.3 2.9
0.9
2.6

3.2
2.2

5.5
2.8

1.4
1.8

4.3
2.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

4.1 1 1.5 1.7 1.3
1 1.1 0.9 1.2 0
1.1 0.9 2 1.5 0.8
0.7
1.3

1.2
0

1.5
0.8

2.6
1.1

1.1
0.8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�B �

2.1 1 1.7 1.7 1.5
0.7 1.4 2.4 3.1 2.8
2.2 2.9 3 4.3 2.9
0.9
2.6

3.2
2.2

5.5
2.8

1.4
1.8

4.3
2.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(40)
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Figure 1: State trajectories of error variables under feedback controller.
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At node i, we take

di xi(t)(  �
0.9,

1.1,


xi(t)


≤T,

xi(t)


>T,

aij xj(t)  �
aij,

�aij,

⎧⎨

⎩

xj(t)


≤T,

xj(t)


>T,

bij xj(t)  �
bij,

�bij,

⎧⎨

⎩

xj(t)


≤T,

xj(t)


>T,

(41)

and f i(xi(t)) � sin(xi(t)/3), fi(xi(t − τ(t))) � sin
(xi(t − τ(t))/3), σi(xi(t)) � xi(t), and i ∈ 1, 2, . . . , 5{ }.

di yi(t)(  �
0.9,

1.1,


ei(t)


≤T,

ei(t)


>T,
,

aij yj(t)  �
aij,

�aij,

⎧⎨

⎩

ej(t)


≤T,

ej(t)


>T,
,

bij yj(t)  �
bij,

�bij,

⎧⎨

⎩

ej(t)


≤T,

ej(t)


>T.

(42)

By some calculations, one can obtain that uA � 12.7,
ρA � 6.6, uB � 20.7, and ρB � 7.4. We set K � 10I5 and
η � 0.1, which means the conditions in Teorem 8 holds.
Moreover, Figure 1 shows that the trajectories reach
synchronization.

5. Conclusion

In this paper, we studied the synchronization problem for
the drive-response memristor neural networks subject to
stochastic perturbations and time-varying delays. Te
phenomenon of the pth moment exponential synchroni-
zation is obtained. Some testable and computable sufcient
conditions are derived to ensure the pth moment expo-
nential synchronization of these drive-response stochastic
memristor neural networks utilizing the Filippov theory and
the Lyapunov stable theory, which is more general than the
mean-square synchronization.

In future, we will improve on the control strategy, such as
data-sampled control, quantization, intermittent control, and
impulsive control. And the results will be extended to the pth
moment synchronization of the general networked dynamical
systems.
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