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In this study, a new nonlinear mathematical programming model of mixed integer was presented to formulate the problem of
designing a sustainable closed loop supply chain, in which the three aspects of sustainability, i.e., social efect such as job creation,
customer satisfaction, and distributors, environmental efects such as reducing air pollution, and economic efects such as
reducing supply chain costs, increasing supply chain reliability, quality of returned products by customers, and product routing
were considered. In order to solve the proposed model, a new hybrid metaheuristic algorithm based on the distinctive features of
gray wolf algorithm and genetic algorithm was proposed in addition to MOPSO and NSGA-II algorithms. After tuning their
parameters by the Taguchi method, their performance in problems with diferent dimensions was tested and evaluated by MID,
DM, and SM criteria. Te results of statistical analysis of indices indicated that no signifcant diference between the performance
of the three algorithms at 5% error level. In general, GW-NS, NSGA-II and MOPSO algorithms had better performance in terms
of MID index, respectively. In addition, GW-NS, NSGA-II, and MOPSO algorithms performed better in terms of DM index.
NSGA-II, MOPSO, and GW-NS algorithms performed better in terms of SM index, respectively. In addition, the variability of DM
index in all three algorithms was almost the same, but in MID index, GW-NS algorithm, and in SM index, MOPSO algorithm had
the highest change and less sustainability.

1. Introduction

Globalization, the increased regulations of governmental
and nongovernmental organizations, and the pressure
and requests from customers to comply with environ-
mental issues have led organizations to regard the nec-
essary steps to apply sustainable closed-loop supply chain
(SCLSC) management aimed at improving their envi-
ronmental and economic performance [1]. Te SCLSC
management integrates the SCM with environmental
requirements in all stages of product design, selection and
supply of raw materials, production and manufacturing,

distribution and transfer processes, delivery to the cus-
tomer, and ultimately after consumption, recycling and
reuse management aimed at maximizing the efciency of
energy, and resources consumption associated with im-
proving the performance of the entire supply chain [2, 3].
Te problem of vehicle routing in the supply chain dis-
tribution network is recognized as one of the subproblems
of SCM, which involves selecting and allocating possible
routes to available vehicles for distribution and delivery of
goods to distribution centers or customers designated to
minimize the relevant costs. Te optimal solving of this
problem will lead to timely delivery of goods, reduce the
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need for warehousing and maintenance of goods, and
increase customer satisfaction meanwhile reducing the
distribution costs [4]. One may also claim that vehicle
routing is one of the most challenging issues in the context
of transportation and support of the supply chain [5]. A
variety of products have to be made available to the
customers at their request in today’s global competitions.
Te customers’ demand for high quality and fast service-
providing has led to enhanced pressures that have not
faced before [6]. In today’s economic and industrial en-
vironment and given the growing trend of industries
followed by the rise in environmental pollution in con-
trast, and most importantly, the use of limited resources,
the need to recycle resources frommanufactured products
as well as informing the consumers about the need for
a change in attitude seem to be a priority not only in the
production of goods but in all the stages of production [7].
Ensuring sustainable development in any country is
nowadays subject to the conservation and optimal use of
limited and irreplaceable resources in that country. Tus,
many measures have been taken in this direction, in-
cluding recycling waste in the production cycle, the reuse
of consumer goods, returning the quality control returned
goods to the production line, recycling, etc. Te set of
these activities accompanied by applying environmental
and social considerations form the concept of the SCLSC
[8, 9]. On the other hand, aimed at accurate management
and preventing the waste of resources, the management
units currently have no choice other than to adopt and
employ new scientifc approaches, models, processes, and
techniques tailored to the current conditions to provide
proper performance regarding the resources used [10]. It
is usually assumed in supply chain network (SCN) design
studies that active utilities (facilities) are able to provide
service continuously for a long period of time without any
breakdown and will continue to operate without in-
terruption. However, supply chains face a high degree of
uncertainty due to their complex nature, which can ad-
versely afect the quality of their performance [11]. In the
real world, utilities may sufer from disruptions and
failures with possible causes of human error, natural
disasters, etc. [12, 13]. Tus, the failure of one component
of the SCN may disrupt the functioning of the entire
supply chain, or in the best case, reduce the efciency of
the chain. Hence, it seems essential to consider the factor
of reliability in the design of the closed-loop supply chain,
especially in its direct components (forward logistic
stage). However, this issue has been less addressed in
recent studies. In this study, a multiobjective (MO),
multiperiod, multicommodity, and scenario-based fuzzy
mathematical model, a new hybrid metaheuristic algo-
rithm was proposed for locating, routing, and distributing
goods in a sustainable closed loop supply chain. Te
uncertainty considered in the mathematical model was
fuzzy. In the proposed hybrid approach, the search
mechanism and update of the solution in the basic gray

wolf algorithm and the crowding distance index mecha-
nism of the MO genetic algorithm were used to select and
remove unsuccessful solutions in the external archive.

2. Literature Review

Te relevant literature that contributes to identify the
general framework of this article is reviewed in this section.
Zhang et al. [14] provided a mathematical model for
a SCLSC based on economic turnaround. Te goals of this
model encompass maximum proftability according to the
income and costs of the entire chain, minimizing the en-
vironmental impacts due to the carbon index and maxi-
mizing the social efects according to the job opportunities
created. Tey utilized the weighted sum technique to solve
the model. Te sensitivity analysis results revealed that the
enhanced demand rate has a remarkable impact on the goals.
Hassangaviar et al. [15] provided a biobjective mathematical
model for the closed-loop chain under uncertainty in prices.
Te model objectives included maximizing transaction level
satisfaction and the proft from the supply chain. Tey used
the NSGA-II algorithm to solve the model, and the results
indicated a good performance in terms of maximum ex-
pansion and distancing. Mogale et al. [16] provided a CLSCs
network, in which, the demand was considered sensitive to
the price, consumer motivation, and the quality level. Te
core goal of the proposed model is to reduce the total cost
and carbon emissions produced by the activities resulting
from production, distribution, transportation, and disposal.
Tey employed an NSGA-II algorithm and a cokriging
approach to solve the model. Te study results revealed the
positive efects of motivational pricing on the returned
goods. Kazancoglu et al. [17] presented an MILP model for
designing the green dual-channel and CLSCs. Te core goal
of the proposed model is to optimally select echelons and
transportation alternatives between these echelons in
a CLSC network based on economic and environmental
considerations. Te proposed model is supported by a case
study in the home appliance industry in this study. Khalili
Nasr et al. [18] provided a new integrated approach based on
the best-worst method and MOMILP for designing an
SCLSC network with the LIR problem; they applied a fuzzy
method for solving their model using GP. Sadeghi Ahangar
et al. [19] provided a SCLSC network to manage municipal
solid waste using a MILP model based on an FPA. Tis
model minimized the total cost, labor, and emission level.
Goli et al. [20] examined a multiobjective, multiperiod, and
multiproduct closed-loop supply chain (CLSC) model with
uncertain parameters aimed at combining the fnancial cash
fow as cash fow and debt constraints and employment
under uncertainty. Te objectives of the proposed mathe-
matical model in their study included increasing the cash
fow, maximizing the jobs created, and maximizing the
reliability of raw materials consumed. Tey developed and
used MO simulated annealing, MO invasive weed optimi-
zation, and MO gray wolf metaheuristic algorithms to solve
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the model at a large scale. Ali et al. [21] provided a novel
mathematical model for reverse supply chain management
of air conditioning products. Teir considered supply chain
was sustainable with fuzzy demand uncertainty. Locating
hub and recycling centers was among the most important
goals of their research. Te case study covered the industries
of Saudi Arabia and India. In their study, identifed places
were prioritized with a hierarchical process analysis ap-
proach after solving the mathematical model. Yun et al. [22]
mathematically modeled a MO supply chain by considering
economic, environmental, and social criteria. Te objectives
regarded by them included minimizing total costs, mini-
mizing the amount of carbon dioxide released, and maxi-
mizing social impacts. Teir innovation involved
considering three types of distribution channels, including
normal delivery, direct delivery, and direct displacement.
Te proposed model was solved using the genetic algorithm,
whose results indicated the proper performance of the
proposed model. Reyhani et al. [23] provided an MO and
multiperiod mathematical model for inventory management
for the SCLSC. Te most important decisions made in their
model included determining the amount of fow at each level
and locating the hubs. Te main objectives of the study
contained minimizing transportation costs and the costs of
carbon dioxide emissions and maximizing social re-
sponsibility. Te case study was focused on agricultural
products. Rabbani et al. [1] presented a sustainable MO and
multilevel mathematical model to locate distribution hubs
and allocate warehouses to distribution centers. Te pro-
posed innovation included a variety of technologies for cars,
which causes the release of diferent amounts of carbon
dioxide from diferent vehicles. Tey used the Epsilon
constraint approach to solve the model in small andmedium
dimensions. Wang et al. [24] provided a mathematical
model for the green inverse supply chain. One of their
innovations was to consider the pricing of goods using the
game theory. Tey considered three diferent prices for
diferent types of goods in this article to price goods.
Minimizing costs in the supply chain, including manufac-
turers, distributors, customers, and collection centers were
some of the objectives of this study. According to their
results, the chain costs were minimized to the desired level.
Mohtashami et al. [25] proposed a mathematical model for
reverse and green supply chains to minimize energy con-
sumption and environmental impacts. Considering the
queuing system with limited resources in hubs in this re-
search was recognized as an innovation. Tey used the
genetic algorithm to solve the proposed model in large
dimensions. Sadeghi Rad et al. [26] provided a multilayer,
multiperiod, multiproduct mixed-integer programming
model, which included four layers in the forward (direction)
fow (suppliers, production and regeneration centers, dis-
tribution center, and customers) and three layers in
(backward) reverse (direction) fow (customers, inspection
and collection centers, and disposal centers).Te production
and inspection centers were integrated into the proposed
model to reduce transportation costs. Besides economic
goals, environmental aspects such as green production,
technology, and transportation modes were also considered

in this model. Also, the amount of raw materials purchased
and the volume of greenhouse gases produced in the pro-
duction process were considered dependent on the level of
technology. Hajiaghaei et al. [27] provided a nonlinear
mixed-integer mathematical program model to formulate
a SCLSC with consideration of discounts on shipping costs.
Tey suggested three hybrid RDSA, KAGA, and ICTS al-
gorithms to solve the model, which were compared by four
evaluation criteria by Pareto analysis. Te comparison result
indicated that the proposed new hybrid KAGA algorithm
brings better solutions compared to other algorithms but
needs more time for solving. Tey fnally introduced a real
example in the glass industry to confrm the proposed model
and the algorithms provided. Ghomi-Avili et al. [28] pre-
sented an MO model in the green closed-loop supply chain
by considering the failure of downtime of centers. Pricing of
products with a collaborative approach to game theory was
one of the innovations of this research. Te problem was
fuzzily modeled due to the fuzzy nature of the data, whose
most important goal was set to minimize the amount of
pollutant gases released in the proposed chain. Rahimi and
Ghezavati [29] presented an MO mathematical model for
managing inventory and the fow of goods in a SCLSC.
Considering discounts for customers associated with un-
certainty in demand were among the innovations in their
research. Teir main goals were to minimize transportation
costs and environmental costs. Te results revealed an 11%
reduction in costs after implementing the model. Wang and
Gunasekaran [30] provided a closed-loop supply chain
where three competitive scenarios implemented by the
manufacturer were studied. Tey used Stackelberg’s game
theory for studying this model. According to their con-
clusion, a producer is more inclined to perform the recycling
and reproduction processes by himself and refrains from
outsourcing.

2.1. Research Gap. Te research gap can be summarized as
follows according to the subject literature and Table 1:

(1) Insufcient attention to the inherent uncertainty of
supply chain issues together with their elements

(2) Lack of attention to statistical reliability and various
errors in the proposed mathematical models

(3) Insufcient attention to the strengths of other
metaheuristic algorithms aimed at utilizing them
ogether in a new hybrid metaheuristic algorithm

2.2. Research Contributions

(1) In this model, increasing the supply chain reliability,
the quality of the products returned by the cus-
tomers, and the routing of the goods are also con-
sidered besides the three aspects of sustainability,
namely, the social efect such as job creation, cus-
tomer satisfaction, and distributors, the environ-
mental efect such as reducing air pollution, and the
economic efect such as reducing the supply
chain costs.
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(2) In the real world, all the components of a closed-loop
supply chain like production centers, etc., may not
fully operate and are likely to stop working due to
events such as human errors, weather conditions,
terrorist attacks, etc., in period t.Tus, this limitation
has been considered in the form of using statistical
reliability to approach the real situation.

(3) Providing a hybrid metaheuristic algorithm to solve
the model.

3. Problem Statement

Te SCN provided in this study is a closed-loop, MO, and
multiperiod scenario-based network, which encompasses
suppliers, manufacturers, distributors, customers, hubs,
repair, recycling, landfll, and demolition centers. It should
be noted that the hubs, distribution centers, recycling
centers, repair, and burial centers are equipped with the
capability to be reopened. In the reopening process, some
places are selected as candidate points and the model
chooses the optimal place from them. In the supply chain
functioning process, suppliers provide raw materials to
manufacturers. Te manufacturers and the warehouses
under their supervision send the products to distributors.
Te breakdown and failure of raw materials supply centers,
warehouses, and production centers are some of the issues
and problems addressed in this study. Tis focus makes the
issue closer and more similar to the real world. Distributors
send products to customers. Tere are hubs, recycling,
landfll, and repair centers in the backward direction. Te
important point is how to determine the fow of returned
products is their quality. Te hubs send the returned
products to repair, landfll, or production centers depending
on their quality. After repairing, the repair centers send the
products to distributors. Te recycling centers also send
products to manufacturers. It should be noted that some of
the returned goods from customers can be sent directly to
the reproduction centers located in the production center
and do not need recycling in the recycling centers. Figure 1
shows the proposed supply chain structure.

Maximizing the social responsibility dimension is one of
the goals of the proposed model, in which, the employment
rate, customer satisfaction, and distribution centers are
maximized by sending maximum products from raw ma-
terials supply and production centers to them. Minimizing
the economic and environmental costs of the supply chain is
set to be another goal of this model. Tis parameter is
considered to be fuzzy due to the inherent uncertainty of
demand. Locating, examining the fow rate between com-
ponents, and the routing of goods are other decisions that
are supposed to be made in this research.

4. Formulating the Model

4.1. Model Assumptions

(1) Te capacity of the centers is limited.
(2) Te demand parameter is assumed to be fuzzy.
(3) Te distances between centers is assumed to be fxed

and defnite.
(4) Every producer has a warehouse to store the

produced goods.
(5) Tere is a reproduction center in each production

center.
(6) Te produced goods are sent both from production

centers and from their warehouses to the distribu-
tion centers.

(7) Te locations of supplier centers, producers, and
their warehouses are fxed and predetermined and
already known.

(8) Any production center and its warehouse and supply
centers cannot be rehabilitated and reconstructed in
the case of being destroyed by an accident.

4.2. Objective Functions. We know that the time it takes for
the warehouse of the production center j to break down over
a period of Tj follows an exponential distribution with
a mean value of λjt

′. Tus, the reliability of the warehouse of
the production center j in sending products to the distri-
bution center k in the period t is equal to:

Rj � p Tj > τj
′􏼐 􏼑 � 􏽚

∞

τj
′

λjt
′ e− λjt
′τj
′
dt � e

− λjt
′τj
′
. (1)

Terefore, the mean value of the products sent from the
warehouse of the production centers to distribution centers
is equal to

􏽘
t∈T

􏽘
c∈C

􏽘
s∈S

􏽘
j∈J

􏽘
k∈K

Q
ct
jkse

− λjt
′τj
′
. (2)

Terefore, the mean value of the products sent from
production centers and their warehouses to distribution
centers is equal to

􏽘
t∈T

􏽘
c∈C

􏽘
s∈S

􏽘
j∈J

􏽘
k∈K

Q
ct
jkse

− λjt
′τj
′
+ 􏽘

j∈J
􏽘
k∈K

Z
ct
jkse

− λjtτj⎛⎝ ⎞⎠. (3)

Similarly, the average of rawmaterials sent from supplier
centers to production centers is equal to

Complexity 5



􏽘
t∈T

􏽘
o∈O

􏽘
s∈S

􏽘
i∈I

􏽘
j∈J

Z
ot
ijse

− λitτi
″
,

max z1 � J1 + J2 + R − In,

J1 � 􏽘
t∈T

􏽘
s∈S

􏽘
m∈M

αjm,sx
t
m + 􏽘

p∈P
αjp,sx

t
p + 􏽘

w∈W
αjw,sx

t
w + 􏽘

n∈N
αjn,sx

t
n + 􏽘

k∈N
αjk,sx

t
k

⎛⎝ ⎞⎠,

J2 � 􏽘
t∈T

􏽘
c∈C

􏽘
s∈S

􏽘
k∈K

􏽘
l∈L

βjk

u
t
k

z
ct
kl,s + 􏽘

l∈L
􏽘

m∈M
􏽘
q∈Q

βjm

u
t
m

z
ct
lmq,s + 􏽘

m∈M
􏽘
n∈N

􏽘
q∈Q4

βjn

u
t
n

z
ct
mnq,s

⎛⎝

+ 􏽘
m∈M

􏽘
w∈W

􏽘
q∈Q1

βjw

u
t
w

z
ct
mwq,s + 􏽘

m∈M
􏽘
p∈P

􏽘
q∈Q3

βjp

u
t
p

z
ct
mpq,s

⎞⎠,

R � 􏽘
t∈T

􏽘
c∈C

􏽘
s∈S

􏽘
j∈J

􏽘
k∈K

Q
ct
jkse

− λjt
′τj
′
+ 􏽘

j∈J
􏽘
k∈K

Z
ct
jkse

− λjt + 􏽘
t∈T

􏽘
o∈O

􏽘
s∈S

􏽘
i∈I

􏽘
j∈J

Z
ot
ijse

−λit⎛⎝ ⎞⎠,

In � 􏽘
t∈T

􏽘
s∈S

􏽘
j∈J

⎛⎝ 􏽘
c∈C

dl
t
j Q

ct
jj,s + 􏽘

k∈K
z

ct
jk,s

⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(4)

Te frst objective function represents the social re-
sponsibility dimension of the supply chain network, where

J1: Te number of fxed jobs created.
J2: Te number of variable jobs created.

R: Te average amount of product fow sent from
suppliers, production centers, and their
warehouses (as the R value increases, the satisfaction
level of distribution centers and customers will
increase).

Customer centers

Hub centers

Repairing centers

Supplier centers

Disposal centers

Recycling centers

Warehouse

Distributer centers

Plant centers

Figure 1: Te structure of the proposed model.

6 Complexity



In: Te work injury rate due to jobs created in the
production centers and their warehouses.

Min z2 � C1 + C2 + C3,

C1 � 􏽘
t∈T

􏽘
m∈M

E
t
m x

t
m + 􏽘

n∈N
E

t
n x

t
n + 􏽘

p∈P
E

t
p x

t
p + 􏽘

w∈W
E

t
w x

t
w + 􏽘

k∈K
E

t
k x

t
k

⎛⎝ ⎞⎠,

C2 � 􏽘
t∈T

􏽘
s∈S

􏽘
o∈O

􏽘
i∈I

􏽘
j∈J

h
o
ij,sz

ot
ij,sz

rt
vij,s + 􏽘

t∈T
􏽘
s∈S

􏽘
c∈C

􏽘
j∈J

cq
c
jj,sQ

ct
jj,s + 􏽘

j∈J
􏽘
k∈K

􏽘
v∈V

h
c
jk,sz

ct
jk,sro

rt
vjk,s + 􏽘

j∈J
􏽘
k∈K

􏽘
v∈V

cq
c
jk,sQ

ct
jk,sRo

rt
vjk,s

⎛⎝

􏽘
l∈L

􏽘
m∈M

􏽘
v∈V

􏽘
q∈Q

h
c
lmq,sz

ct
lmq,sro

rt
vlm,s + 􏽘

m∈M
􏽘
p∈P

􏽘
v∈V

􏽘
q∈Q3

h
c
mpq,sz

ct
mpq,sro

rt
vmp,s

+ 􏽘
k∈K

􏽘
l∈L

􏽘
v∈V

h
c
kl,sz

ct
kl,sro

rt
vkl,s + 􏽘

p∈P
􏽘
j∈J

􏽘
v∈V

h
c
pj,sz

ct
pj,sro

rt
vpj,s

+ 􏽘
m∈M

􏽘
n∈N

􏽘
v∈V

􏽘
q∈Q4

h
c
mnq,sz

ct
mnq,sro

rt
vmn,s + 􏽘

m∈M
􏽘
j∈J

􏽘
v∈V

􏽘
q∈Q2

h
c
mjq,sz

ct
mjq,sro

rt
vmj,s

+ 􏽘
m∈M

􏽘
w∈W

􏽘
v∈V

􏽘
q∈Q1

h
c
mwq,sz

ct
mwq,sro

rt
vmw,s + 􏽘

w∈W
􏽘
k∈K

􏽘
v∈V

h
c
wk,sz

ct
wk,sro

rt
vwk,s + 􏽘

c∈C
􏽘
j∈J

f
ct
j,sInv

ct
j,s

⎞⎠,

C3 � 􏽘
t∈T

􏽘
s∈S

􏽘
c∈C

􏽘
l∈L

􏽘
m∈M

􏽘
q∈Q

z
ct
lmq,sfp

ct
lmq,s + 􏽘

m∈M
􏽘
p∈P

􏽘
q∈Q3

z
ct
mpq,scpct,s + 􏽘

l∈L
􏽘

m∈M
􏽘
q∈Q

x
ct
lmq,scmct,s + 􏽘

k∈K
􏽘
l∈L

z
ct
kl,sckct,s

⎛⎝

+ 􏽘
m∈M

􏽘
n∈N

􏽘
q∈Q4

z
ct
mnq,scnct,s + 􏽘

m∈M
􏽘

w∈W
􏽘

q∈Q1

z
ct
mwq,scwct,s + 􏽘

m∈M
􏽘
j∈J

􏽘
q∈Q2

z
ct
mjq,srcjct,s + 􏽘

j∈J
cjct,s Q

ct
jj,s + 􏽘

k∈K
z

ct
jk,s

⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(5)

Te second objective function encompasses the supply
chain costs as follows:

C1: Te costs of establishing hub, repair, distribution,
demolition, landfll, and recycling centers.

C2: Te costs of production and maintenance of
products in the production sector.
C3: Te costs of recycling, demolition, etc.

Min  z3 � F1 + F2

F1 � 􏽘
t∈T

􏽘
n∈N

EMnx
t
n + 􏽘

m∈M
EMmx

t
m + 􏽘

p∈P
EMpx

t
p + 􏽘

w∈W
EMwx

t
w + 􏽘

k∈K
EMMx

t
k

⎛⎝ ⎞⎠,

F2 � 􏽘
s∈S

􏽘
r∈R

􏽘
t∈T

􏽘
v∈V

EMSv 􏽘
j∈J

􏽘
k∈K

ajk,sz
ct
jk,sro

rt
vjk,s+

⎛⎝ 􏽘
j∈J

􏽘
k∈K

dqjk,sQ
ct
jk,sRo

rt
vjk,s + 􏽘

k∈K
􏽘
l∈L

akl,sz
ct
kl,sro

rt
vkl,s

+ 􏽘
q∈Q

􏽘
l∈L

􏽘
m∈M

a
c
lm,sz

ct
lmq,sro

rt
vlm,s + 􏽘

q∈Q3

􏽘
m∈M

􏽘
p∈P

amp,sz
ct
mpq,sro

rt
vmp,s + 􏽘

q∈Q4

􏽘
m∈M

􏽘
n∈N

amn,sz
ct
mnq,sro

rt
vmn,s

+ 􏽘
q∈Q2

􏽘
m∈M

􏽘
j∈J

amj,sz
ct
mjq,sro

rt
vmj,s + 􏽘

q∈Q1

􏽘
m∈M

􏽘
w∈W

amw,sz
ct
mwq,sro

rt
vmw,s + 􏽘

w∈W
􏽘
k∈K

awk,sz
ct
wk,sro

rt
vwk,s

+ 􏽘
p∈P

􏽘
j∈J

apj,sz
ct
pj,sro

rt
vpj,s + 􏽘

s∈S
􏽘
o∈O

􏽘
r∈R

􏽘
t∈T

􏽘
v∈V

􏽘
i

􏽘
j

EMSvaij,sz
ot
ij,sro

rt
vij,s + 􏽘

t∈T
􏽘
s∈S

􏽘
c∈C

􏽘
j∈J

caqjj,sQ
ct
jj,s

(6)

Te third objective function includes environmental
efects and the amount of CO2 emitted due to the

establishment of potential centers (F1), and transportation is
in the supply chain (F2).

􏽘
k∈K

x
t
k ≥ 1∀t ∈ T, (7)

􏽘
w∈W

x
t
w ≥ 1∀t ∈ T, (8)
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􏽘
m∈M

x
t
m ≥ 1∀t ∈ T, (9)

􏽘
p∈P

x
t
p ≥ 1∀t ∈ T, (10)

􏽘
n∈N

x
t
n ≥ 1∀t ∈ T, (11)

􏽘
k∈K

ro
rt
vjk,s + 􏽘

k∈K
Ro

rt
vjk,s ≤ 􏽘

k∈K
x

t
k∀j ∈ J, r ∈ R, v ∈ V, t ∈ T, s ∈ S, (12)

􏽘
m∈M

ro
rt
vlm,s ≤ 􏽘

m∈M
x

t
m∀l ∈ L, r ∈ R, v ∈ V, t ∈ T, s ∈ S, (13)

􏽘
p∈P

ro
rt
vmp,s ≤ 􏽘

p∈P
x

t
p∀m ∈M, r ∈ R, v ∈ V, t ∈ T, s ∈ S, (14)

􏽘
n∈N

ro
rt
vmn,s ≤ 􏽘

n∈N
x

t
n∀m ∈M, r ∈ R, v ∈ V, t ∈ T, s ∈ S, (15)

􏽘
w∈W

ro
rt
vmw,s ≤ 􏽘

w∈W
x

t
w∀m ∈M, r ∈ R, v ∈ V, t ∈ T, s ∈ S, (16)

􏽘
k∈K

z
ct
kl,s �

􏽦
d

ct
l,s∀l ∈ L, c ∈ C, t ∈ T, s ∈ S, (17)

􏽘
m∈M

z
ct
lmq,s � r

c
lq,s 􏽘

k∈K
􏽘
l∈L

z
ct
kl,s

⎛⎝ ⎞⎠∀l ∈ L, c ∈ C, t ∈ T, q ∈ Q, s ∈ S, (18)

􏽘
q∈Q2

􏽘
j∈J

z
ct
mj,q,s � 􏽘

j∈J
rb

ct
mj 􏽘

q∈Q
􏽘
l∈L

z
ct
lm,q,s

⎛⎝ ⎞⎠∀m ∈M, c ∈ C, t ∈ T, s ∈ S, (19)

􏽘
q∈Q3

􏽘
p∈P

z
ct
mpq,s � 􏽘

p∈P
rb

ct
mp 􏽘

q∈Q
􏽘
l∈L

z
ct
lm,q,s

⎛⎝ ⎞⎠∀m ∈M, c ∈ C, t ∈ T, s ∈ S, (20)

􏽘
q∈Q4

􏽘
n∈N

z
ct
mnq,s � 􏽘

n∈N
rb

ct
mn 􏽘

q∈Q
􏽘
l∈L

z
ct
lmq,s

⎛⎝ ⎞⎠∀m ∈M, c ∈ C, t ∈ T, s ∈ S, (21)

􏽘
q∈Q1

􏽘
w∈W

z
ct
mwq,s � 􏽘

w∈W
rb

ct
mw 􏽘

q∈Q
􏽘
l∈L

z
ct
lmq,s

⎛⎝ ⎞⎠∀m ∈M, c ∈ C, t ∈ T, s ∈ S, (22)

􏽘
w∈W

􏽘
k∈K

z
ct
wk,s + 􏽘

j∈J
z

ct
jk,s + Q

ct
jk,s􏼐 􏼑 � 􏽘

l∈L
z

ct
kl,s∀k ∈ K, c ∈ C, t ∈ T, s ∈ S, (23)

􏽘
q∈Q3

􏽘
m∈M

z
ct
mpq,s � 􏽘

j∈J
z

ct
pj,s∀p ∈ P, c ∈ C, t ∈ T, s ∈ S,

(24)

􏽘
q∈Q1

􏽘
m∈M

z
ct
mwq,s � 􏽘

k∈K
z

ct
wk,s∀w ∈W, c ∈ C, t ∈ T, s ∈ S,

(25)

􏽘
i∈I

z
ot
ij,s + 􏽘

q∈Q2

􏽘
m∈M

z
ct
mjq,s + 􏽘

p∈P
z

ct
pj,s � 􏽘

k∈K
z

ct
jk,s + Inv

ct
j,s∀j ∈ J, c ∈ C, o ∈ O, t ∈ T, s ∈ S,

(26)
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􏽘
q∈Q2

􏽘
j∈J

z
ct
mjq,s + 􏽘

q∈Q3

􏽘
p∈P

z
ct
mpq,s + 􏽘

q∈Q4

􏽘
n∈N

z
ct
mnq,s + 􏽘

q∈Q1

􏽘
w∈W

z
ct
mwq,s � 􏽘

q∈Q
􏽘
l∈L

z
ct
lmq,s∀m ∈M, c ∈ C, t ∈ T, s ∈ S,

(27)

􏽘
r∈R

ro
rt
vjk,s + 􏽘

r∈R
Ro

rt
vjk,s ≥ 1∀j ∈ J, k ∈ K, v ∈ V, t ∈ T, s ∈ S, (28)

􏽘
r∈R

ro
rt
vlm,s ≥ 1∀m ∈M, l ∈ L, v ∈ V, t ∈ T, s ∈ S, (29)

􏽘
r∈R

ro
rt
vmp,s ≥ 1∀m ∈M, p ∈ P, v ∈ V, t ∈ T, s ∈ S, (30)

􏽘
r∈R

ro
rt
vmn,s ≥ 1∀m ∈M, n ∈ N, v ∈ V, t ∈ T, s ∈ S, (31)

􏽘
r∈R

ro
rt
vij,s ≥ 1∀i ∈ I, j ∈ J, v ∈ V, t ∈ T, s ∈ S, (32)

􏽘
r∈R

ro
rt
vkl,s ≥ 1∀k ∈ K, l ∈ L, v ∈ V, t ∈ T, s ∈ S, (33)

􏽘
r∈R

ro
rt
vpj,s ≥ 1∀p ∈ P, j ∈ J, v ∈ V, t ∈ T, s ∈ S, (34)

􏽘
r∈R

ro
rt
vmj,s ≥ 1∀m ∈M, j ∈ J, v ∈ V, t ∈ T, s ∈ S, (35)

􏽘
r∈R

ro
rt
vwk,s ≥ 1∀w ∈W, k ∈ K, v ∈ V, t ∈ T, s ∈ S, (36)

􏽘
r∈R

ro
rt
vmw,s ≥ 1∀m ∈M, w ∈W, v ∈ V, t ∈ T, s ∈ S, (37)

Inv
ct
j,s � Q

ct
jj,s − 􏽘

k∈K
Q

ct
jk,s∀j ∈ J,∀c ∈ C, t ∈ T, ∀s ∈ S, (38)

􏽘
c∈C

Inv
ct
j,s ≤ u

t
jj∀j ∈ J, t ∈ T, ∀s ∈ S, (39)

􏽘
k∈K

Q
ct
jk,s ≤Q

ct
jj,s∀j ∈ J, c ∈ C, t ∈ T, s ∈ S, (40)

􏽘
o∈O

􏽘
j∈J

z
ot
ij,s ≤ u

t
i∀t ∈ T, i ∈ I, s ∈ S, (41)

􏽘
c∈C

􏽘
k∈K

z
ct
jk,s + 􏽘

c∈C
Q

ct
jj,s ≤ u

t
j∀j ∈ J, t ∈ T, s ∈ S, (42)

􏽘
c∈C

􏽘
l∈L

z
ct
kl,s ≤ u

t
kx

t
k∀k ∈ K, t ∈ T,∀s ∈ S, (43)

􏽘
q∈Q2

􏽘
c∈C

􏽘
j∈J

z
ct
mjq,s + 􏽘

q∈Q3

􏽘
c∈C

􏽘
p∈P

z
ct
mpq,s + 􏽘

q∈Q4

􏽘
c∈C

􏽘
n∈N

z
ct
mnq,s + 􏽘

q∈Q1

􏽘
c∈C

􏽘
w∈W

z
ct
mwq,s ≤ u

t
mx

t
m∀m ∈M, t ∈ T, s ∈ S,

(44)

􏽘
c∈C

􏽘
q∈Q2

􏽘
m∈M

z
ct
mjq,s + 􏽘

p∈P
z

ct
pj,s

⎛⎝ ⎞⎠ + 􏽘
i∈I

􏽘
o∈O

z
ot
ij,s ≤ cr

t
j∀j ∈ J, t ∈ T, s ∈ S, (45)
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􏽘
q∈Q4

􏽘
c∈C

􏽘
m∈M

z
ct
mnq,s ≤ u

t
nx

t
n∀n ∈ N, t ∈ T, ∀s ∈ S,

(46)

􏽘
q∈Q3

􏽘
c∈C

􏽘
m∈M

z
ct
mpq,s ≤ u

t
px

t
p∀p ∈ P, t ∈ T, s ∈ S,

(47)

􏽘
q∈Q1

􏽘
c∈C

􏽘
m∈M

z
ct
mwq,s ≤ u

t
wx

t
w∀w ∈W, t ∈ T, s ∈ S,

(48)

􏽘
r∈R

ro
rt
vjk,s + 􏽘

r∈R
Ro

rt
vjk,s ≤ 􏽘

r∈R
ro

rt
vij,s∀j ∈ J, i ∈ I, k ∈ K, v ∈ V, t ∈ T, s ∈ S, (49)

􏽘
r∈R

ro
rt
vkl,s ≤ 􏽘

r∈R
ro

rt
vjk,s∀j ∈ J, l ∈ L, k ∈ K, v ∈ V, t ∈ T, s ∈ S, (50)

􏽘
r∈R

ro
rt
vlm,s ≤ 􏽘

r∈R
ro

rt
vkl,s∀m ∈M, l ∈ L, k ∈ K, v ∈ V, t ∈ T, s ∈ S, (51)

􏽘
r∈R

ro
rt
vpj,s ≤ 􏽘

r∈R
ro

rt
vmp,s∀j ∈ J, p ∈ P, m ∈M, v ∈ V, t ∈ T, s ∈ S, (52)

􏽘
r∈R

ro
rt
vmw,s ≤ 􏽘

r∈R
ro

rt
vwk,s∀w ∈W, k ∈ K, m ∈M, v ∈ V, t ∈ T, s ∈ S, (53)

􏽘
r∈R

ro
rt
vmp,s + ro

rt
vmn,s + ro

rt
vmj,s + ro

rt
vmw,s􏼐 􏼑≤ 􏽘

r∈R
ro

rt
vlm,s∀m ∈M, j ∈ J, w ∈W, n ∈ N, l ∈ L, p ∈ P, v ∈ V, t ∈ T, s ∈ S, (54)

z
ct
lmq,s, z

ct
mpq,s, z

ot
ij,s, z

ct
pj,s, z

ct
mnq,s, z

ct
mjq,s, z

ct
mwq,s, z

ct
wk,s, z

ct
jk,s, z

ct
kl,s, Q

ct
jk,s, Q

ct
jj,s, Inv

ct
j,s

≥ 0x
t
k, x

t
p, x

t
m, x

t
n, x

t
w, Ro

rt
vjk,s, ro

rt
vij,s, ro

rt
vjk,s, ro

rt
vkl,s, ro

rt
vlm,s, ro

rt
vmp,s, ro

rt
vpj,s, ro

rt
vmj,s, ro

rt
vmn,s, ro

rt
vmw,s, ro

rt
vwk,s ∈ 0, 1{ }.

(55)

4.3. Constraints. Te constraints (7)–(11) suggest that at
least one of the potential distribution, repair, hub,
recycling, and disposal centers in the supply chain is
established. Te constraints (12)–(16) suggest that a po-
tential center should frst be established to subsequently
create a route (path) to this potential center. Te con-
straint (17) indicates the satisfaction of customers’ de-
mands. Te constraint (18) shows the balance between
distribution, customer, and hub centers. Te constraint
(29) indicates the balance between customer, hub, and
production centers. Te constraint (20) shows the bal-
ance between customer, hub, and recycling centers. Te
constraint (21) indicates the balance between customer,
hub, and landfll and disposal centers. Te constraint (22)
shows the balance between customer, hub, and repair
centers. Te constraint (23) indicates the balance be-
tween manufacturer, distributor, customer, and repair
centers. Te constraint (24) shows the balance between
hub, recycling, and manufacturing centers. Te con-
straint (25) shows the balance between hub, repair, and
distributor centers. Te constraints (26) and (27) de-
termine the product fows in terms of its quality. Te
constraints (28)–(37) suggest that there is at least one
path between the supply chain elements. Te constraints
(38) and (39) indicate the amount of inventory and the
fnal capacity of the manufacturer. Te constraint (40)
determines the amount of the producer’s inventory in its

warehouse. Te constraints (41)–(48) indicate the ca-
pacity of the fxed and potential centers. Te constraints
(49)–(54) explain the limitations of vehicle routing. Fi-
nally, the constraint (55) represents the decision vari-
ables of the proposed model.

4.4. Converting the Indefnite Demand Constraint to Its
Equivalent Defnite Constraint. A fuzzy number is a gener-
alization of ordinary and real numbers that refers not to
a value but a connected set of values so that any possible
value would have a weight between 0 and 1 [31]. Tis
mentioned weight is called themembership function. Hence,
a fuzzy number is a certain type of the normalized convex
real line fuzzy set [32]. Tere are several patterns such as
triangular, trapezoidal, bell-shaped patterns, etc. to describe
fuzzy numbers. Triangular fuzzy numbers are the most
popular type of fuzzy numbers and are widely used in
representing uncertainty in applied sciences because of their
ability to express the perception of experts [33]. We used the
triangular fuzzy number in this article to represent the fuzzy
demand parameter. Tus, we defned the demand fuzzy
parameter as ((dct

ls )p, (dct
ls )m, (dct

ls )o), in which the upper
indices o, m, and p represent the most pessimistic, most
possible, and the most optimistic values for the parameter,
respectively. Terefore, the demand membership function
would be as follows:
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μ 􏽥
dct
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(x) �

x − d
ct
ls􏼐 􏼑

p

d
ct
ls􏼐 􏼑

m
− d

ct
ls􏼐 􏼑

p d
ct
ls􏼐 􏼑

p
≤ x≤ d

ct
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m
,

d
ct
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o
− x

d
ct
ls􏼐 􏼑

o
− d

ct
ls􏼐 􏼑

m d
ct
ls􏼐 􏼑

m
≤ x≤ d

ct
ls􏼐 􏼑

o
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

We utilized the weighted-average method in this paper
to convert the fuzzy demand parameter to the equivalent
defnite parameter. Terefore, the fuzzy constraint [5] is
determined based on equation.

􏽘
k∈K

z
ct
kl,s � w1 d

ct
ls,β􏼐 􏼑

p
+ w2 d

ct
ls,β􏼐 􏼑

m

+ w3 d
ct
ls,β􏼐 􏼑

o
∀l ∈ L, c ∈ C, t ∈ T, s ∈ S.

(57)

In equation (57), w1 + w2 + w3 � 1 and β are the min-
imum acceptable likelihood in converting the fuzzy pa-
rameter to an equivalent real number. Te symbols
w3, w2, w1 show the most pessimistic, most possible, and the
most optimistic weight of fuzzy demand values, respectively.
Appropriate values for these weights are usually determined
based on the experience and knowledge of the decision-
maker. In this study, these weights were considered based on
the proposed values of Lai and Hwang and other conducted
studies [34, 35] as β � 0.5, w1 � w3 � 1/6, w2 � 4/6.

5. Solving Approaches

5.1. Epsilon Constraint. Tis method is based on turning an
MO optimization problem into a single-objective optimization
problem.Tus, one of the objectives of the problem is optimized
as themain objective regarding other objectives as a constraint in
this method [36]. It is assumed that the decision tominimize the
objective functions (58) is associated with the constraints (59).

Min F(x) � f1(x), ..., fn(x)􏼈 􏼉 , (58)

st:
g(x)≤ 0,

h(x) � 0.
(59)

One of the objective functions is selected as the main
objective function according to equation (60) based on this
approach. Other objective functions are considered as the
constraint (61), and each time, the problem is solved
according to one of the objective functions, and optimal and
corresponding values of each objective function are calcu-
lated. Te range between two optimal and corresponding
values of subobjective functions is subdivided into a pre-
determined number followed by specifying a table of values
for εj. Finally, the Pareto solutions will be obtained [37].

Min  F(x), (60)

st:

fj(x)≤ εj

f
min
j (x)≤ εj ≤f

max
j

g(x)≤ 0
h(x) � 0

j � 1, . . . , n, j≠ 1. (61)

5.2. MOPSO Algorithm. Te MOPSO algorithm was in-
troduced by Coello in 2004 [38], which is in fact a general-
ization of the PSO algorithm that is used to solve MO
problems. An elitist policy is used in this algorithm to keep the
superior and dominant results in the iterations of the algo-
rithm. Te dominant solutions are stored in an external ar-
chive. Selecting Pbest and Gbest is done by a special
mechanism. Pbest is only updated when a new particle
dominates its previous value; then, the new particle is replaced.
If the new particle is defeated by the best previous particle,
nothing occurs and the same previous particle is introduced as
the solution. Otherwise, if neither of them defeats each other,
one of them is randomly considered as the best particle [39].
Gbest is also selected from the nondominated solutions in the
archive in each iteration. Te proper selection of optimal so-
lutions in the MO particle swarming algorithm is known as an
important step since it is subject to the convergence of the
algorithm and its ability to achieve a diverse set of non-
dominated solutions in the decision space. If the termination
conditions for the algorithm are not met, the above steps are
repeated. Otherwise, the set of solutions in the archive are
presented as efcient front points and fnal solutions (Figure 2).

5.2.1. Tuning the Coefcients. Te equations describing the
behavior of the particles in the MOPSO algorithm are as
follows. Equations (62) and (63) determine the velocity and
location of the particle i at the moment t+ 1.

Vi[t + 1] � wVi[t] + c1r1 xibest[t] − xi[t]( 􏼁

+ c1r1 xGbest[t] − xi[t]( 􏼁,
(62)

xi[t + 1] � xi[t] + Vi[t + 1], (63)

where xi[t]: the location of the particle i at moment t. Vi[t]:
the velocity of the particle i at moment t. xGbest[t]: the best
location of the particle i at moment t. w: the coefcient of
inertia r1, r2: Rand(0, 1). c1, c2: individual and collective
learning coefcients.

5.3. NSGA-II Algorithm. Tis algorithm was introduced by
Deb in 2002. In this algorithm, frst, the initial population of
parents P0 is randomly generated with the size N. Te
generated initial population is then sorted out by a non-
dominated approach and the solutions are categorized into
diferent levels of degree of nondomination. Subsequently,
each solution is assigned with a value or rank depending on
its position on that front. Hence, the solutions of the frst
front, which are at the lowest level, are ranked frst, the
solutions of the second front are ranked second, and so are
the rest. Ten, the population of children Q0 is generated by
the size N using the binary tournament method based on the
swarm comparison operator and the intersection and jump
operators. Combining two populations of parents and
children generates the R0 � P0 ∪Q0 population with the size
2N. Te next generation is selected from the obtained R0
population. Since this algorithm follows an elitist approach,
the members of R0 are categorized again by a nondominated
sorting method. After creating diferent fronts of the
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nondomination degree, the next generation P1 population
with the size N will be flled in order from the frst front
onwards by in the following approach. By creating P1, the
same steps mentioned for the P0 are performed and this loop
continues until the algorithm is terminated. Ultimately, the
frst front achieved from the Rt sorting of the latest gen-
eration will be introduced as the set of Pareto solutions.

We assume that the Rt population resulting from com-
bining the parents Pt and their children Qt has been sorted by
a nondominated approach the fronts Fi have been created for
i � 1, 2, · · ·. Now, the solutions found on the frst front F1 are
the frst candidates to join the next generation as the best
solutions available in the current generation. If the number of
the F1 members is lower than the N, all of them will be
transferred to Pt+1. Te rest of the Pt+1 members are selected
from the F2 and then from the F3, and so on. Tis procedure
is continued until the F1 would be considered as the last front
from which the rest of the Pt+1 members are supposed to be
selected. At this time, since the total number of the F1
members is higher than the required number of the remaining
members, these members are sorted in order of decreasing the
crowding distance, and then the remaining required number
will be selected from the beginning of this list.

Te most signifcant distinguishing feature of the MO
genetic algorithm is the concept of crowding distance, as
shown in Figure 3. Tis concept is used for determining the
quality of a solution in a particular Pareto frontier. In fact,
NSGA-II ensures the quality of the fnal unsuccessful so-
lutions by using the crowding distance mechanism.

dj(k) � 􏽘
n

i�1

fi(k − 1) − fi(k + 1)

f
max
i − f

min
i

. (64)

In which n represents the number of objective functions.
In addition, fmax

i , fmin
i represent the highest and lowest

values of the i-th and k objective functions of the current
solution, respectively.

5.4. Gray Wolf Algorithm. Te gray wolf optimization al-
gorithm is one of the new metaheuristic algorithms pro-
posed by Mirjalili et al. [40]; being inspired by the hunting
behavior of gray wolves in the wild. In order to model the
mathematical relations of the hierarchical structure of the
wolf community for designing the GWO, the fttest solu-
tion is considered as alpha (α) wolf. Furthermore, the
second and third optimal solutions are considered beta (β)
and delta (δ), respectively. Other candidate solution are
called omega (ω). In the GWO algorithm, hunting is guided
by α, β, and δ. Wolves ω follow these three wolves in the
hope of fnding an optimal solution. In addition to leading
the wolf community, the following relations state the
simulation of the siege behavior of gray wolves while
hunting prey.

D
→

� C.
→

X
→

p(t) − X
→

(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌X
→

(t + 1) � X
→

p(t) − A
→

.D
→

, (65)

where t represents iterations, C.
→

shows coefcient vectors,
X
→

p represents prey position vectors, and X
→

shows gray wolf
position vectors. Te vectors C

→
and A

→
are calculated as

follows:

A
→

� 2a
�→

.r1
→

− a
→

, C
→

� 2r2
→

,Rand(0, 1). (66)

In these relations, a
→ decreases linearly from 2 to 0.

Te GWO algorithm uses community leadership simu-
lation, as well as the siege mechanism to fnd the optimal
solution to optimization problems. Tis algorithm selects
the frst three solutions from the desired solution and
requires other search factors including omega wolves to
improve their position over the top solutions. Te
following relations are applied to each factor during
the optimization process to perform the hunting
process and thus fnd the appropriate areas in the search
space.

Min

M
in

i + 1

i − 1

i

Of1

Of2

Figure 3: Te concept of crowding distance.

pg (t)

xi (t)

pi (t)

pi (t) – xi (t)

pg (t)– xi (t)

v (t)

X (t)

X (t+ 1)

Gbest

Pbest

Y

X

Figure 2: Te mechanism of action of the particle swarm opti-
mization algorithm.
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D
→

α � C
→

1.X
→

α − X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

D
→

β � C
→

2. X
→

β − X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

D
→

δ � C
→

2.X
→

δ − X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(67)

X
→

1 � X
→

α − A
→

1.D
→

α,

X
→

2 � X
→

β − A
→

2.D
→

β,

X
→

3 � X
→

δ − A
→

3.D
→

δ,

(68)

X
→

(t + 1) �
x
→

1 + x
→

2 + x
→

3

3
. (69)

Te search in the problem space is guaranteed by the
vector A

→
with random values between [-1,1], necessitating

the factors to distance themselves from the prey. Another
GWO parameter which helps to search further is the vector
C
→
. Te vector C

→
selects random values between [0, 2],

leading to random weight values for the prey. Tese values
show the efect of prey on the defnition of distance in (64).
Te GWO algorithm begins the optimization process by
generating a set of initial random solutions. During the
optimization process, three of the best solutions are saved (α,
β, δ). Ten, the wolves’ situation is updated through
equations (67)–(69). Meanwhile, the values of A and a in-
crease linearly with increasing repetitions. Tus, wolves will
tend to distance from the prey and get closer to the prey.
Ultimately, the position and value of the alpha solution are
returned to the algorithm as the best solution found in terms
of all constraints. A distinctive feature of the gray wolf al-
gorithm is the use of several guides and the avoidance of
falling into the optimal local trap.

Figure 4 shows the multisegment chromosome pre-
sented in this study. For example, the fgure on the right
shows the chromosome related to the Invct

j,s variable. Te
value within each gene represents the amount of residual
inventory of the product c in the warehouse of the pro-
duction center j in the period t in scenario s. Te fgure on
the left also shows the chromosome corresponding to the
variable xt

p. If the value within each gene is equal to 1, the
recycling center at location p is established in period t.

Figure 5 illustrates the intersection operator. As seen in
the fgure, the single-point intersection has been used in this
research. In this type of intersection, the two sides of the
chromosome will be displaced together.

As shown in Figure 6, the mutation operator considered in
this study is a reverse mutation type. In this type of mutation,
a row of chromosomes is selected and will be then reversed.

5.5. Proposed Hybrid Metaheuristic Algorithm GW-NS. In
order to implement the optimization process of the pro-
posed method based on two algorithms NSGA-II and GWO,
two ideas were hybridised with each other.

Te frst idea is the strategy of selecting a leader from the
external archive of nondominated solutions.

In the proposed algorithm, the value of the crowding
distance is calculated for each member in the external
archive and using the roulette wheel mechanism, we select
the three members alpha (α), beta (β), and delta (δ).
Members of the external archive that have more crowding
distance should have a more chance of being selected. In
other words:

pi: probability of selecting the i-th element
di: crowding distance of the i-th element in the external
archive.

∀i, j ∈ Archive di ≥dj⇒pi ≥pj. (70)

Te second idea is the control process, when a non-
dominated solution aims to enter the external archive or
when the number of archive members is higher than its
capacity (it should be noted that there is always a certain
number of members for the external archive).

In the proposed algorithm for deleting a non-
dominated solution, when the number of archive mem-
bers exceeds its capacity, some members of the archive
should be selected for deletion. Te members with less
crowding distance should have a more chance of being
selected for deletion. Te selection process is done by
roulette wheel mechanism.

∀i, j ∈ Archive di ≥dj⇒pi ≤pj. (71)

In general, the steps of the proposed algorithm are as
follows (Figure 7):

(1) Defning a random primary population in the
problem search space.

(2) Defning an external archive of nondominated
members of the primary population.

(3) Selecting three members alpha (α), beta (β), and
delta (δ) from the members in the external archive
randomly, using the roulette wheel mechanism,
based on the crowding distance

∀i, j ∈ Archive di ≥dj⇒pi ≥pj. (72)

In which:

j1

j2

c1 c2 c6 c6c2c1c3 c3c4 c4c5 c5

t1 t2

1 3 2 2 1 3 2 1 4 3 1 2
3 2 1 1 2 3 4 3 1 2 2 1

S1

0 1 1 0
1 0 1 1

P1 P2 P3 P4

t1

t2

Figure 4: Te proposed chromosome structure.
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pi �
e
λdi/dmax

􏽐j∈Arcivee
λdi/dmax

,

λ � 􏽘
i∈H

pi,

(73)

H: A total of 50% better total external archive
members based on crowding distance index.

(4) Updating the position of each current member
based on equations (67)–(69) and forming a new
population.

(5) Selecting a percentage of the new population of the
previous stage (stage 4) for mutation and creation of
a new population.

(6) Determining the nondominated members of the
new population produced in the previous stage
(stage 5).

(7) Adding the nondominated population created in
the previous stage (stage 6) to the external archive
and updating it.

(8) If the number of members of the external archive is
higher than the determined capacity, extra mem-
bers will be removed.
Note: Deletion is conducted by the roulette wheel
mechanism and based on the crowding distance
index, i.e., the smaller the crowding distance, the
more likely it is to be eliminated.

∀i, j ∈ Archive di ≥ dj⇒pi ≤pj. (74)

In which:

pi �
e

− θdi/dmax

􏽐j∈Arcivee
− θdi/dmax

,

θ � 􏽘
i∈H

pi,

(75)

H: A total of 50% better total external archive
members based on crowding distance index.

(9) If the termination conditions are met, go to the next
stage, otherwise return to stage 3.

(10) Te End.

5.6. Tuning the Parameters. Since the output of the problems
strongly depends on the parameters of the proposed algo-
rithms, thus, we used the Taguchi method to tune their
parameters.Te advantage of the Taguchi method over other
tests design methods in addition to cost is to obtain the
optimal levels of parameters in less time [41]. Choosing an
orthogonal array appears to be one of the most important
steps, which estimates the efects of factors on the mean
values of the solution and variations. Te most appropriate
test design in this research was found to be the three-level
experiments at three low, moderate, and high levels. Ten,
the arrays L9 and L27 were chosen as the suitable test design
to tune the parameter of the proposed algorithms due to the
Taguchi standard orthogonal arrays. Te levels of the pa-
rameters of NSGA-II and MOPSO algorithms are given in
Table 2 for their tuning.

A statistical measure of performance, known as the
signal to noise ratio (S/N) is considered in the Taguchi
method to tune the optimal parameters. Tis ratio en-
compasses mean values and variations, and it would be more
desirable at higher levels.Te solution variable considered in
this study is the ratio of the two indices of the Mean Ideal
Distance (MID, equation (77)) and the Diversifcation
Metric (DM, equation (78)) for MO algorithms. Since this
solution variable is of the type “the lower, the better”, then,
its corresponding S/N ratio is considered as equation (76).
Te proposed metaheuristic algorithms are implemented for
each Taguchi experiment, and then, the S/N ratios will be
calculated by the Minitab 19.2020.1 software.

S

N
� −10 log

1
n

􏽘

n

i�1
y
2
i

⎛⎝ ⎞⎠. (76)

6. Results Analysis and Comparisons

Te model is frst solved in small and medium dimensions
aimed at evaluating the accuracy and precision of the

95 63 39 11
31 59 78 67
82 50 502 54
73 81 77 93
56 46 64 47
99 37 77 500

55 75 120 81
80 201 461 123
55 126 41 200
45 91 31 14
56 58 46 314
99 24 45 124

55 75 120 81
80 201 461 123
82 50 502 54
73 81 77 93
56 58 46 314
99 24 45 124

95 63 39 11
31 59 78 67
55 126 41 200
45 91 31 14
56 46 64 47
99 37 77 500

Parents Children

Figure 5: Te intersection operator.

55 96 80 75 71 11
66 10 29 41 9 50
70 38 18 65 41 26

55 96 80 75 71 11
50 9 41 29 10 66
70 38 18 65 41 26

Mutation

Figure 6: Te mutation operator.
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proposed model. Table 3 shows the problems with small
dimensions (samples 1–5) and medium dimensions
(samples 6–10). For example, there is a customer, a man-
ufacturer, a supplier, a recycling center, a hub, a repair

center, a distributor, and a landfll center in sample
number 1.

Figure 8 shows the model solution time for NSGA-II,
MOPSO, GW-NS algorithms, and the Epsilon constraint

Start

Forming the preliminary
members of external archive

using non-dominated
population

Selecting a percentage of new
population randomly, mutation,
and creating a new population

The number of
members in external
archive is more than

the determined
capacity

Removing the extra
members from external

archive

Realization of
final conditions

The End

Yes

Yes

No

No

Determining the non-dominated
member of population, adding it
to external archive and updating

the archive

Random generation of
primary population based

on problem space

For each member of the current population, three alpha
members are selected randomly using the Roulette

wheel mechanism based on crowding distance and then
updating its situation using Eqs. 78-80 and creating a

new population

Figure 7: Flowchart of proposed algorithm GW-NS.
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method. As can be seen, the solution time by the Epsilon
constraint method is increasing exponentially as the di-
mension of the problem increases. Algorithms are pro-
grammed using GAMS and MATLAB (R2020 a) and
implemented on a PC under Windows 7, Intel Core i3,
3.3GHz, 4GB RAM.

6.1.Multiobjective PerformanceMetrics. Te performance of
the algorithms used to solve the proposed model was

evaluated by the following criteria, which are
described below.

6.1.1. Mean Ideal Distance (MID). Tis criterion measures
the degree of closeness between the solutions found on the
Pareto front and the ideal points (fbest

1 , fbest
2 , fbest

3 ), which is
calculated by equation (77). Te lower the value of this
criterion for an algorithm, the better the performance of that
algorithm would be.

MID �

����������������������������������������������������������������������

f1i − f
best
1 /fnadi r

1 − f
best
1􏼐 􏼑

2
+ f2i − f

best
2 /fnadi r

2 − f
best
2􏼐 􏼑

2
+ f3i − f

best
3 /fnadi r

3 − f
best
3􏼐 􏼑

2
􏽱

n
. (77)

Table 2: Te algorithm parameter table.

Parameter Level 1 Level 2 Level 3
MOPSO algorithm parameters
Max—iteration 100 150 200
Population size (npop) 50 80 100
Repository size (nRep) 60 85 100
Inertia coefcient (w) 0.3 0.5 0.8
Inertia weight damping ratio (wdamp) 0.8 0.9 0.99
Number of grids per dimension (nGride) 3 5 7
Grid increase rate (alpha) 0.1 0.2 0.3
Leader selection pressure (beta) 2 4 5
Leader removal pressure (gamma) 2 4 5
Mutation rate (mu) 0.1 0.15 0.2
Individual learning coefcient (c1) 1 2 4
Collective learning coefcient (c2) 2 3 5
NSGA-II algorithm parameters
Max—iteration 100 130 150
Population size (npop) 50 100 150
Mutation rate (pm) 0.8 0.85 0.9
Crossover rate (pc) 0.1 0.15 0.2
— — — —
GW-NS algorithm parameters
Max—iteration 100 140 160
Population size (npop) 54 96 165
Mutation rate (pm) 0.8 0.86 0.89
Crossover rate (pc) 0.1 0.16 0.2
Number of wolf(N) 20 36 50
Gray wolf pack size(G) 10 16 21
Path coefcient(a) 0.3 0.4 0.5

Table 3: Te dimensions of the problem.

Number of the problem Customers Manufacturers Suppliers Recycling centers Hub Repair
centers

Distribution
centers

Burial
centers

1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2
3 2 2 2 3 2 2 2 1
4 3 2 1 3 2 3 3 2
5 3 3 3 3 3 3 3 3
6 3 2 3 4 3 3 4 3
7 4 3 4 3 4 4 4 4
8 5 4 5 4 4 5 5 4
9 5 5 5 5 5 5 5 5
10 6 5 6 5 6 5 5 5
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In equation (77), n is the number of nondominated
solutions, while fbest

i and fnadir
i are the best and worst values

of the ith objective function, respectively [42].

6.1.2. Diversifcation Metric (DM). Tis criterion measures
the scattering of the Pareto solutions, which is calculated by
the following equation.

DM �

������������������������������������������������������������������

max f1i􏼈 􏼉 − min f1i􏼈 􏼉

fnadi r
1 − fbest

1
􏼠 􏼡

2

+
max f2i􏼈 􏼉 − min f2i􏼈 􏼉

fnadi r
2 − fbest

2
􏼠 􏼡

2

+
max f3i􏼈 􏼉 − min f3i􏼈 􏼉

fnadi r
3 − fbest

3
􏼠 􏼡

2
􏽶
􏽴

. (78)

According to equation (78), a higher value of DM in-
dicates the better performance of the algorithm [42].

6.1.3. Spacing Metric (SM). Tis criterion measures the
scattering pattern of the nondominated solutions, which is
calculated by the following equation.

SM �
􏽐

n−1
i�1 di − d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

(n − 1)d
. (79)

In equation (79), di determines the Euclidean distance
between successive solutions in the set of the nondominated
solutions obtained by the algorithm and d is the average of
these distances. According to the defnition of SM, the lower
the value of this index, the better the algorithm would
be [42].

In order to compare the results of the algorithms, three
metaheuristics are applied to solve 10 problems in various
dimensions, and the obtained results are reported in Table 4.
For a closer look at the results of the three algorithms, the
following hypothesis was tested according to DM, SM, and
MID indexes.

Hypothesis 1. Tere is a signifcant diference between the
DM of the solutions generated by the three algorithms GW-
NS, MOPSO, and NSGA-II.

Hypothesis 2. Tere is a signifcant diference between the
MID of the solutions generated by the three algorithms GW-
NS, MOPSO, and NSGA-II.

Hypothesis 3. Tere is a signifcant diference between the
SM of the solutions generated by the three algorithms
GW–NS, MOPSO, and NSGA-II.

Table 4 shows the values ofMID, DM, and SM indices for
the problems listed in Table 3.

TeMID and SM indices, respectively, increase with low
and high slopes as the size of the problem enhances
according to Figures 9 and 10. To put it better, increasing the
dimensions of the problem reduces the efciency of algo-
rithms in terms of MID and SM indices, while the MID
index shows less sensitivity to the increase in dimensions.
According to Figure 11, the increased size of the problem
enhances the efciency of the algorithms based on the DM
index. In other words, increasing the dimensions of the
problem exhibited a higher potential for exploring and
extracting the region of the solution.

6.2. Statistical Analysis Comparisons. For the purpose of
statistical analysis, one-way variance analysis technique and
SPSS software are applied. As well, to confrm the parametric
results, a nonparametric test called Kruskal—Wallis test was
used. If data are suitable for variance analysis, non-
parametric test is used where there is no precondition for
uniformity of the variance or normal distribution. Results of
one-way variance analysis and nonparametric test for three
measures are provided in Tables 5–8.

Based on Tables 5–8 for all three indices SM, DM, and
MID, the P value of ANOVA and Kruskal—Wallis tests are
all more than 0.05, Tus, there is no signifcant diference
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Figure 8: Te model solution time in terms of increasing the problem dimension.
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Figure 10: Te result of comparing the algorithms in terms of SM.

Table 4: Te computational results of comparison measurement criteria of MOPSO, NSGA-II, and GW-NS algorithms.

Problem No
NSGA-II MOPSO GW-NS

SM MID DM SM MID DM SM MID DM
1 0.1 6.46 1.29 0 6.49 0.47 0 6.47 1.34
2 0.1 6.49 1.06 0.09 6.49 0.68 0.11 6.45 0.95
3 0.11 6.69 1.28 0.12 6.73 0.74 0.13 6.51 1.31
4 0.13 6.68 1.8 0.16 6.75 0.93 0.14 6.71 1.41
5 0.19 6.72 1.51 0.22 6.76 1.12 0.23 6.73 1.62
6 0.17 6.69 1.63 0.21 6.75 1.27 0.25 6.71 1.78
7 0.21 6.78 2.12 0.27 6.82 1.45 0.26 6.75 2.33
8 0.2 6.76 2.24 0.24 6.82 1.82 0.26 6.77 2.31
9 0.22 6.85 2.29 0.26 6.87 2.2 0.28 6.81 2.71
10 0.21 6.84 3.2 0.31 6.92 2.79 0.29 6.83 3.91
Ave 0.164 6.696 1.842 0.188 6.74 1.347 0.195 6.674 1.967
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Figure 9: Te result of comparing the algorithms in terms of MID.
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between the performances of the three algorithms at the 5%
error level. Figures 12–14 indicate that GW-NS, NSGA-II,
andMOPSO algorithms have better performance in terms of

MID index, respectively. In other words, this algorithm
exhibited higher potentials for convergence to the ideal
solution compared to other algorithms. Te GW-NS
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Figure 12: Mean changes in the performance index of SM
algorithms.

Table 5: Results of one-way variance analysis for MID, DM, and
SM.

Source SS DF MS F P value
MID
Solver 0.023 2 0.011 0.581 0.566
Error 0.525 27 0.019
Total 0.547 29

DM
Solve 2.150 2 1.075 1.881 0.172
Error 15.429 27 0.571
Total 17.579 29

SM
Solve 0.005 2 0.003 0.387 0.683
Error 0.184 27 0.007
Total 0.190 29

Table 6: Kruskal–Wallis nonparametric test for MID.

Solver N Mean rank Chi-square P value
NSGA-II 10 14.35 1.97 0.385
MOPSO 10 18.6
GW-NS 10 13.55
Total 30

Table 7: Kruskal–Wallis nonparametric test for DM.

Solver N Mean rank Chi-square P value
NSGA-II 10 17.30 4.16 0.125
MOPSO 10 10.9
GW-NS 10 18.3
Total 30

Table 8: Kruskal–Wallis nonparametric test for SM.

Solver N Mean rank Chi-square P value
NSGA-II 10 12.05 2.446 0.294
MOPSO 10 16.5
GW-NS 10 17.95
Total 30
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Figure 13: Mean changes in the MID performance index of
algorithms.
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algorithm also ofered higher-diversity solutions(DM) than
the NSGA-II and MOPSO algorithms. In other words, this
algorithm exhibited higher potentials for exploring and
extracting the region of the solution as compared with the
NSGA-II and MOPSO algorithms. In addition, in terms of
SM index, NSGA-II, MOPSO, and GW-NS algorithms in-
dicate better performance, respectively. In other words, the
NSGA-II algorithm generated more uniform solutions as
compared with the GW-NS and MOPSO algorithms. Box
plots Figures 15–17 show that the variability of the DM index
is almost the same in all three algorithms. But in the MID
index, the GW-NS algorithm and in the SM index, the
MOPSO algorithms have the highest changes and less
stability.

7. Conclusion and Future Works

In this study, a new multiobjective, multiperiod, multi-
product scenario-based fuzzy mathematical model for
CLSC was presented. In the proposed model, in addition
to the three aspects of sustainability, namely social,
economic and environmental impact, reliability, quality
of returned products by customers, and routing of goods
fow in the supply chain were considered. In this network,
the demand parameter was considered as fuzzy. In order
to solve the proposed model, in addition to the two
metaheuristic algorithms NSGA-II and MOPSO, a new
hybrid metaheuristic algorithm using the strengths of the
GWO algorithms (using multiple guides and avoiding
falling into the optimal local trap) and NSGA-II
(guaranteeing the quality of unused solutions crowding
distance mechanism) was presented. After tuning their
parameters by Taguchi method, their performance in
problems with diferent dimensions was tested and
evaluated by MID, DM, and SM criteria. Te results of
statistical analysis of indices indicated that no signifcant
diference between the performance of the three algo-
rithms at 5% error level. In general, GW-NS, NSGA-II,
and MOPSO algorithms had better performance in terms
of MID index, respectively. In addition, GW-NS, NSGA-
II, and MOPSO algorithms performed better in terms of
DM index. NSGA-II, MOPSO, and GW-NS algorithms
performed better in terms of SM index, respectively. Te
model proposed in this paper can be developed in future
research by considering several decision-makers in the
closed loop network and the use of the concept of the
game. Te robust planning approach can be also used to
deal with the supply chain uncertainty, making the model
more powerful and fexible in the face of uncertainty.
Also, instead of the exponential distribution assumed to
model the reliability of the direct logistics elements, other
probability distributions such as Erlang or Weibull can be
considered. Multiple fnancial, environmental, and social
goals combined with dynamic constraints can provide
more efective and practical solutions. At the end, identify
the strengths of other metaheuristic algorithms with the
aim of using them to propose new hybrid algorithms.
Combining two or more performance indicators of
metaheuristic algorithms with each other and using them
to compare algorithms can be considered for future study.

Abbreviations

Indices

R: Routes r ∈ R

L: Customers l ∈ L

J: Manufacturers j ∈ J

Q: Te set of quality levels Q1, Q2, Q3  Q4,
Q � Q1 ∪Q2 ∪Q3 ∪Q4

Q1: Quality level of products that are sent from hub stations
to repair stations

Q2: Quality level of products that are sent directly from the
hub stations to the production stations
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Q3: Quality level of products that are sent from hub stations
to recycling stations

Q4: Quality level of products that are sent from hub stations
to disposal stations, (where Q1≻Q2≻Q3≻Q4≻ is the
quality level of the comparison operator)

I: Suppliers i ∈ I

O: Te set of raw materials o ∈ O

P: Candidate points for recycling stations p ∈ P

M: Candidate points for hubs m ∈M

W: Candidate points for repair stations w ∈W

v: Te set of means of transportation v ∈ V

C: Products set index c ∈ C

N: Candidate points for landfll and disposal stations
n ∈ N

K: Candidate points of distribution stations k ∈ K

S: Set of scenarios s ∈ S

T: Term index t ∈ T

Parameters

aqjj,s: Distance of the production station j from its own
warehouse in scenario s

alm,s: Distance from the customer station l to the hub m
in scenario s

amj,s: Distance of the hub station m from the production
station j in scenario s

akl,s: Distance of the distribution station k from the
customer station l in scenario s

aij,s: Distance of the supplier i from the production
station of j in scenario s

ajk,s: Distance of the production station j from the
distribution station k in scenario s

amn,s: Distance of the hub m from the landfll canter n in
scenario s

apj,s: Distance of the recycling station p from the
production station j in scenario s

amp,s: Distance of the hub m from the recycling station p
in scenario s

amw,s: Distance of the hub m from the repair station w in
scenario s

awk,s: Distance of the repair station w from the
distribution station k in scenario s

dqjk,s: Distance of the producer warehouse j from the
distribution station k in scenario s

EMp: CO2 emitted during the construction of the
recycling station p

EMk: CO2 emitted during the construction of the
distribution station k

EMm: CO2 emitted during the construction of the hub m
EMn: Te CO2 emitted during the construction of the

landfll and disposal station n
EMW: CO2 emitted during the construction of the repair

station w

EMSv: CO2 emitted from the shipment of a yield unit by
a type v vehicle over one kilometer

c: CO2 emitted from transporting a unit of product
from the production station j to its own warehouse

ut
p: Valency of the recycling station p in the term t

ut
n: Valency of the landfll and disposal station n in the

term t
ut

k: Valency of the distribution station k in the term t
ut

i : Valency of the supply station i in the term t
ut

w: Valency of the repair station w in the term t
ut

jj: Valency of the producer’s j warehouse in the term t
ut

j: Valency of the production station j in the term t
ut

m: Valency of the hub m in the term t
crt

j: Valency of remanufacturing products in the
production station j in the term t

Et
n: Fixed cost of constructing the landfll and disposal

(demolition) station n in the term t
Et

m: Fixed cost of constructing the hub station m in the
term t

Et
k: Fixed cost of constructing the distribution station k

in the term t
Et

p: Fixed cost of constructing the recycling station p in
the term t

Et
w: Fixed cost of constructing the repair station w in

the term t
􏽦dct

l,s: Amount of demand for the yield c by the customer l
in the term t in scenario s

rct
lq,s: Return rate of the yield cwith the quality q from the

customer station l in the term t in scenario s
rbct

mj: Return rate of the yield c from the hub stationm to
the production station j in the term t

rbct
mn: Return rate of the yield c from the hub stationm to

the landfll and disposal station n in the term t
rbct

mp: Return rate of the yield c from the hub stationm to
the recycling station p in the term t

rbct
mw: Return rate of the yield c from the hub stationm to

the repair station w in the term t
fpct

lmq,s: Return cost of each unit of the returned yield c with
quality q from the customer station l to the hub
station m in the term t in scenario s

fct
j,s: Maintenance cost of each unit of the yield c in the

producer’s warehouse at location j in the term t in
scenario s

hc
mnq,s: Transfer fee per unit of the returned yield c with

quality q from the hub station m to the landfll
station n in scenario s

hc
kl,s: Transfer fee per unit of the yield c from the

distribution station k to the customer station l in
scenario s

ho
ij,s: Transfer fee per unit of the rawmaterials o from the

supply station i to the production station j in
scenario s

hc
jk,s: Transfer fee per unit of the yield c from the

production station j to the distribution station k in
scenario s

hc
mjq,s: Transfer fee per unit of the comeback yield c with

quality q from the hub station m to the production
station j in scenario s

hc
mpq,s: Transfer fee per unit of the comeback yield c with

quality q from the hub station m to the recycling
station p in scenario s

Complexity 21



hc
pj,s: Transfer fee per unit of the comeback yield c from

the recycling station p to the production station j in
scenario s

hc
mwq,s: Transfer fee per unit of the comeback yield c with

quality q from the hub station m to the repair
station w in scenario s

hc
wk,s: Transfer fee per unit of the yield c from the repair

station w to the distribution station k in scenario s
cqc

jk,s: Transfer fee per unit of the yield c from the
warehouse of the producer j to the distribution
station k in scenario s

cqc
jj,s: Transfer fee per unit of the yield c from the

production station j to its own warehouse in
scenario s

hc
lmq,s: Transfer fee per unit of the returned yield c from the

customer l to the hub station m in scenario s
cjct,s: Transfer fee per unit of the yield c in the production

station j in the term t in scenario s
rcjct,s: Transfer fee per unit of the yield c in the

reproduction station j in the term t in scenario s
cnct,s: Transfer fee per unit of the yield c at the demolition

station n in the term t in scenario s
cmct,s: Cost of collecting and sending a unit of the yield c

to the hub station m in the term t in scenario s
cpct,s: Cost of recycling a unit of the yield c at the recycling

station p in the term t in scenario s
cwct,s: Cost of repairing a unit of the yield c in the repair

station w in the term t in scenario s
ckct,s: Cost of distributing a unit of the yield c in the

distribution station k in the term t in scenario s
αjm,s: Fixed number of permanent job founded if

established the hub station m in scenario s
αjp,s: Fixed number of permanent job founded if

established the recycling station p in scenario s
αjw,s: Fixed number of permanent job founded if

established the repair station w in scenario s
αjn,s: Fixed number of permanent job founded if

established the demolition station n in scenario s
αjk,s: Fixed number of permanent job founded if

established the distribution station k in scenario s
βjm,s: Variable number of permanent job founded if

established the hub station m in scenario s
βjp,s: Variable number of permanent job founded if

established the recycling station p in scenario s
βjw,s: Variable number of permanent job founded if

established the repair station w in scenario s
βjn,s: Variable number of permanent job founded the

demolition station n in scenario s
βjk,s: Variable number of permanent job founded if

established the distribution station k in scenario s
dltj: Missed working days due to work injury in the

production station j in the term t
Variables

rort
vij,s: Equivalent to 1 if the vehicle of type v goes from the

supplier i to the manufacturer j from the route r in
the term t in scenario s, otherwise 0

rort
vjk,s: Equivalent to 1 if the vehicle of type v goes from the

manufacturer j to the distributor k from the route r
in the term t in scenario s, otherwise 0

Rort
vjk,s: Equivalent to 1 if the vehicle of type v goes from the

warehouse of the manufacturer j to the distributor k
of the route r in the term t in scenario s, otherwise 0

rort
vkl,s: Equivalent to 1 if the vehicle of type v goes from the

distributor k to the customer l from the route r in
the term t in scenario s, otherwise 0

rort
vlm,s: Equivalent to 1 if the vehicle of type v goes from the

customer l to the hubm from the route r in the term
t in scenario s, otherwise 0

rort
vmp,s: Equivalent to 1 if the vehicle of type v goes from the

hub m to the recycling station p from the route r in
the term t in scenario s, otherwise 0

rort
vpj,s: Equivalent to 1 if the vehicle of type v goes from the

recycling station p to the manufacturer j from the
route r in the term t in scenario s, otherwise 0

rort
vmj,s: Equivalent to 1 if the vehicle of type v goes from the

hubm to the manufacturer j from the route r in the
term t in scenario s, otherwise 0

rort
vmn,s: Equivalent to 1 if the vehicle of type v goes from the

hub m to the demolition station n from the route r
in the term t in scenario s, otherwise 0

rort
vmw,s: Equivalent to 1 if the vehicle type v goes from the

hubm to the repair station w from the route r in the
term t in scenario s, otherwise 0

rort
vwk,s: Equivalent to 1 if the vehicle type v goes from the

repair station w to the distributor k from the route r
in the term t in scenario s, otherwise 0

zct
lmq,s: Flow amount of the returned yield cwith the quality

of the type q from the customer l to the hubm in the
term t in scenario s

zct
mpq,s: Flow amount of the returned yield cwith the quality

of the type q from the hubm to the recycling station
p in the term t in scenario s

zot
ij,s: Flow amount of the rawmaterials o from the supply

station i to the production station j in the term t in
scenario s

zct
pj,s: Flow amount of the reused yield c from the

recycling station p to the production station j in the
term t in scenario s

zct
mnq,s: Flow amount of the returned yield cwith the quality

of the type q from the hub m to the demolition
station n in the term t in scenario s

zct
mjq,s: Flow amount of the returned yield cwith the quality

of the type q from the hub m to the production
station j in the term t in scenario s

zct
mwq,s: Flow amount of the returned yield cwith the quality

of the type q from the hubm to the repair station w

in the term t in scenario s
zct

wk,s: Flow amount of the yield c from the repair stationw to
the distribution station k in the term t in scenario s

zct
jk,s: Flow amount of the yield c from the production

station j to the distribution station k in the term t in
scenario s
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zct
kl,s: Flow amount of the yield c from the distribution

station k to the customer l in the term t in scenario s
Qct

jk,s: Flow amount of the yield c from the warehouse of
the producer j to the distribution station k in the
term t in scenario s

Qct
jj,s: Flow amount of the yield c from the production station

j to its own warehouse in the term t in scenario s
xt

k: If the distribution station is established at the
location k in the term t, its value would be equal to
1, otherwise 0

xt
p: If the recycling station is established at the location p in

the term t, its value would be equal to 1, otherwise 0
xt

m: If the hub is established at the location m in the
term t, its value would be equal to 1, otherwise 0

xt
n: If the landfll and demolition station is established

at the location n in the term t, its value would be
equal to 1, otherwise 0

xt
w: If the repair station is established at the location w

in the term t, its value would be equal to 1,
otherwise 0.

Data Availability

Te data used to support the fndings of this study will be
made available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] M. Rabbani, S. A. A. Hosseini-Mokhallesun, A. H. Ordibazar,
and H. Farrokhi-Asl, “A hybrid robust possibilistic approach
for a sustainable supply chain location-allocation network
design,” International Journal of Systems Science: Operations
and Logistics, vol. 7, no. 1, pp. 60–75, 2020.

[2] K. Govindan, H. Mina, A. Esmaeili, and S. M. Gholami-
Zanjani, “An integrated hybrid approach for circular supplier
selection and closed loop supply chain network design under
uncertainty,” Journal of Cleaner Production, vol. 242, Article
ID 118317, 2020.

[3] A. P. Chobar, M. A. Adibi, and A. Kazemi, “Multi-objective
Hub-Spoke Network Design of Perishable Tourism Products
Using Combination Machine Learning and Meta-Heuristic
Algorithms,” Environment, Development and Sustainability,
pp. 1–28, 2022.

[4] M. Biuki, A. Kazemi, and A. Alinezhad, “An integrated lo-
cation-routing-inventory model for sustainable design of
a perishable products supply chain network,” Journal of
Cleaner Production, vol. 260, Article ID 120842, 2020.

[5] E. J. Mamaghani and S. Davari, “Te bi-objective periodic
closed loop network design problem,” Expert Systems with
Applications, vol. 144, Article ID 113068, 2020.

[6] H. Peng, N. Shen, H. Liao, H. Xue, and Q.Wang, “Uncertainty
factors, methods, and solutions of closed-loop supply chain—
a review for current situation and future prospects,” Journal of
Cleaner Production, vol. 254, Article ID 120032, 2020.

[7] H. Alzoubi, G. Ahmed, A. Al-Gasaymeh, and B. Al Kurdi,
“Empirical study on sustainable supply chain strategies and its
impact on competitive priorities: the mediating role of supply

chain collaboration,” Management Science Letters, vol. 10,
no. 3, pp. 703–708, 2020.

[8] H. Dündar, M. Ömürgönülşen, and M. Soysal, “A review on
sustainable urban vehicle routing,” Journal of Cleaner Pro-
duction, vol. 285, Article ID 125444, 2021.

[9] A. Pourghader Chobar, M. A. Adibi, and A. Kazemi, “A novel
multi-objective model for hub location problem considering
dynamic demand and environmental issues,” Journal of In-
dustrial Engineering and Management Studies, vol. 8, no. 1,
pp. 1–31, 2021.

[10] M. Abdel-Basset and R. Mohamed, “A novel plithogenic
TOPSIS-CRITIC model for sustainable supply chain risk
management,” Journal of Cleaner Production, vol. 247, Article
ID 119586, 2020.

[11] A. Jabbarzadeh, B. Fahimnia, and F. Sabouhi, “Resilient and
sustainable supply chain design: sustainability analysis under
disruption risks,” International Journal of Production Re-
search, vol. 56, no. 17, pp. 5945–5968, 2018.

[12] J. Gaur, M. Amini, and A. K. Rao, “Te impact of supply chain
disruption on the closed-loop supply chain confguration
proft: a study of sourcing policies,” International Journal of
Production Research, vol. 58, no. 17, pp. 5380–5400, 2020.

[13] F. Maadanpour Safari, F. Etebari, and A. Pourghader Chobar,
“Modelling and optimization of a tri-objective Trans-
portation-Location-Routing Problem considering route re-
liability: using MOGWO, MOPSO, MOWCA and NSGA-II,”
Journal of Optimization in Industrial Engineering, vol. 14,
no. 2, pp. 99–114, 2021.

[14] Y. Zhang, W. Yadav, and Y. Bharosh, “Application of circular
economy and uncertainty planning in analyzing the sus-
tainable closed-loop supply chain network design,” Mathe-
matical Problems in Engineering, vol. 2022, Article ID
5320974, 16 pages, 2022.

[15] B. Hassangaviar, B. Naderi, F. Etebari, and B. Vahdani, “A
multiobjective model for optimizing green closed-loop supply
chain network under uncertain environment by NSGA-II
metaheuristic algorithm,” Discrete Dynamics in Nature and
Society, vol. 2022, pp. 1–16, 2022.

[16] D. G. Mogale, A. De, A. Ghadge, and E. Aktas, “Multi-
objective modelling of sustainable closed-loop supply chain
network with price-sensitive demand and consumer’s in-
centives,” Computers and Industrial Engineering, vol. 168,
Article ID 108105, 2022.

[17] Y. Kazancoglu, D. Yuksel, M. D. Sezer, S. K. Mangla, and
L. Hua, “A green dual-channel closed-loop supply chain
network design model,” Journal of Cleaner Production,
vol. 332, Article ID 130062, 2022.

[18] A. Khalili Nasr, M. Tavana, B. Alavi, and H. Mina, “A novel
fuzzy multi-objective circular supplier selection and order
allocation model for sustainable closed-loop supply chains,”
Journal of Cleaner Production, vol. 287, Article ID 124994,
2021.

[19] S. Sadeghi Ahangar, A. Sadati, and M. Rabbani, “Sustainable
design of a municipal solid waste management system in an
integrated closed-loop supply chain network using a fuzzy
approach: a case study,” Journal of Industrial and Production
Engineering, vol. 38, no. 5, pp. 323–340, 2021.

[20] A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam, and
A. Sadegheih, “Multiobjective fuzzy mathematical model for
a fnancially constrained closed-loop supply chain with labor
employment,” Computational Intelligence, vol. 36, no. 1,
pp. 4–34, 2020.
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