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Some texts that are challenging to recognize on their own may become more understandable in a neighborhood of related texts
with similar contexts. Motivated by this intuition, a novel deep text sentiment classifcation (DTSC) model is proposed to improve
the model’s performance by incorporating the neighborhood of related texts. Our framework uses a nonparametric approach to
construct neighborhoods of related texts based on Jaccard similarities. Ten, a new deep recurrent neural network architecture is
proposed, comprising two distinct modules: bidirectional long short-term memory (Bi-LSTM) and gated recurrent unit (GRU).
Te proposed model aims to efectively capture informative features from the input text and its neighbors. Te result of each
module is processed through the maximum operation, which selects the most pertinent data. Finally, the extracted features are
concatenated and subjected to classifcation to achieve accurate sentiment prediction. Previous studies have commonly employed
a parametric approach to represent textual metadata. However, our approach utilizes a nonparametric approach, enabling our
model to perform strongly even when the text vocabulary varies between training and testing.Te proposed DTSCmodel has been
evaluated on fve real-world sentiment datasets, achieving 99.60% accuracy on the Binary_Getty (BG) dataset, 98.32% accuracy on
the Binary_iStock (BIS) dataset, 96.13% accuracy on Twitter, 82.19% accuracy on the multi-view sentiment analysis (MVSA)
dataset, and 87.60% accuracy on the IMDB dataset. Tese fndings demonstrate that the proposed model outperforms established
baseline techniques in terms of model evaluation criteria for text sentiment classifcation.

1. Introduction

Te present generation of widely available and afordable
web technologies generates signifcant social big data with
perspectives that aid decision-making. Sentiment analysis
(SA) is a computational study that analyses individuals’
perspectives, opinions, and emotions toward a particular
entity that may track individuals’ moods and viewpoints by
analyzing unstructured, multimodal, informal, noisy, and
high-dimensional social data [1]. SA is a subset of natural
language processing (NLP) that can be used in various real-
world applications, including fnancial and stock price

forecasting [2], politics [3], and medicine [4, 5]. Many re-
searchers have dedicated signifcant eforts to investigating
textual SA [6–10] through various methodologies, resulting
in notable advancements on social media platforms. One
signifcant constraint of current sentiment classifcation
systems is their predominant dependence on a post or
tweet’s textual content.

However, on social platforms such as Twitter, Flickr, and
Instagram, there’s a wealth of metadata available alongside
the text in posts. People attach metadata to their shared
content, including user-generated labels, as a means of
engaging with others. Tis metadata, which includes
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information about the attributes of social media posts and
their authors, serves as a valuable source of context for
dissecting the expressed sentiment within the text. More-
over, these metadata elements can function as an additional
asset alongside the text-based features when it comes to
successfully executing sentiment classifcation. For instance,
the sentence “Nowruz Mubarak!” displayed in the green
bounding box of Figure 1 carries an ambiguous meaning,
and it is challenging to discern the true sentiment behind
this sentence. Now, we consider the sentences in the red
bounding box: “Happy Iranian New Year (Nowruz), Happy
Nowruz, . . .” Tese sentences can help determine the true
sentiment expressed by the input sentence, which can be
positive. As a result, SA can greatly beneft from the met-
adata or neighbors of input sentences. Based on this in-
tuition, we enhance SA by augmenting each input text with
the neighborhood of related texts.

Previous studies have utilized metadata extracted from
tweets, including metrics such as URL counts, hashtags, and
mentions, as features for sentiment analysis. Tis approach
assumes that texts sharing similar contents or features can
convey similar sentiments [11, 12]. However, these studies
relied on parametric models for text analysis, assuming
consistent vocabularies between training and testing data-
sets. In the real world, metadata vocabularies can change as
new tags emerge. Terefore, it is crucial to investigate the
incorporation of metadata, or neighboring data, to adapt to
these evolving vocabularies and enhance sentiment classi-
fcation. In conclusion, a compelling rationale exists for
utilizing both tags and metadata, facilitating the seamless
integration of additional data sources to enhance the rep-
resentation of the original input data.

Te primary technical contribution of our study involves
the nonparametric approach for generating text neighbor-
hoods, as depicted in Figure 1. Subsequently, we employ
a novel parametric model to learn the degree of informative
representation derived from an initial input and its corre-
sponding neighbors. Tis strategy enables our model to
perform complex or impractical tasks using existing tech-
niques and demonstrates a cutting-edge level of perfor-
mance in text classifcation and SA. We specifcally
demonstrate the following capabilities of our model.

1.1. Adapt to Changing Vocabularies. Our model can handle
various vocabularies during training and testing thanks to
our nonparametric approach to fnding near neighbors.
Even when the training and testing vocabulary is entirely
unrelated, our model still performs well. In other words,
during training, the model learns the specifc words in the
training data and their relationships and similarities.
However, it can still efectively classify sentiments in text
even when it encounters entirely diferent words during the
testing phase. Tis adaptability is attributed to the model’s
nonparametric approach, allowing it to generalize to new
categories of text metadata and adjust to changes in that
metadata over time. So, despite variations in the text vo-
cabulary, the model’s performance remains robust due to its
unique design and training process.

1.2. Handle Diferent Text Types with and without Metadata.
Te proposed model can calculate neighbors from either the
input data or the associated metadata. Tis feature ensures
that our approach does not constrain the exclusive use of
metadata or input data, showcasing the model’s remarkable
adaptability across various text data types. It is essential to
highlight the signifcance of both the presence and in-
tegration of metadata, as these aspects can signifcantly
infuence the model’s performance in sentiment analysis
tasks. Tis reinforces the pivotal role of metadata, under-
scoring its potential to enhance the model’s accuracy, and
stresses the need to consider it a crucial factor in data
analysis.

1.3. Efcient Deep Model. An efcient model is designed to
jointly learn representations from samples and their
neighbors to generate intraclass-oriented meaningful
representation.

Te main objective of this study is to identify substantial
correlations between the input text and the neighborhood of
related texts within various sentiment datasets. It seeks to
explore whether this metadata or neighboring texts can
indicate potential biases in sentiment labeling. Lastly, we
demonstrate how leveraging this metadata as features in
a classifer might aid in enhancing sentiment classifers and
sentiment quantifcation.

Te paper’s remaining sections are structured as follows:
Section 2 presents the literature review. Section 3 describes
the proposed model in depth. Section 4 illustrates the
fndings of the experiments. Section 5 concludes the study.

2. Literature Review

Te signifcance of sentiment analysis (SA) increases in the
context of natural language processing (NLP) when dealing
with a substantial volume of user-generated textual content.
Many supervised traditional machine learning (ML) clas-
sifers are used to classify sentiment based on various fea-
tures [13]. Ahuja et al. [14] examined the efects of TF-IDF
word level and N-gram on the SS-Tweet sentiment analysis
dataset. Te TF-IDF word level approach in sentiment
analysis using six machine learning classifcation algorithms
outperforms N-gram features by 3-4%. Mee et al. [15] ex-
amined the relationship between textual qualities and
Twitter user characteristics using regression and sentiment
analysis, specifcally the TF-IDF approach. Kunal et al. [16]
recommended combining Tweepy and TextBlob, a Python
framework, to analyze and classify tweets using the Naive
Bayes (NB) classifer. Htet and Myint [17] developed a sys-
tem for analyzing social media data from Twitter to assess
individuals’ health, education, and business status. Tis
system employs the maximum entropy (ME) classifer to
identify specifc requirements. Obiedat et al. [7] presented
a hybrid approach that combines support vector machine
(SVM), particle swarm optimization, and various over-
sampling techniques to address the issue of imbalanced data.
Te SVM has enhanced sentiment prediction using the
restaurant reviews’ dataset.
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Recently, text analysis has experienced advantageous
outcomes by utilizing diverse deep learning (DL) models
[18, 19], which have been extensively implemented in nu-
merous research investigations. Te categorization of short
text was performed by Wang et al. [20] through the use of
a convolutional neural network (CNN). Basiri et al. [21]
proposed a CNN-recurrent neural network (RNN) model
that utilizes attention mechanisms to capture past and future
contexts in text sentiment analysis. Te incorporation of
bidirectional temporal information fow enhances the ac-
curacy of classifcation in this approach.Te present trend in
the feld of sentiment analysis involves the development of
innovative text classifcationmethods utilizing deep learning
techniques such as CNN [22, 23] and long short-term
memory (LSTM) [24]. While CNNs can collect and ana-
lyze local data, they may be less efective in capturing long-
range dependency. Te limitation of sequential modeling of
texts across sentences can be overcome by utilizing the
LSTM technique. In any case, its performance in collecting
local information is suboptimal.Te integration of CNN and
LSTM becomes essential for enhancing the efcacy of text
sentiment classifcation [25–27]. Li et al. [28] presented
a new padding methodology that enhanced consistency in
the dimensions of input data instances, thereby augmenting
the amount of sentiment-oriented information incorporated
in every review. Integrating a sentiment analysis model
denoted as “lexicon,” which utilizes deep learning tech-
niques, involved incorporating two-channel CNN-LSTM/
Bi-LSTM family models through parallelization techniques.
Abid et al. [29] presented a unifed procedure for SA on the
Twitter platform. Tis approach incorporates an RNN ar-
chitecture to capture long-term dependencies efciently and
utilizes a CNN and Global Vectors (GloVe) for Word
Representation as a word embedding technique. Te ex-
perimental outcomes performed superior to the baseline
model upon evaluating the Twitter corpora. Dang et al. [30]
proposed the integration of LSTM networks, CNNs, and
SVM in hybrid deep SA learning models. Te proposed
model was evaluated utilizing eight textual datasets

comprising tweets and reviews from various domains. Te
fndings indicate that the hybrid models performed superior
to the single models in sentiment analysis across all datasets.

Salur and Aydin [31] presented a new hybrid deep
learning model that combines diferent types of word em-
beddings, namely, Word2Vec, FastText, and character-level
embeddings, in combination with various deep learning
models such as LSTM, GRU, Bi-LSTM, and CNN. Te
model under consideration amalgamates features from
various deep learning word embedding methods and clas-
sifes textual information based on its emotional content.
Zulqarnain et al. [32] proposed a novel methodology for SA
by utilizing an encoder approach with a two-state GRU
named E-TGRU. Tis framework was designed to enhance
the efectiveness of SA.Te study’s results indicate that, with
adequate training data, the GRU model can profciently
acquire the vocabulary utilized in user opinions. Te fnd-
ings indicate that E-TGRU exhibited superior performance
compared to GRU, LSTM, and Bi-LSTM. Li et al. [33]
proposed a sentiment classifcation model for analyzing
online restaurant reviews, integrating Word2Vec, bi-
directional GRU, and the attention technique. Te results
show that the model’s performance surpassed established
sentiment analysis models. Kamyab et al. [34] presented
a novel approach to sentiment analysis utilizing attention
mechanisms in conjunction with CNNs and two distinct
bidirectional recurrent neural networks. Te proposed
method aims to enhance the understanding of sentiment in
textual data. Initially, a preprocessor was utilized to improve
the quality of the data. Ten, max-pooling was used in
conjunction with a CNN layer to reduce the dimensionality
of features and retrieve contextual information. In addition,
the study employed two autonomous bidirectional recurrent
neural networks, namely, LSTM and GRU, to efectively
capture long-term dependencies. Ultimately, the attention
mechanism was implemented to highlight the degree of
attention attributed to each word.

Mishra et al. [11] developed a sentiment analysis tool that
is both cost-free and open-source, featuring a graphical user

Input text

Nowruz Mubarak!

Nearest Neighbors

Happy Iranian New Year (Nowruz).

Happy Nowruz, the old and ancient festival
of Iranians.

Nowruz Mubarak in Persian means happy
new day.

Happy Nowruz

Figure 1: Even for humans, it might be challenging to understand some sentences without additional context. On social media, however,
similar texts are frequently shared. Based on this intuition, we retrieve a neighborhood of sentences with similar words to help defne the
sentiment of the input text given an ambiguous sentence, such as “Nowruz Mubarak!”
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interface. Tis tool enables users to perform two key
functions: frstly, to retrain the weights of a given model by
relabeling predictions and/or adding labeled instances and
secondly, to tailor lexical resources to address errors in
sentiment lexicons, such as false positives and false nega-
tives. Te proposed approach has the potential to ofer
advantages in iteratively improving or augmenting models
in a readily available manner while disregarding the ex-
penses associated with training a new model from the be-
ginning and reducing predictive precision over time. Mishra
and Diesner [12] analyzed the metadata characteristics at the
user and tweet levels, identifying associations and re-
lationships between these characteristics and the log odds for
sentiment categories. Te reliability of this analysis is
strengthened by replicating the experiments on current
tweets obtained from the user population present in our
datasets. Te results suggest that most patterns identifed in
this analysis exhibit high consistency. Te metadata char-
acteristics that have been identifed are ultimately employed
as features for a sentiment classifcation algorithm, resulting
in an improved outcome for sentiment classifcation.

Deep learning-based sentiment analysis and the BERT
technique have recently piqued the interest of researchers.
Chiorrini et al. [35] suggested two BERT-based text clas-
sifcation approaches: BERT-base and cased BERT-base.
Teir investigation used two independent datasets for
sentiment analysis and emotion recognition.Tey noted that
BERT ofers positive text classifcation results. Huang et al.
[36] proposed an innovative DCNN-Bi-GRU (deep con-
volutional neural network bidirection gated recurrent) text
categorization model. Te word semantic representation
language model is trained using BERT. Te DCNN-Bi-GRU
hybrid model receives the dynamically generated semantic
vector from the word context. Tis model is validated by the
CCERT Chinese e-mail sample set and movie comment data
set experiments. Bello et al. [37] proposed utilizing bi-
directional encoder representations from transformers
(BERT) for text classifcation in NLP and various variants.
Te experimental results indicate that the integration of
BERTwith CNN, BERTwith RNN, and BERTwith Bi-LSTM
yields favorable outcomes in terms of accuracy rate, pre-
cision rate, recall rate, and F1-score when compared to the
outcomes achieved by employing these deep learningmodels
with Word2Vec or without any variation.

Te earlier research has exhibited satisfactory results
using diferent ML and DL models. However, achieving
high accuracy in sentiment categorization remains a for-
midable challenge, particularly when dealing with data
from social media platforms. One of the limitations of
current sentiment classifcation systems is their heavy re-
liance on traditional techniques, such as bag-of-words
(BOW) and N-gram approaches, which use term fre-
quency as a feature. While these methods are straight-
forward and efective, they generate feature vectors that are
often sparse and high-dimensional. Tis can lead to scal-
ability issues and potential overftting, even with regula-
rization techniques. Furthermore, these models operate
under the implicit assumption that sentiment expression in
a post is solely conveyed through the text data, without

considering contextual factors. However, social media
platforms like Twitter ofer an opportunity to access rich
metadata alongside the textual content of posts. Tis
metadata includes information about the characteristics of
social network posts and their authors, which can provide
valuable contextual cues for analyzing sentiment in a tweet.
Additionally, leveraging this metadata can complement the
textual features in the sentiment classifcation task.

Although few studies have relied on tweet metadata
assuming consistent language patterns in training and
testing data, the reality is that metadata vocabularies can
change as new categories and trends emerge. Terefore,
fnding methods to incorporate this changing metadata or
neighboring data is crucial to improve sentiment analysis
accuracy. Motivated by these observations, we introduce an
innovative deep text sentiment classifcation (DTSC)
model. Our model features a nonparametric approach to
generating text neighborhoods, making it adaptable to
a wide range of signals and capable of generalizing to new
categories of text vocabularies. Ten, the input texts and
their neighbors are converted into embedding vectors of
lower dimensions, allowing neural networks to capture
semantic word relationships. Importantly, this dense vector
representation maintains a fxed size (embedding di-
mension), reducing model parameters and improving
computational efciency.

Additionally, we employ a novel parametric model to
gauge the level of informative representation obtained from
the input text and its associated neighbors. Tis unique
approach equips our model with the ability to tackle
complex tasks that may have been challenging with con-
ventional techniques. As a result, our model demonstrates
state-of-the-art performance in text sentiment classifcation.

3. The Proposed Model

A novel deep text sentiment classifcation (DTSC) model is
proposed, as shown in Figure 2. Te model considers the
neighborhoods in which input text features are embedded.
Our model uses a nonparametric approach to construct
neighborhoods of related texts based on Jaccard similarities
to develop a perfect system that can handle a wide range of
signals, generalize to new categories of text metadata, and
adjust to changes in that metadata over time. Te input texts
and their neighbors are transformed into embedding vectors
to efciently capture the semantic relationships between
words and texts, making them more appropriate for in-
depth analysis. Ten, a new deep recurrent neural network
architecture is proposed. Specifcally, two distinct modules,
Bi-LSTM and GRU, extract valuable representations from an
input text and its neighbors. Te outputs of each module
(extracted features of a text and its neighbors) are fed
through the maximum operation, which selects the most
pertinent data. Finally, the extracted features are concate-
nated and deeply fused using multiple fully connected layers
with a classifer layer to perform sentiment classifcation.Te
weights and biases are shared among the input text and its k

neighbors. In other words, the input text and its neighbors
are passed through a common architecture.

4 Complexity



3.1. Candidate Neighborhoods. In the nonparametric ap-
proach, we assume that integrating neighboring data
alongside the primary input during network training will
yield extracted features that demonstrate similarity among
samples belonging to the same class. In other words, it is
assumed that if two texts are related or share similar content,
their feature representations should also be similar after
training. Te key challenge lies in the selection of the nearest
neighbors. Our approach leverages the Jaccard measure
between words to calculate text similarity, allowing for the
nonparametric creation of candidate neighborhoods. In
particular, Jaccard similarity is employed to assess how
similar or dissimilar individual words are between diferent
texts. Tis similarity measurement involves the
following steps.

3.1.1. Jaccard Similarity Calculation. In this context, it
measures how similar the words in one text are to those in
another. Te Jaccard similarity is a nonparametric measure
that quantifes the similarity between two sets by comparing
the intersection (common words) of the word sets in both
texts to their union (all unique words in both texts), and it
ranges between 0 (no similarity) and 1 (perfect similarity). It
does not assume any specifc probability distribution for the
data but calculates the proportion of common elements.
Given two sets A and B, the Jaccard similarity (Jsimi) is
defned as

J simi(A, B) �
|A∩B|

|A∪B|
, (1)

where

(1) ∣A∣ is the cardinality (number of elements) of set A.

(2) ∣B∣ is the cardinality (number of elements) of set B.
(3) ∣A∩B∣ is the number of elements in the intersection

of setsA and B (i.e., the number of elements common
to both sets).

(4) ∣A∪B∣ is the number of elements in the union of sets
A and B (i.e., the total number of distinct elements in
both sets).

Concretely, for x, x′ ϵ X, we compute

Jsimi x, x
′

  �
wx ∩wx′




wx ∪wx′



, (2)

where wx and wx′ represent the set of words for x-th sample
and its nearest x′-th neighbor. We set Jsimi(x, x) � 0 for all
x ϵ X, to prevent a text from appearing in its neighborhoods.
If the Jaccard similarity is high, the texts share many
common words and are more similar. Conversely, if the
Jaccard similarity is low, it suggests that the texts have fewer
words in common and are more dissimilar.

3.1.2. Creating Candidate Neighborhoods. In each batch of
data, candidate neighbors for each sample are computed
using the Jaccard similarity. Te text’s calculated similar-
ities are then grouped into “neighborhoods” or clusters.
Texts with a high Jaccard similarity between their words are
placed in the same neighborhood because they are con-
sidered more similar. Tese neighborhoods are groups of
related texts that share common features or themes. Te
only limitation that can be considered is that the number of
neighbors should be smaller than the batch size. Tis is
because the neighbors are selected from among the closest
samples within a batch.

BiLSTM

GRU
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Figure 2: Te DTSC model.
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In summary, this method employs Jaccard similarity
calculations to evaluate word overlap between texts, facili-
tating their organization into potential neighborhoods or
clusters. However, a critical transformation is applied to
enhance the suitability of these textual representations for
further analysis. Te input texts and their neighbors (with
the number of neighbors defned by the user) undergo
a crucial conversion process, and they are transformed into
embedding vectors.

Tis conversion is pivotal because it translates textual
information into numerical vectors, enabling the model to
efectively understand and work with the text. Tese em-
bedding vectors capture the semantic relationships between
words and texts, making them more appropriate for in-
depth analysis. Te input vectors and their corresponding
candidate neighbors are introduced into a network featuring
two distinct modules: Bi-LSTM and GRU. Tese modules
leverage the embedded representations to extract valuable
patterns and insights between the input samples and their
neighbors, enabling efcient comprehension and classif-
cation of the sentiments expressed in the texts.

Te rationale for implementing a nonparametric ap-
proach over parametric models lies in several key
advantages:

(1) Adaptability to changing vocabularies: non-
parametric approaches can adapt seamlessly to
varying vocabularies. Tis adaptability is crucial
when working with text data from diferent sources
or domains, where the vocabulary can be entirely
unrelated between training and testing datasets. In
contrast, parametric models often assume a fxed
vocabulary, limiting their ability to handle such
dynamic language usage.

(2) Complex and diverse data handling: nonparametric
approaches excel at managing complex and diverse
data, which is common in real-world text applica-
tions.Tey can accommodate diferent word choices,
expressions, and language styles, making them
suitable for texts from various sources. Parametric
models may struggle when confronted with data
heterogeneity and nonlinear relationships.

(3) Enhanced performance in text classifcation and
sentiment analysis (SA): the combination of non-
parametric neighborhood generation and a novel
parametric model brings the best of both worlds.Te
nonparametric approach captures contextual in-
formation from neighbors, while the parametric
model efectively learns informative representations.
Tis synergy enables the model to perform complex
tasks and achieve a cutting-edge level of performance
in text classifcation and SA, surpassing the capa-
bilities of traditional parametric models.

(4) Robustness in exploring correlations and bias de-
tection: beyond classifcation, the model’s non-
parametric foundation allows it to investigate
correlations between the input text and related
neighborhood texts. Furthermore, it explores the

potential for metadata to indicate biases in sentiment
labeling. Tis capability is essential for understanding
and addressing bias in sentiment analysis applica-
tions, ensuring more accurate and fair results.

In summary, the decision to employ a nonparametric
model is justifed by its adaptability to varying vocabularies,
ability to handle complex and diverse data, improved per-
formance, and robustness in exploring correlations and
detecting biases. Tis hybrid approach, combining non-
parametric and parametric techniques, is well suited for
addressing the challenges posed by dynamic and diverse text
data in the context of sentiment analysis and classifcation.

3.2. Bi-LSTM. Te RNN [38] model has gained signifcant
attention in NLP due to its complex architecture that fa-
cilitates efective feature extraction.Temodel demonstrates
profciency in processing short data sequences due to its
singular memory, which renders it incapable of processing
long-term dependency issues. As a result, the LSTM ar-
chitecture is used as an extension of the RNN model to
address the problem of long-term dependency in text SA.
Te LSTMmodel leverages the present word embedding and
the preceding hidden state within the context of text sen-
timent data for every component or term to anticipate the
upcoming hidden state.Te hidden state ht ϵRT (T is feature
vector dimension) at time t is updated as follows:

it � σ Wi xt + Ui ht−1 + bi( ,

ft � σ Wf xt + Uf ht−1 + bf ,

ot � σ Wo xt + Uo ht−1 + bo( ,

ct � ft ∘ ct−1 + it ∘ tanh Wc xt + Uc ht−1 + bc( ,

ht � ot ∘ tanh ct( ,

(3)

where ∘ is the element-wise product symbol, σ(·) is the
sigmoid activation function, xt represents the lower layer
input at time step t, and tanh is the tangent activation
function. it, ft, ot, and ct are input, forget, output, and
memory gates, respectively. Te parameters of the LSTM are
W, U, and b.

In sequence modeling tasks, it is benefcial to understand
past and future contexts. Adding a second hidden layer in
the unidirectional LSTM model expands the architecture,
giving rise to the Bi-LSTM [39], which incorporates hidden
connections that propagate in the reverse temporal se-
quence. Te Bi-LSTM model consists of two sequences,
which are as follows:

Hf � h1
→

, h2
→

, h3
→

, . . . , hT

�→
 ,

HB � h1
←

,
h2
←

,
h3
←

, . . . ,
hT

←�
 .

(4)

Te output is shown in equation (4):

O � Hf ⊕HB , (5)

where ⊕ is the element-wise sum operation.
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3.3. GRU. GRU is a distinctive variant within the family of
RNNs [40]. Te internal unit of the GRU is analogous to the
LSTM internal unit [36], except that the GRU combines the
forgetting and incoming ports into a single update port.
Although it draws inspiration from the LSTM unit, this
model maintains the LSTM’s capacity to overcome the
vanishing gradient issue.Te simplifed internal architecture
of GRUs facilitates their training process by reducing the
computational complexity involved in enhancing the in-
ternal states. Te hidden state ht ϵRT (T is feature vector
dimension) at time t is updated as follows:

zt � σ Wz xt + Uz ht−1 + bz( ,

rt � σ Wr xt + Ur ht−1 + br( ,

ht � ∅h Wh xt + Uh rt ∘ ht−1(  + bh( ,

ht � 1 − zt(  ∘ ht + zt ∘ ht−1,

(6)

where σ is the sigmoid activation function and ∅h is the
hyperbolic tangent function. Te operation ∘ denotes the
element-wise vector product, xt denotes an input vector, ht

indicates the output vector, ht denotes the candidate acti-
vation vector, zt is the update gate vector, rt is the reset gate
vector, and the learned parameters are W, U, and b.

In the proposed architecture, the i-th input text (xi) and
its i-th neighbor (zi) go through RNN-based layers and new
representations for the input sample (vxi

) and its i-th
neighbor (vzi

) are generated (equations (7) and (8)).
For Bi-LSTM-based representation,

v
BiLSTM
xi

� BiLSTM xi( ,

v
BiLSTM
zi

� BiLSTM zi( .
(7)

(1) vBiLSTMxi
represents the new representation of the

input text xi, generated by applying the Bi-LSTM
model to xi. Tis captures both the backward and
forward dependencies of a word in the i-th input
text (xi).

(2) Similarly, vBiLSTMzi
represents the new representation of

the neighbor text zi, generated using Bi-LSTM to
capture the backward and forward dependencies of
a word in the i-th neighbor (zi).
For GRU-based representation,

v
GRU
xi

� GRU xi( ,

v
GRU
zi

� GRU zi( .
(8)

(4) vGRUxi
represents the new representation of the input

text xi, generated by applying the GRU model to xi.
GRU also extracts contextual and high-level textual
information with long-term dependencies of the i-th
input text (xi).

(5) Similarly, vGRUzi
represents the new representation of

the neighbor text zi, generated using GRU to extract
contextual and high-level textual information with
long-term dependencies of the i-th neighbor (zi).

Te representations that were generated from the sample
(vBiLSTMxi

, vGRUxi
) and its neighbors (vBiLSTMzi

, vGRUzi
) are merged

after applying the maximum operation that selects the most
pertinent data, as shown in the following equation:

fθ xi(  � max v
BiLSTM
xi

, v
GRU
xi

  + max v
BiLSTM
zi

, v
GRU

zi

 ,

(9)

where “+” represents the concatenation operation and
fθ(xi) is the output feature generated by combining the
features from the text xi and its neighbors.

Finally, the output feature fθ(xi) is deeply fused using
multiple fully connected layers, as shown in equation (10),
with a classifer layer for sentiment classifcation. Te
weights and biases are shared among the input text and its k

neighbors. In other words, the input text and its neighbors
are passed through a common architecture.

yi
′ � σ Wx fθ xi(  + bx( , (10)

where yi
′ is the label predictions of the i-th input text, σ is the

activation function, bx and Wx represent the biases and
weights, and fθ(xi) is the output feature of the RNN’s
blocks.

Te proposed method uses the cross-entropy objective
function to train the network. Te objective function cal-
culates the loss, which is estimated between predicted labels
(equation (10)) and the true label (equation (11)).

L � − 
i�1:N

yi log yi
′( , (11)

where N is the number of classes and yi indicates the ac-
curate label of i-th text.

4. Experiment

Te efectiveness of the proposed methodology is assessed
and compared with several established baseline techniques,
including Bi-LSTM, bidirectional-GRU (Bi-GRU), LSTM,
GRU, CNN, and LSTM-CNN. Te parameters and their
respective values for the proposed method and other
baseline approaches are displayed in Table 1.

Te architectures of Bi-LSTM, LSTM, Bi-GRU, and GRU
employ three layers of 128, 64, and 64 units. Furthermore,
the classifer employs three fully connected layers with di-
mensions of 128, 64, 32, and 1 (or more based on class
count). Additionally, a 128-dimensional word embedding is
utilized.

In the 1D CNN model, three layers are employed, each
consisting of 32 flters and a kernel size 5. A 1D max pooling
layer is employed with a pooling size of three. A 1D global
max pooling layer is employed in the convolutional-based
model’s last layer. Te classifer employs two layers, with the
frst consisting of 16 units and the second consisting of 1 unit
(or more based on class count). In addition, a 128-
dimensional word embedding is employed.

Te LSTM-CNN model incorporates two layers with 32
flters and a kernel size 5. A 1D max pooling layer is
employed with a pool size of 3. In the fnal layer of the
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LSTM-CNN model, two LSTM layers with 32 units are
employed. Te classifer employed two layers, with 16 and
1 unit (or more based on class count). In addition, a 128-
dimensional word embedding is employed.

4.1. Evaluation Criteria. To assess the efectiveness of the
proposed model and conduct a comparative analysis with
prior research, we employ the following evaluation metrics:
precision, recall, F1-score, and accuracy. Tese metrics are
defned in equations (12)–(15). In these equations, TP stands
for true positive, FP represents false positive, TN stands for
true negative, and FN represents false negative [41, 42].

Accuracy �
TN + TP

TN + TP + FN + FP
, (12)

Precision �
TP

Tp + FP
× 100, (13)

Recall �
TP

TP + FN
× 100, (14)

F1 − Score � 2 ×
Recall × Precision
Recall + Precision

× 100. (15)

4.2. Dataset. Five social media datasets are used to evaluate
the efcacy of the proposed DTSC model. Te datasets are
collected from various social media platforms with two
(positive, negative) and three (positive, negative, and neu-
tral) classes. Tese datasets have been partitioned into
training and testing sets with an 80 : 20 ratio. Table 2 presents
the complete statistical information for each dataset.

4.2.1. Getty Images. Getty images (https://www.gettyimages.
com/(accessed Mar. 16, 2023)) ofer a vast collection of
creative resources, including photographs with detailed
textual descriptions, videos, and audio content, catering to
businesses and consumers, with over 477 million resources
in its collection. Te main advantage of Getty images is its
user-friendly, efective query-based search engine with
formal yet informative image descriptions. In particular,
3244 adjective-noun pairs (ANPs) from the visual sentiment
ontology [43] are used as keywords to collect 20,127 sen-
timent sentences with two classes (positive, negative), named
the “Binary_Getty” (BG) dataset, which includes textual
explanations and labels.

Te initial labeling is accomplished using the sentiment
scores associated with ANP keywords. We further employ
the Valence-Aware Dictionary and sentiment Reasoner

(VADER) [44], a lexicon and rule-based SA tool (https://
github.com/chute/vaderSentiment (accessed Mar. 16,
2023)), to label the preprocessed textual description. Ten,
we select only the text samples for which ANP and VADER
sentiment scores are the same. Finally, three volunteers were
chosen to assess the quality of our datasets. Each sample is
graded 1 (suitable) or 0 (unsuitable). Te results show that
95% of the samples are suitable and 5% are unsuitable; we
only consider the samples with grade 1 (suitable) and ignore
the others.

4.2.2. iStock Images. iStock images (https://www.istockphoto.
com/(accessed Mar. 16, 2023)) is an online platform that ofers
a wide range of international royalty-free microstock photos,
including images and their accompanying textual descriptions,
graphics, clipart, videos, and audio tracks. Te same procedure
from Getty images is implemented; 3244 ANPs are used as
keywords to retrieve 19,279 sentiment sentences with two classes
(positive, negative), named the “Binary_iStock” (BIS) dataset.
Te dataset includes textual explanations and labels. Te same
labeling procedure demonstrated for the BG dataset is used to
establish the fnal labeling of the BIS dataset.

4.2.3. Twitter Dataset. Additionally, we gathered a new
dataset from Twitter. English tweets are specifcally gath-
ered using the Twitter streaming application programming
interface (API) (https://developer.twitter.com/en (accessed
Mar. 16, 2023)), with user-generated hashtags as keywords.
We carefully fltered out all texts that were too short (less
than fve words) or too long (more than 100 words). We use
VADER, a lexicon and rule-based SA tool, to speed up the
labeling process to predict text sentiment polarity. Based on
the projected sentiment polarity, the tweets are manually
categorized into neutral, negative, and positive sentiment
polarities. Finally, 17,073 high-quality tweets were
obtained.

4.2.4. Multiview Sentiment Analysis (MVSA) Dataset.
Te MVSA-Single dataset [45] comprises 5129 image-text
pairs extracted from Twitter. After displaying each pair to
a single annotator, the annotator assigned one of three
polarities (neutral, negative, or positive) to the image-text
pair. Like [46], we frst delete tweets with contradicting
textual and visual labels. In cases where one modality is
labeled as neutral while the other is labeled as positive or
(negative), the ultimate polarity assigned to multimodal data
is positive or (negative).Tus, we obtain a newMVSA-Single
dataset with 4511 text-image pairs. Here, we used only the

Table 1: Parameters.

Parameter Value
Dropout rate 0.25
Batch size 32
Maximum number of epochs 20
Learning rate (Adam optimizer) 0.001

Table 2: Te complete statistics of each dataset.

Dataset Positive Negative Neutral Total
BG 10098 10029 — 20127
BIS 10587 8692 — 19279
IMDB 25000 25000 — 50000
Twitter 6075 5228 5770 17073
MVSA-Single 2683 1358 470 4511
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textual data from this dataset and considered a benchmark
dataset collected mainly from the Twitter website, to
demonstrate the outstanding performance of our proposed
model using diferent social datasets.

4.2.5. IMDB Dataset. Te IMDB (https://www.kaggle.com/
datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-
reviews) is an online database of information related to flms,
television series, podcasts, home videos, video games, and
critical reviews. It includes 50,000 IMDB movie reviews and
the binary sentiment of each movie review: positive or
negative.

To prepare text data for sentiment analysis (SA), it
undergoes the following preprocessing steps: (1) lowercase,
which involves changing all text to lowercase. (2) Remove
irrelevant information, including punctuation, special
characters, hashtags, multiple spaces, URL references, stop
words, and numbers. (3) Emoticon translation involves
translating all emoticons into their respective terms.

4.3. Experiment 1: Te Efect of the Neighborhood Technique.
Te proposed method’s performance is compared with and
without the neighborhood technique in this experiment to
ascertain the impact of the neighboring technique on our
approach. In this experiment, the frst part includes only the
original input in the network training phase without the
neighboring technique and neighbors are ignored. In the
second part, the number of neighbors is considered to be 2.
Te outcomes are shown in Table 3.

Te proposed method with the neighboring technique
outperforms the method without the neighboring mode.Te
use of the data neighbors enables the learning of better
representations.Te accuracy, precision, recall, and F1-score
of the proposed model with using neighbors improve by an
average of 1.20%, 1.52%, 1.42%, and 1.40% compared to
without using neighbor modes. For the MVSA-Single
dataset, using a neighbor has a more positive efect than
other datasets. So, for the MVSA-Single dataset, the accu-
racy, precision, recall, and F1-Score of the proposed method
improved by an average of 1.72%, 2.73%, 1.70%, and 2.63%,
respectively. Using neighbors dramatically improves
performance.

4.4. Experiment 2: Te Efect of Neighborhood Size. In this
experiment, to determine the efect of the neighborhood size
in our approach, the performance of the proposed method is
evaluated with diferent neighborhood sizes and batches.
Our method is executed ten times for each dataset, and the
average result is reported. Te results are demonstrated in
Table 4.

As demonstrated in Table 4, the efcacy of the proposed
method increases with the increase in the neighborhood size.
So, for sizes 2, 4, 8, 16, and 32, the average of all criteria has
increased by 0.72%, 1.37%, 1.48%, 1.53%, and 1.54%, re-
spectively, compared to size 0. Interestingly, all the criteria
improve with the increase in neighbors. However, as the size
of the neighborhood increases, the improvement percentage

decreases. For example, there is only a 0.03% diference
between sizes 16 and 32.

Meanwhile, there is a 0.61% diference between sizes 2
and 4. Te reason is quite apparent; with the increase in the
size of the neighborhood, distant neighbors may also be
selected. Although these distant neighbors are in the same
class as the input sample, the text of the two samples may
difer.

4.5. Experiment 3: Te Proposed Method vs. Baseline Models.
In this section, an evaluation of the proposed method and
other established baseline methods is conducted across all
datasets. Te outcomes of the proposed method and other
approaches are presented in Table 5.

Table 5 demonstrated that the LSTM model out-
performed CNN and GRU, exhibiting comparatively in-
ferior performance. Te hybrid LSTM-CNN model
demonstrated superior performance to the LSTM-only
model, followed by bidirectional-based methods with rela-
tively good performance, such as Bi-LSTM and Bi-GRU.Te
proposed method’s average accuracy, precision, recall, and
F1-score metrics are 92.77%, 93.73%, 91.82%, and 92.73%,
respectively. On the second-best method (Bi-GRU), the
average values for accuracy, precision, recall, and F1-score
metrics are 92.37%, 93.32%, 91.42%, and 92.33%, re-
spectively. According to CNN 1D’s average recall of 90.54%,
more samples from the specifc class are typically mis-
classifed. According to the suggested method’s average
recall of 91.82%, fewer samples are regularly misclassifed
compared to CNN 1D. As can be seen, the proposed model
performs better than the current leading approach in all
evaluation metrics. Specifcally, it achieves the highest ac-
curacy of 99.60% when evaluated on the BG dataset. Tis
result provides strong evidence for the efectiveness of the
DTSC model in enhancing the classifer’s performance.

4.6. Experiment 4:Generalization. Our model has the beneft
of handling scenarios where various types of metadata are
accessible during training and testing with ease. Addition-
ally, our model handles circumstances in which the words
used over time may change. In other words, there may be
some diferences between the words in the training and
test sets.

In the real world, the vocabulary or tags may change as
new words become popular and older words fall out of favor.
Any method that relies on user metadata should be able to
handle these conditions. Ideally, to test our model’s resil-
ience to changes in user words over time, we should train it
with texts from one time and test it with texts from another.

Instead of randomly dividing a dataset into training and
test sets in this experiment, we use the BG dataset to train the
model, generate neighborhoods in the training phase, and
use the BIS dataset to test and generate neighborhoods in the
testing phase. Te results are reported in Table 6.

Table 6 presents a comparative analysis between the
proposed method and baseline algorithms, namely, LSTM
and GRU. Te evaluation uses BG for training and BIS for
testing in two distinct scenarios. Te fndings indicate that
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the proposed methodology has yielded enhancements in
performance, with average accuracy improvements of 1.14%
and 1.09% observed for group one and respective im-
provements of 1.89% and 2.23% achieved for group two.

Tis suggests that leveraging additional metadata, spe-
cifcally employing diferent vocabularies during training
and testing, generates enhanced representations. Utilizing
neighbors plays a crucial role in achieving these improve-
ments. During the network training phase, this approach
generates superior features characterized by a high level of
generalizability. Even during the testing phase, when the
input sample contains words not present in the training
dictionary, the model produces superior representations
with the assistance of its neighbors.

Te results obtained from Tables 3 to 6 demonstrate the
great benefts of the proposed model, which can be sum-
marized as follows:

(1) Improved accuracy: the model is designed to en-
hance accuracy in sentiment categorization, a task
known to be challenging, especially in the context of
social media data. By leveraging both textual content
and extensive metadata, it aims to provide more
accurate sentiment analysis.

(2) Contextual understanding: unlike models solely re-
lying on text data, this model considers the con-
textual aspects of social media posts. Tis contextual
understanding is crucial for interpreting sentiment
accurately, given the nuances and informal language
often used in social media.

(3) Utilizing metadata: the model harnesses the wealth
of metadata, or neighboring data, available on
platforms like Twitter, which includes information
about posts and their authors. Tis additional

Table 4: Te efect of neighborhood size.

Neighborhood size Metrics
Dataset

BG BIS MVSA-Single Twitter IMDB

0

Accuracy 98.23 97.53 80.74 95.17 87.01
Precision 98.41 98.30 80.22 95.16 91.14
Recall 98.16 96.21 80.74 95.15 83.29

F1-score 98.10 97.95 80.10 95.11 87.00

2

Accuracy 98.74 98.05 82.28 95.65 87.15
Precision 98.95 98.78 81.71 95.67 91.32
Recall 98.67 96.73 82.28 95.66 83.78

F1-score 98.62 98.46 81.62 95.63 87.12

4

Accuracy 99.23 98.53 82.77 96.15 88.25
Precision 99.44 99.29 82.20 96.17 92.54
Recall 99.18 97.24 82.78 96.16 84.34

F1-score 99.10 98.97 82.10 96.13 88.31

8

Accuracy 99.34 98.65 82.87 96.24 88.36
Precision 99.55 99.38 82.31 96.28 92.64
Recall 99.27 97.33 82.87 96.24 84.47

F1-score 99.22 99.06 82.23 96.22 88.40

16

Accuracy 99.37 98.72 82.94 96.31 88.40
Precision 99.58 99.40 82.37 96.31 92.68
Recall 99.31 97.40 82.93 96.32 84.50

F1-score 99.25 99.10 82.26 96.27 88.44

32

Accuracy 99.42 98.73 82.96 96.33 88.45
Precision 99.63 99.46 82.39 96.35 92.75
Recall 99.35 97.41 82.96 96.34 84.12

F1-score 99.30 99.14 82.30 96.31 88.12

Table 3: Te efect of the neighborhood technique.

Neighboring Metrics
Dataset

BG BIS MVSA-Single Twitter IMDB

Not taken into account

Accuracy 98.23 97.54 80.77 95.14 86.65
Precision 98.46 98.29 80.20 95.18 89.45
Recall 98.15 96.21 80.79 95.14 82.41

F1-score 98.10 97.95 80.11 95.11 86.01

Taken into account

Accuracy 99. 0 98.32 82.19 9 .13 87. 0
Precision 99.55 99.51 82.39 9 .12 91.0 
Recall 99. 5 97.54 82.1 9 .13 83. 4

F1-score 99. 0 98.52 82.22 9 .12 87.20
Bold values indicate that the proposed neighbourhood technique model has achieved better results.
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context can signifcantly improve the accuracy of
sentiment analysis.

(4) Flexibility: the model’s nonparametric generation of
text neighborhoods and subsequent use of a novel
parametric model make it adaptable to various tasks.

It can handle complex sentiment analysis tasks that
may be impractical for other techniques.

(5) Cutting-edge performance: the model demonstrates
a state-of-the-art level of performance in text sen-
timent classifcation. It outperforms traditional

Table 5: Performance comparison of diferent models.

Model Metric
Dataset

BG BIS MVSA-Single Twitter IMDB

CNN CNN

Accuracy 98.30 97.02 80.86 94.83
Precision 98.23 98.21 81.09 94.82
Recall 98.35 96.24 80.86 94.83

F1-score 98.30 97.22 80.92 94.82

GRU GRU

Accuracy 98.34 97.06 80.90 94.89
Precision 98.30 98.24 81.03 94.89
Recall 98.37 96.27 80.80 94.90

F1-score 98.32 97.24 80.86 94.88

LSTM LSTM

Accuracy 98.40 97.12 80.96 94.93
Precision 98.33 98.31 81.19 94.92
Recall 98.45 96.34 80.96 94.93

F1-score 98.40 97.32 81.02 94.92

LSTM-CNN LSTM-CNN

Accuracy 98.85 97.57 81.41 95.38
Precision 98.78 98.76 81.64 95.37
Recall 98.90 96.79 81.41 95.38

F1-score 98.85 97.77 81.47 95.37

Bi-LSTM Bi-LSTM

Accuracy 99.10 97.82 81.66 95.63
Precision 99.03 99.01 81.89 95.62
Recall 99.15 97.04 81.66 95.63

F1-score 99.10 98.02 81.72 95.62

Bi-GRU Bi-GRU

Accuracy 99.20 97.92 81.76 95.73
Precision 99.13 99.11 81.99 95.72
Recall 99.25 97.14 81.76 95.73

F1-score 99.20 98.12 81.82 95.72

DTSC DTSC

Accuracy 99. 0 98.32 82.19 9 .13
Precision 99.55 99.51 82.39 9 .12
Recall 99. 5 97.54 82.1 9 .13

F1-score 99. 0 98.52 82.22 9 .12

Table 6: Cross-dataset evaluation results.

Group Method Training dataset Testing dataset Accuracy F1_score

One

LSTM
BG (all data) BIS (train set) 94.39 94.70
BG (all data) BIS (test set) 94.94 95.35
BG (all data) BIS (all data) 94.57 94.90

GRU
BG (all data) BIS (train set) 94.66 94.94
BG (all data) BIS (test set) 94.71 94.10
BG (all data) BIS (all data) 94.67 94.97

DTSC
BG (all data) BIS (train set) 95.9 9 .23
BG (all data) BIS (test set) 95.25 95. 4
BG (all data) BIS (all data) 95.92 9 .21

Two

LSTM
BG (train set) BIS (train set) 94.40 94.70
BG (train set) BIS (test set) 92.89 93.25
BG (train set) BIS (all data) 94.69 94.97

GRU
BG (train set) BIS (train set) 93.78 94.05
BG (train set) BIS (test set) 94.06 94.45
BG (train set) BIS (all data) 93.21 93.46

DTSC
BG (train set) BIS (train set) 95.50 95.94
BG (train set) BIS (test set) 9 .14 9 .58
BG (train set) BIS (all data) 95. 8 9 .11

Bold values indicate the best result.
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methods by efectively combining contextual in-
formation, thereby ofering a valuable advancement
in sentiment analysis technology.

In summary, the model’s benefts include improved
accuracy, enhanced contextual understanding, efective
utilization of metadata, fexibility in handling diverse tasks,
and cutting-edge performance, all of which contribute to
more precise sentiment categorization, especially in the
challenging domain of social media analysis.

 . Conclusion

Some texts that are difcult to recognize on their own may
become more understandable in a neighborhood of related
texts with similar contexts. Motivated by this theory, a novel
deep text sentiment classifcation (DTSC) model was pro-
posed to improve the classifer’s performance by integrating
the neighborhood of related texts. Our model uses the
nonparametric approach to construct neighborhoods of
related texts based on Jaccard similarities.

Moreover, two distinct deep learning-based recurrent
neural networks (Bi-LSTM and GRU) were integrated to
extract sophisticated features, capture temporal relation-
ships, and generate SA insights. Te result of each module
was further processed through the maximum operation,
which selects the most pertinent data. Finally, the extracted
features were concatenated and subjected to classifcation to
achieve accurate sentiment prediction. In contrast to the
previous studies, our approach utilizes a nonparametric
approach, enabling it to perform strongly even when the text
vocabulary varies between training and testing. Te efec-
tiveness of the proposed model was evaluated on fve real-
world sentiment datasets of short English text along with
a dataset of lengthy movie reviews. Te DTSC model per-
forms more accurately and efciently in identifying and
understanding the semantics of both short and lengthy texts
when compared to baseline approaches. Te proposed
model demonstrated a high level of accuracy across the
datasets. Specifcally, it achieved a 99.60% accuracy on the
Binary_Getty (BG) dataset, a 98.32% on the Binary_iStock
(BIS) dataset, a 96.13% accuracy on Twitter, an 82.19%
accuracy on the multiview sentiment analysis (MVSA)
dataset, and an 87.60% accuracy on the IMDB dataset. Tese
fndings indicate that the proposed model performs better
than the existing state-of-the-art techniques regarding
model evaluation criteria for text sentiment classifcation.
Future works primarily comprise (1) broadening the model’s
scope to encompass additional languages, such as Persian,
and (2) leveraging transformer-based language models to
produce more resilient embedding representations.

Data Availability

Te following information was supplied regarding data
availability: (1) the computer codes and datasets are available
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views: https://www.kaggle.com/lakshmi25npathi/imdb-
dataset-of-50k-movie-reviews
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