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Tis work focuses on presenting a control algorithm to investigate nonlinear systems, which contain time-varying powers, inverse
dynamics, and uncertainties. First, some appropriate transformations are introduced to obtain a new system. Ten, a Lyapunov
function, which covers quadratic and high-order components, is recursively constructed for control design. Subsequently, by
introducing the neural networks, the uncertain functions encountered during the design are approximated. Based on the in-
equality techniques, the nonlinear terms are skillfully estimated. By defning the bounds of some unknown parameters and using
the adaptive technique, some virtual controllers are selected in each step to dominate the nonlinear functions and guarantee that
the derivative of the Lyapunov function satisfes the required form. Finally, a new adaptive controller is constructed and
semiglobal practical fnite time stability (SGPFS) is guaranteed. Te proposed approach is verifed with a numerical example.

1. Introduction

Control of complex nonlinear systems is viewed as
a challenging issue in practical engineering. Since dif-
ferent systems are modeled with diferential equations
that have disparate nonlinear characters, the related
control schemes constantly vary from each other. Re-
cently, plenty of outstanding approaches have been raised,
as shown in the sliding mode control [1], intelligent
control [2, 3], event-based control [4], and so on. It should
be mentioned that complex systems often have diversifed
uncertainties, including unknown parameters, uncertain
dynamics, and unpredictable disturbances. Te un-
certainties actually add more obstacles for the system
analysis and control synthesis. Besides, practical systems
often sufer from time-varying powers [5, 6], which lead to
the inapplicability of conventional methods of systems
with constant powers. So far, when systems have time-
varying powers, lots of control challenges have not been
solved. It is interesting to study such systems and raise
a feasible control strategy.

For uncertain systems, the adaptive control strategy has
been viewed as one of the efective tools for control design,
see [7–9]. During the control design steps of nonlinear
systems described by diferential equations, this strategy
utilizes the idea of certain equivalence and always results in
a dynamic controller. Particularly, by presenting an adaptive
backstepping method [10], the global asymptotic stability
was guaranteed for systems that sufered from unknown
parameters. By proposing a dynamic event-triggered
control-based output-feedback control method, Cao et al.
[11] studied the adaptive issue of systems with immeasurable
states and input delay. By proposing an adaptive NN fxed-
time control method, Cao et al. [12] further designed the
controller for systems that included dynamic uncertainties
and communication resources. By raising an adaptive fuzzy
command fltered method, Li et al. [13] considered systems
with uncertain dynamics and ensured the system to be
semiglobally stable. Recently, high-order nonlinear system
has been a hot topic and many excellent results have been
reported, see [14–16]. Specially, by introducing a Lyapu-
nov–Krasovskii functional and employing the adaptive
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neural network control technique, Duan et al. [14] skillfully
designed the adaptive controller for delayed systems. Uti-
lizing one power integrator strategy, Niu et al. [15] studied
the adaptive stabilization issue of stochastic systems with
arbitrary switching. Based on the idea of homogeneous
domination and dynamic control approach, Shen and Zhai
[16] designed the controller for uncertain high-order sys-
tems. In fact, the system powers in the above works are
assumed to be constants. When the system powers are time-
varying functions, there are some results discussing the
control issues. For instance, Chen et al. [17] presented
a feedback control approach for systems that involved time-
varying powers. Yoo [18] discussed uncertain systems with
time-varying functions and investigated the fault accom-
modation control issue. However, fnite time control issues
are still challenging, especially when the system powers vary
with a large range.

Finite time control has received lots of concerns in last
years. Such kind of control has better system responses such
as faster convergent rate, higher tracking precision, and
better robustness. Tere are many splendid results for this
control issue. Specially, for low-order systems, Yu et al. [19]
studied the tracking control problem by presenting a fnite
time command fltered backsteppingmethod. Polyakov et al.
[20] considered the stability problems and provided a robust
control method. As for high-order systems, Gao et al. [21]
discussed the output feedback control approach, Chen et al.
[22] further considered the output constraint and raised the
output feedbackmethod to solve fnite stabilization problem.
For system with uncertainties, Li et al. [23] investigated the
adaptive fnite time regulation for lower-order systems. Sun
et al. [24] raised one fast fnite time control approach and
applied it to systems with constant powers. However, the
adaptive fnite time control issue is still open for systems that
have dynamics and time-varying powers. Naturally, we raise
the following problem:

Can we regulate the uncertain system with dynamics
and time-varying powers via a fnite time control
approach?

We will consider the above problem. Te study has two
advantages as follows:

(i) Te considered system has a more general form. In
practical engineering, some dynamic models have
time-varying powers, see the model of a boiler-
turbine unit in [17] and the underactuated me-
chanical system in reference [25]. However, few
results considered control issue of systems with
time-varying powers. Also, due to the inaccuracy of
measurement or the modeling errors, some inverse
dynamics cannot be directly neglected. Besides, the
practical systems are often in nontriangular struc-
ture and sufer from multiple uncertainties. Tese
factors motivate us to study the more general system,
which contains time-varying powers, inverse dy-
namics, nontriangular structure, and uncertainties.
Te system is hence more general.

(ii) A new adaptive control approach is presented.
Noting that the existing methods of systems are
mainly for constant powers, they cannot be applied
to the system of this work. Besides, since the fnite
time control of the system has inverse dynamics,
nontriangular structure, and uncertainties are still
challenging, we are inspired to raise a new adaptive
control approach. In this work, a Lyapunov function,
which includes quadratic and high-order compo-
nents, is constructed. By estimating the complex
nonlinear terms with the neural network and
employing the adaptive control design, the adaptive
controller is skillfully constructed for the considered
system. Te merits of the method lie in two aspects.
One is that, it provides an efective solution for
adaptive fnite control of complicated nonlinear
system. As can be seen, for the complicated system
(1), the fnite time control problem is still chal-
lenging.Te presented method overcomes a series of
obstacles and fnally provides a feasible solution to
solve the above problem. Te second is that the
proposed method adopts few parameter estimations
and does not introduce complicated basis functions
of neural network in the control input. Hence, the
designed adaptive controller has a simple form.

2. Problem Formulation

We study the system as follows:

_ξ � g ϱ, ξ, x1( 􏼁,

_x1 � a1(t, x) x2􏼆 􏼇
s1(t)

+ f1(ϱ, ξ, x),

_x2 � a2(t, x) x3􏼆 􏼇
s2(t)

+ f2(ϱ, ξ, x),

⋮

_xn � an(t, x)⌈u⌉
sn(t)

+ fn(ϱ, ξ, x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where ξ ∈Rm and x � [x1, . . . , xn]⊤ ∈Rn are state vectors
of the system, ϱ ∈Rl denotes a parameter vector, g ∈Rm

represents a vector of continuous functions, and u ∈R
denotes the input. For 1≤ i≤ n, ai > 0 denotes the control
coefcients, fi(·) are unknown continuous functions,
si(t)> 0 are unknown system powers, and ⌈·⌉si(t) �

sign(·)| · |si(t).
System (1) describes a class of complex nonlinear sys-

tems. It covers the inverse dynamics, which generates be-
cause of the inaccuracy of mathematical modeling or
measuring errors and always leads to poor system responses.
Also, it contains time-varying powers, which are involved in
many models in practical engineering. Besides, the system
has unknown coefcients and involves unknown functions
that are in nontriangular form. In practical life, many dy-
namic models can be transformed into system (1). Tus, the
research of such kind of systems is of practical signifcance.
However, the corresponding control issue is still challenging.
In this work, we will provide a new adaptive control strategy
for it.
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Assumption 1. Tere exist unknown constants λ1 > 0 and
λ2 > 0 such that λ1 ≤ ai(t, x)≤ λ2, 1≤ i≤ n.

Assumption 2. Tere exists sm ≤ si(t)≤ sh, where 0< sm ≤ 1
and sh ≥ sm are constants that belong to Rodd� q1/􏼈

q2 | q1 > 0 and q2 > 0 are odd integers}.

Assumption 3. Tere exists a constant s≥ sh − sm + 1
(s ∈Rodd) and a Lyapunov function W(ξ) such that

_W(ξ) �
zW(ξ)

zξ⊤
g ϱ, ξ, x1( 􏼁≤ − ‖ξ‖

sh+1
+‖ξ‖

s+sm􏼐 􏼑 + x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ϕ0 x1( 􏼁 + d0, (2)

where d0 is a positive constant and ϕ0(·)≥ 0 is a continuous
function.

Lemma 4 (see [2]). For a vector Ξ ∈ Λr⊆R
r, if hi(θ,Ξ) is

a continuous function, then, a neural network Φ⊤i Si(Ξ) exists
such that hi(θ,Ξ) � Φ⊤i Si(Ξ) + ηi(Ξ), where Φi represents

ideal constant weight vector, ηi(Ξ) satisfes |ηi(Ξ)|≤ δi for
a constant δi > 0, and Si(Ξ) denotes the Gaussian function
vector and satisfes ‖Si(Ξ)‖≤ s, where s> 0 is a constant.

Lemma 5 (see [24]). Tere exists the inequality as follows:

π(τ, ])τl1]l2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ϕ(τ, ])|τ|
l1+l2 +

l2

l1 + l2
|π(τ, ])|

l1+l2/l2 l1

l1 + l2( 􏼁ϕ(τ, ])
􏼠 􏼡

l1/l2
|]|

l1+l2 , (3)

where l1 > 0, l2 > 0 are constants and π(τ, ])> 0,ϕ(τ, ])> 0
are functions.

Lemma 6 (see [6]). Let 0≤ l1 ≤ · · · ≤ ln, m1 > 0, . . ., and
mn > 0. For y ∈R, there exists the following:

m1|y|
l1 + mn|y|

ln ≤ 􏽘
n

i�1
mi|y|

li ≤ 􏽘
n

i�1
mi

⎛⎝ ⎞⎠ |y|
l1 + |y|

ln􏼐 􏼑.

(4)

Remark 7. We emphasize two points as follows: (i) In this
paper, the system powers refer to si(t), 1≤ i≤ n in (1) and are
not the order n.Tey are time-varying functions,which aremore
general than the constants in [14, 15, 22, 24]. From Assumption
1, we see that they can belong to a larger interval [sm, sh], which
cover the powers smaller than one or bigger than one. (ii) In
engineering, there are practical models, which have the form of
system (1), see the system [17, 26]. System (1) actually provides
a general form to describe similar dynamic models.

Remark 8. Assumptions 1–3 of system (1) are reasonable
and much weaker than those of the existing research. As-
sumption 1 implies that the bounds of control coefcients
can be unknown. It is more general than the known cases of
[2, 21]. Assumption 2 shows that the powers can be changing
in a larger scope. Assumption 3 implies that the inverse

dynamics of system (1) satisfes a weaker stability condition.
It should be emphasized that the control issue under As-
sumptions 1–3 is still difcult. Next, we will study the fnite
control issue and raise an adaptive control strategy.

3. Adaptive Control Design

Te adaptive control method of this paper adapts to the
control law according to the parameter variation. As can be
seen, there are many uncertainties in the nonlinear func-
tions. To design the controller, we adopt the neural networks
to approximate these unknown functions and subsequently
introduce some unknown ideal constant weight vectors.
During the control design steps, the obtained nonlinear
bounds contain unknown parameters, see (7), (9), (24), and
(26). By defning the maximum value θi of those unknown
parameters in each step, we can design adaptive laws (18)
and (28) to approximate parameters θi, 1≤ i≤ n. Ten, we
construct the virtual controllers with a recursive method by
using 􏽢θi and a new Lyapunov function. In the last step, the
adaptive controller is successfully designed. For the details,
see Figure 1.

Step 1: Introduce the transformation z1 � x1, and defne
􏽥θ1(t) � 􏽢θ1(t) − θ1, where θ1 will be defned later and 􏽢θ1(t) is
an estimation of θ1. Choosing the function V1(ξ, z1,

􏽥θ1) �

ρW(ξ) + 1/λ1(z2
1 + zs+1

1 ) + 1/(2ϵ1􏽥θ
2
1), where ρ> 0 and ϵ1 > 0

are constants, we get the following:
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_V1 � ρ _W(ξ) +
1
λ1

2z1 +(s + 1)z
s
1( 􏼁 _z1 +

1
ϵ1

􏽥θ1
_􏽢θ1,

≤ − ρ ‖ξ‖
sh+1

+‖ξ‖
s+sm􏼐 􏼑 + ρ z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ϕ0 ξ, x1( 􏼁 + ρd0 +

1
λ1

2z1 +(s + 1)z
s
1( 􏼁,

· a1 x2􏼆 􏼇
s1(t)

− a1 π2􏼆 􏼇
s1(t)

+ a1 π2􏼆 􏼇
s1(t)

+ f1􏼐 􏼑 +
1
ϵ1

􏽥θ1
_􏽢θ1.

(5)

By Lemma 4, there exist some neural networks such that

ϕ0 x1( 􏼁 � Φ⊤0 S0 + η0(t), η0(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ δ,

f1(·) � Φ⊤1 S1 + η1(t), η1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ δ,
(6)

where Φi, Si, i � 0, 1 are defned in Lemma 4, η0(t), η1(t) are
the approximation errors, and δ > 0 is a constant. By Lemma
5, it yields from (6) that

ρ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌φ0 x1( 􏼁≤ ρ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 Φ⊤0 S0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + η0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑≤ b10 Φ0
����

����
1+sh + 1􏼒 􏼓z

sh+1
1 + d10, (7)

where b10 > 0 is a constant and d10 � 1/(sh + 1)1/(b10sh +

b10)
1/sh (‖S0‖

(1+sh)/sh + η(1+sh)/sh

0 )ρ(1+sh)/sh . Utilizing (6), it leads
to
1
λ1

2z1 +(s + 1)z
s
1( 􏼁f1 ≤

s + 1
λ1

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
s

􏼐 􏼑 Φ⊤1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + η1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑.

(8)

By Lemma 5, we obtain the following:

s + 1
λ1

z1 Φ
⊤
1 S1

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
s + 1
λ1

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 Φ1
����

���� · S1
����

����
(1/sh)

􏼒 􏼓
sh

≤ b11
Φ1

����
����

λ1
􏼠 􏼡

1+sh

z
sh+1
1 + d11, (9)

The studied nonlinear system

(1)
…

 ξ = g (ϱ,ξ,x1),
.

x1 = a1 (t, x)⌈x2⌉
s1(t) + ƒ1 (ϱ,ξ,x),.

x2 = a2 (t, x)⌈x3⌉
s2(t) + ƒ2 (ϱ,ξ,x),.

xn = an (t, x)⌈u⌉sn (t) + ƒn (ϱ,ξ,x)..

Design the actual adaptive controller

and analyze the stability of the closed-loop system.

u = –βnzn, βn =
3rn

2

1/sm

, rn = θnϕn + ρ,ˆ

ˆ ˆθj = ∈jϕj (zj
1+sh + zj

s+sm) – σjθj ,
.

 V1 (ξ,z1,θ1) = ρW (ξ) +

Choose the function
Step1: Introduce z1 = x1 and define θ1 (t) = θ1(t) − θ1.

∽

∽ ∽

ˆ

ˆ ˆ

Design the virtual controller π1= –β1z1and the adaptive law

θ1 = ∈1ϕ1 (z1
1+sh + z1

s+sm)–σ1θ1 such that (15) holds.

1
λ1

(z1
2 + z1

s+1)+ 1
2∈

1

θ1
2.

.

Step k (2 ≤ k ≤ n): Introduce zj = xj – πj–1, πj–1 = – βj–1zj–1 

and define θk (t) = θk (t) − θk. Choose the function

such that (26) holds.

Design the virtual controller πk = – βkzk,
and the adaptive law θk = ∈kϕk (zk

1+sh + zk
s+sm) – σkθk

 Vk = Vk-1
1
λ1

(zk
2 + zk

s+1) ++ 1
2∈k

θk
2.

ˆ

ˆˆ

∽

∽

.

j = 1,...,n,

Figure 1: Te fowchart of the control method.
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where b11 is a positive constant and d11 � 1/(sh + 1)1/
(b11sh + b11)

1/sh ‖S1‖
(1+sh)/sh (s + 1)(1+sh)/sh . Similarly, by

Lemma 5, we get the following:

s + 1
λ1

z1 η1
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ b12

1
λ1

􏼠 􏼡

sh+1

z
sh+1
1 + d12,

s + 1
λ1

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
s Φ⊤1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ b13
Φ1

����
����

λ1
􏼠 􏼡

s+sm( )/sm

z
sm+s
1 + d13,

s + 1
λ1

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
s η1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ b14
1
λ1

􏼠 􏼡

s+sm( )/s

z
sm+s
1 + d14,

(10)

where b12, b13, b14 are positive constants,

d12 �
sh

1 + sh

1
b12 + b12sh

􏼠 􏼡

1/sh

η 1+sh( )/sh

1 (s + 1)
1+sh( )/sh ,

d13 �
s

s + sm

s

b13 + b13sm

􏼠 􏼡

s/sm

· S1
����

����
s+sm( )/sm (s + 1)

s+sm( )/sm ,

d14 �
sm

s + sm

s

b14 + b14sm

􏼠 􏼡

s/sm

η s+sm( )/sm

1 (s + 1)
s+sm( )/sm .

(11)

Defning θ1 � max ‖Φ0‖
1+sh + 1, (‖Φ1‖/λ1)

1+sh􏽮 , (1/
λ1)

sh+1, (‖Φ1‖/λ1)
(s+sm)/sm , (1/λ1)

(s+sm)/sm }, and φ1 � max b10􏼈

+b11 + b12, b13 + b14}, it follows from (10)–(14) that

ρ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ϕ0 ξ, x1( 􏼁 +
1
λ1

2z1 +(s + 1)z
s
1( 􏼁f1 ≤ θ1ϕ1 z

sh+1
1 + z

sm+s
1􏼐 􏼑 + 􏽘

4

j�0
d1j. (12)

Substituting (12) into (5), it follows that

_V1 ≤ − ρ ξsh+1
+

����
����ξs+sm􏼐 􏼑 +

1
λ1

2z1 +(s + 1)z
s
1( 􏼁 a1 x2􏼆 􏼇

s1(t)
− a1 π1􏼆 􏼇

s1(t)
􏼐 􏼑

+
1
ϵ1

􏽥θ1
_􏽢θ1 + θ1ϕ1 z

sh+1
1 + z

sm+s
1􏼐 􏼑 + d1 +

a1

λ1
2z1 +(s + 1)z

s
1( 􏼁 π1􏼆 􏼇

s1(t)
,

(13)

where d1 � ρd0 + 􏽐
4
j�0d1j. Now, choosing the virtual con-

troller, we get the following:

π1
􏽢θ1, ξ, x1􏼐 􏼑 � −

3r1

2
􏼒 􏼓

1/sm

z1≕ − β1z1, (14)

where r1 � 􏽢θ1ϕ1 + 2ρ. It is deduced that
a1

λ1
2z1 +(s + 1)z

s
1( 􏼁 π1􏼆 􏼇

s1(t) ≤ − 3r1 z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1+s1(t)

+ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
s+s1(t)

􏼒 􏼓,

(15)

By (16) and Lemma 6, we get
a1

λ1
2z1 +(s + 1)z

s
1( 􏼁 π1􏼆 􏼇

s1(t) ≤ − r1 z
1+sh

1 + z
s+sm

1􏼐 􏼑. (16)

Substituting (16) into (13), it yields that

_V1 ≤ − ρ ‖ξ‖
sh+1

+‖ξ‖
s+sm􏼐 􏼑 − 2ρ z

1+sh

1 + z
s+sm

1􏼐 􏼑 +
a1

λ1
2z1 +(s + 1)z

s
1( 􏼁 x2􏼆 􏼇

s1(t)
− π1􏼆 􏼇

s1(t)
􏼐 􏼑

+
1
ϵ1

􏽥θ1
_􏽢θ1 − ϵ1ϕ1 z

1+sh

1 + z
s+sm

1􏼐 􏼑) + d1,􏼒

(17)

where ϵ1 is a constant. Choosing the frst adaptive law, we get
the following:

_􏽢θ1 � ϵ1ϕ1 z
1+sh

1 + z
s+sm

1􏼐 􏼑 − σ1􏽢θ1, (18)
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and substituting it into (17), we get the following:

_V1 ≤ − ρ ‖ξ‖
sh+1

+‖ξ‖
s+sm􏼐 􏼑 − 2ρ z

1+sh

1 + z
s+sm

1􏼐 􏼑 +
a1

λ1
2z1 +(s + 1)z

s
1( 􏼁 x2􏼆 􏼇

s1(t)
􏼐

− π1􏼆 􏼇
s1(t)

􏼑 −
σ1
ϵ1

􏽥θ1􏽢θ1 + d1,

(19)

where σ1 is a constant.
Step k (2≤ k≤ n). In step k − 1, we assume that there

exist transformations as follows:

zj � xj − πj− 1,

πj− 1 � − βj− 1zj− 1,

2≤ j≤ k − 1,

(20)

a candidate Lyapunov function Vk− 1, and the adaptive laws
_􏽢θj � ϕj z

1+sh

j + z
s+sm

j􏼐 􏼑 − σj
􏽢θj, 2≤ j≤ k − 1, (21)

such that

_Vk− 1 ≤ − ρ ‖ξ‖
sh+1

+‖ξ‖
s+sm + 􏽘

k− 2

j�1
z
1+sh

j + z
s+sm

j􏼐 􏼑⎛⎝ ⎞⎠ − 2ρ z
1+sh

k− 1 + z
s+sm

k− 1􏼐 􏼑 − 􏽘
k− 1

j�1

σj

ϵj
􏽥θj

􏽢θj

+
ak− 1

λ1
2zk− 1 +(s + 1)z

s
k− 1( 􏼁 xk􏼆 􏼇

sk− 1(t)
− πk− 1􏼆 􏼇

sk− 1(t)
􏼐 􏼑 + dk− 1,

(22)

where βj and ϕj are smooth functions and σj, ϵj and dk− 1 are
positive constants. In this step, we defne 􏽥θk(t) � 􏽢θk(t) − θk,
where θk denotes the unknown constant and 􏽢θk(t) is an

estimation of θk, and we choose Vk � Vk− 1 + 1/λ1(z2
k +

zs+1
k ) + 1/(2ϵk􏽥θ

2
k), where ϵk > 0 is a constant. We obtain the

following:

_Vk ≤ _Vk− 1 +
1
λ1

2zk +(s + 1)z
s
k( 􏼁 _zk +

1
ϵk

􏽥θk
_􏽢θk

≤ − ρ ‖ξ‖
sh+1

+‖ξ‖
s+sm + 􏽘

k− 2

j�1
z
1+sh

j + z
s+sm

j􏼐 􏼑⎛⎝ ⎞⎠ − 2ρ z
1+sh

k− 1 + z
s+sm

k− 1􏼐 􏼑

+
ak− 1

λ1
2zk− 1 +(s + 1)z

s
k− 1( 􏼁 xk􏼆 􏼇

sk− 1(t)
− πk− 1􏼆 􏼇

sk− 1(t)
􏼐 􏼑

− 􏽘
k− 1

j�1

σj

ϵj
􏽥θj

􏽢θj + dk− 1 +
1
λ1

2zk +(s + 1)z
s
k( 􏼁 _zk +

1
ϵk

􏽥θk
_􏽢θk.

(23)

Following the proof in Appendix, we have the following:
ak− 1

λ1
2zk− 1 +(s + 1)z

s
k− 1( 􏼁 xk􏼆 􏼇

sk− 1(t)
− πk− 1􏼆 􏼇

sk− 1(t)
􏼐 􏼑

≤ ρ z
1+sh

k− 1 + z
s+sm

k− 1􏼐 􏼑 + θk1ϕk1 z
1+sh

k + z
s+sm

k􏼐 􏼑 + dk0,

(24)

where θk1 > 0 is an unknown constant, dk0 is a positive
constant, and φk1 > 0 is a smooth function. It is deduced that

_zk � ak xk+1􏼆 􏼇
sk + fk − 􏽘

k− 1

j�1

zπk− 1

z􏽢θj

_􏽢θj − 􏽘
k− 1

j�1

zπk− 1

zxj

aj xj+1􏽬 􏽭
sj

+ fj􏼐 􏼑. (25)
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Utilizing Lemma 4, there exists a neural network
fk − 􏽐

k− 1
j�1zπk− 1/z􏽢θj

_􏽢θj − 􏽐
k− 1
j�1zπk− 1/z xj(aj⌈xj+1⌉

sj + fj) �

Φ⊤k Sk + ηk(t), where Φk, Sk are defned in Lemma 4, ηk(t) is

the approximation error, and |ηk(t)|≤ δ. By the proof in
Appendix, it follows that

1
λ1

2zk +(s + 1)z
s
k( 􏼁 fk − 􏽘

k− 1

j�1

zπk− 1

z􏽢θj

_􏽢θj − 􏽘
k− 1

j�1

zπk− 1

zxj

aj xj+1􏽬 􏽭
sj

+ fj􏼐 􏼑⎛⎝ ⎞⎠

�
1
λ1

2zk +(s + 1)z
s
k( 􏼁 Φ⊤k Sk + ηk(t)( 􏼁

≤ θk2ϕk2 z
1+sh

k + z
s+sm

k􏼐 􏼑 + 􏽘
4

j�1
dkj,

(26)

where θk2 and dk1, . . . , dk4 are positive constants and ϕk2 > 0
is a smooth function. Defning θk � max θk1, θk2􏼈 􏼉 and
φk � φk1 + φk2, substituting (24) and (26) into (23), and

considering ⌈xk+1⌉
sk � ⌈xk+1⌉

sk − ⌈πk⌉sk + ⌈πk⌉sk , we have
the following:

_Vk ≤ − ρ ‖ξ‖
sh+1

+‖ξ‖
s+sm + 􏽘

k− 2

j�1
z
1+sh

j + z
s+sm

j􏼐 􏼑⎛⎝ ⎞⎠ − 􏽘
k− 1

j�1

σj

ϵj
􏽥θj

􏽢θj + dk− 1 + 􏽘
4

j�0
dkj

+
1
ϵk

􏽥θk
_􏽢θk + θkφk z

1+sh

k + z
s+sm

k􏼐 􏼑 +
ak

λ1
2zk +(s + 1)z

s
k( 􏼁 · xk+1􏼆 􏼇

sk(t)
− πk􏼆 􏼇

sk(t)
+ πk􏼆 􏼇

sk(t)
􏼐 􏼑.

(27)

Now, choosing the adaptive law, we get the following:
_􏽢θk � ϵkϕk z

1+sh

k + z
s+sm

k􏼐 􏼑 − σk
􏽢θk, (28)

where σk ≥ 0 is a constant and selecting the virtual control,
we get the following:

πk � −
3rk

2
􏼒 􏼓

1/sm

zk≕ − βkzk, (29)

where rk � 􏽢θkϕk + 2ρ and the derivative of Vk satisfes the
following:

_Vk ≤ − ρ ‖ξ‖
sh+1

+‖ξ‖
s+sm + 􏽘

k− 2

j�1
z
1+sh

j + z
s+sm

j􏼐 􏼑⎛⎝ ⎞⎠ − 2ρ z
1+sh

k + z
s+sm

k􏼐 􏼑 − 􏽘
k

j�1

σj

ϵj
􏽥θj

􏽢θj + dk

+
ak

λ1
2zk +(s + 1)z

s
k( 􏼁 xk+1􏼆 􏼇

sk(t)
− πk􏼆 􏼇

sk(t)
􏼐 􏼑,

(30)

where dk � dk− 1 + 􏽐
4
j�0dkj. Tis completes the recursive

design.

4. Main Results

Theorem 9. If Assumptions 1–3 are satisfed, system (1) has
an adaptive controller as follows:

u � − βnzn, βn �
3rn

2
􏼒 􏼓

1/sm

, rn � 􏽢θnϕn + ρ,

_􏽢θj � ϵjϕj z
1+sh

j + z
s+sm

j􏼐 􏼑 − σj
􏽢θj, j � 1, . . . , n,

(31)

where βn,ϕj are smooth functions and ρ, ϵj, σj are constants.
z1 � x1 − π1(ξ) and z2, . . . , zn− 1 are defned in (20). More-
over, for constants 0< α< 1 and ρ0 > 0, if W(ξ) satisfes
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Wα(ξ)≤ ρ0(‖ξ‖sh+1 + ‖ξ‖s+sm ), then the closed-loop system is
SGPFS.

Proof. Choose Vn � ρW(ξ) + 1/λ1􏽐
n
j�1(z2

j + zs+1
j )+

􏽐
n
j�11/2ϵj􏽥θ

2
j . Following the steps of Section 3, we construct

the adaptive controller (31) such that we get the following:

_Vn ≤ − ρ ‖ξ‖
sh+1

+‖ξ‖
s+sm 􏼑 + 􏽘

n

j�1
z
1+sh

j + z
s+sm

j􏼐 􏼑⎛⎝ ⎞⎠ − 􏽘
n

j�1

σj

ϵj
􏽥θj

􏽢θj + dn. (32)

Since 0< sm < sj(t)< sh, sm ≤ 1, and s≥ 1, it follows
that (z2

j + zs+1
j )(s+sm)/(s+1) ≤ (z2

j)(s+sm)/(s+1) + z
s+sm

j

≤ (z2
j)(sh+1)/2+ 1 + z

s+sm

j � z
sh+1
j + 1 + z

s+sm

j , and

1
λ1

􏽘

n

j�1
z
2
j + z

s+1
j􏼐 􏼑⎛⎝ ⎞⎠

s+sm( )/(s+1)

≤
1
λ1

􏼠 􏼡

s+sm( )/(s+1)

􏽘

n

j�1
z
1+sh

j + z
s+sm

j􏼐 􏼑 + n
1
λ1

􏼠 􏼡

s+sm( )/(s+1)

, (33)

which further indicates that

− ρ􏽘
n

j�1
z
1+sh

j + z
s+sm

j􏼐 􏼑≤ − ρλ s+sm( )/(s+1)

1
1
λ1

􏽘

n

j�1
z
2
j + z

s+1
j􏼐 􏼑⎛⎝ ⎞⎠

s+sm( )/(s+1)

+ nρ. (34)

By Lemma 5, it leads to the following:

􏽘

n

j�1

􏽥θ
2
j

2ϵj
⎛⎝ ⎞⎠

s+sm( )/(s+1)

≤ 􏽘
n

j�1

􏽥θ
2
j

2ϵj
+ 1. (35)

Also, we get the following:

− ρ ξsh+1
+

����
����ξs+sm􏼐 􏼑≤ −

ρ
ρ0

W
α
(ξ). (36)

Considering − σj/ϵj􏽥θj
􏽢θj ≤ − σj/2ϵj􏽥θ

2
j + σj/2ϵjθ

2
j , 􏽐

n
j�1σj/

2ϵj􏽥θ
2
j ≥min1≤j≤n σj􏽮 􏽯 􏽐

n
j�1 σj/2ϵj􏽥θ

2
j ≥min1≤j≤n σj􏽮 􏽯. (􏽐

n
j�1

σj/2ϵj􏽥θ
2
j)(s+sm)/(s+1) − min1≤j≤n σj􏽮 􏽯(1− sm/(s + 1)((s + sm)/

(s + 1))(s+sm)/(s+1) and (32)–(36), we have the following:

_Vn ≤ − c(ρW(ξ))
α

− c
1
λ1

􏽘

n

j�1
z
2
j + z

s+1
j􏼐 􏼑 + 􏽘

n

j�1

􏽥θ
2
j

2ϵj
⎛⎝ ⎞⎠

s+sm( )/(s+1)

+ dn+1,
(37)

where c � min ρ1− α/ρ0, ρλ
(s+sm)/(s+1)
1 ,min1≤j≤n σj􏽮 􏽯􏽮 􏽯 and

dn+1 � nρ + min1≤j≤n σj􏽮 􏽯(1 − sm)/(s + 1)((s + sm)/(s + 1))(s+sm)/(s+1) + 􏽐
n
j�1

σi/2ϵjθ
2
j + dn. When 0< α< s + sm/s + 1≤ 1, in view of

Lemma 5, one has the following:

1
λ1

􏽘

n

j�1
z
2
j + z

s+1
j􏼐 􏼑 + 􏽘

n

j�1

􏽥θ
2
j

2ϵj
⎛⎝ ⎞⎠

α

≤
1
λ1

􏽘

n

j�1
z
2
j + z

s+1
j􏼐 􏼑 + 􏽘

n

j�1

􏽥θ
2
j

2ϵj
⎛⎝ ⎞⎠

s+sm( )/(s+1)

+ dn+2,
(38)

where dn+2 � (s + sm − αs − α)/(s + sm)((αs + α)/(s + sm))(αs+α)/(s+sm− αs− α).
Terefore, it follows from (37) that
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_Vn ≤ − c ρW(ξ) +
1
λ1

􏽘

n

j�1
z
2
j + z

s+1
j􏼐 􏼑 + 􏽘

n

j�1

􏽥θ
2
j

2ϵj
⎛⎝ ⎞⎠

α

+ dn+1 + cdn+2

� − cV
α
n + dn+1 + cdn+2.

(39)

When 0< (s + sm)/(s + 1)< α< 1, similar to (38), we get
the following:

(ρW(ξ))
s+sm/s+1 ≤ (ρW(ξ))

α
+ dn+3, (40)

where dn+3 � (αs + α − s − sm)/(αs + α)((s + sm)/(αs + α))(s+sm)/(αs+α− s− sm).
Tus, considering (37) and (40), we obtain the following:

_Vn ≤ − c(ρW(ξ))
s+sm( )/(s+1)

− c
1
λ1

􏽘

n

j�1
z
2
j + z

s+1
j􏼐 􏼑 + 􏽘

n

j�1

􏽥θ
2
j

2ϵj
⎛⎝ ⎞⎠

s+sm( )/(s+1)

+ dn+1 + cdn+3

≤ − c ρW(ξ) +
1
λ1

􏽘

n

j�1
z
2
j + z

s+1
j􏼐 􏼑 + 􏽘

n

j�1

􏽥θ
2
j

2ϵj
⎛⎝ ⎞⎠

s+sm/s+1

+ dn+1 + cdn+3

� − cV
s+sm/s+1
n + dn+1 + cdn+3.

(41)

Choosing α0 � min α, (s + sm)/(s + 1)􏼈 􏼉 and
d � max dn+1+􏼈 cdn+2, dn+1 + cdn+3}, it leads to the following:

_Vn ≤ − cV
α0
n + d. (42)

By Lemma 4 of reference [23], we see that the solution is
SGPFS.

Actually, we can extend the method to the system as
follows:

_x1 � a1(t, x) x2􏼆 􏼇
s1(t)

+ f1(ϱ, x),

_x2 � a2(t, x) x3􏼆 􏼇
s2(t)

+ f2(ϱ, x),

⋮
_xn � an(t, x)⌈u⌉

sn(t)
+ fn(ϱ, x),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

where the symbols are given in (1). If Assumptions 1 and 2
hold, we can also design a fnite-time adaptive controller as
(31). For this case, we select Vn � 1/λ1􏽐

n
j�1(z2

j +

zs+1
j ) + 􏽐

n
j�11/(2ϵj􏽥θ

2
j). Utilizing the same design procedures,

we can obtain a similar conclusion as Teorem 9. □

Remark 10. During the design of the controller, we adopt
some strategies to handle the constraints of the system. To
deal with the unknown coefcients ak, we introduce a term
1/λ1 in the Lyapunov function. Since ak/λ1 ≥ 1, we can obtain
ak/λ1(2zk + (s + 1)zs

k)⌈πk⌉sk(t) ≤ − rk(z
1+sh

k + z
s+sm

k ) by us-
ing the defnition of πk. Besides, by employing the inequality
of Lemma 4, the nonlinear terms that contain ak can be
estimated skillfully. Ten, we can defne an enough big
constant θk and design the adaptive law 􏽢θk to estimate it and
utilize 􏽢θk for the control design. For the constraint of time-
varying power si(t), we introduce quadratic components
and higher-order components in the Lyapunov function, so
that nonlinear terms with si(t) can be estimated with the
appropriate bounds, see (15), (24), and (26) for instance. For
the constraint of dynamics and nonlinear functions, we
employ the inequality skills and introduce the neural

network Φ⊤i Si(Ξ) to approximate uncertain terms in each
design step, see (6) and (26).

Remark 11. Tere are some advantages and limitations of
this work. Te advantages are in three aspects. In detail, this
work provides a universal method for system powers in the
intervals (0, 1) and [1, sh]. Also, this work considers com-
plicated nonlinear conditions and provides an adaptive
controller with a simple form. In addition, the system is
rendered semiglobal fnite time stable, which is more general
than the semiglobal stable.Tere are also some limitations of
this work. For example, despite that the system is compli-
cated, we do not consider the infuence of time delay and
random disturbances. Also, this work achieves a semiglobal
result. A better result is to obtain fnite time stabilization
globally. Besides, we consider the problem via the state
feedback and do not consider the output feedback control.

5. Simulation Example

Example 12. We study the following system:
_ξ � g ξ, x1( 􏼁,

_x1 � a1(t, x) x2􏼆 􏼇
s1(t)

+ ϱ1 sinx2,

_x2 � a2(t, x)⌈u⌉
s2(t)

+ ϱ2x1x2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(44)

where ξ, x1, x2 are the states, u denotes the control input,
a1(·), a2(·) are the control coefcients, and ϱ1, ϱ2 are un-
known parameters. To verify the control method, we assume
that a1 � 1 + 2/5 sin t, a2 � 1 + cosx1 and s1 � 1 + 1/5
sin t, s2 � 4/5 + 1/5 cos t. Ten, there are constants λ1, λ2
such that λ1 ≤ ai ≤ λ2, i � 1, 2. Also, there exists
sm ≤ si(t)≤ sh, where sm � 3/5, sh � 7/5. Tus, Assumptions
1 and 2 hold. Choosing W(ξ) � 5/6ξ12/5 and defning
g � 1/2x1 sin ξ − ξ3/5 − ξ, s � 9/5, we get the following:
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zW(ξ)

zξ
g≤ − ξ1+sh + ξs+sm􏼐 􏼑 + x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ϕ0, (45)

where ϕ0 � (x14/5
1 + 1)1/2. Tus, Assumption 3 holds. With

Section 3, we obtain the following:

u � −
3r2

2
􏼒 􏼓

1/sm

z2,

_􏽢θ1 � ϵ1ϕ1 z
1+sh

1 + z
s+sm

1􏼐 􏼑 − σ1􏽢θ1,

_􏽢θ2 � ϵ2ϕ2 z
1+sh

2 + z
s+sm

2􏼐 􏼑 − σ2􏽢θ2,

(46)

where r2 � 􏽢θ2ϕ2 + ρ, z1 � x1, z2 � x2 − π2, π2 � − (3r1/
2)1/sm z1, r1 � 􏽢θ1ϕ1 + 2ρ, ϕ1 � b10 + b11 + b12, ϕ2 � ϕ21 + ϕ22,
ϕ21 � (sh)/(1 + sh)(4/(ρ + ρsh))1/sh (4(sm + sh)/sh)(1+sh)/sh

+ sm/(s + sm)(2s/(ρs + ρsm))s/sm (2(s + 1)(1 + ϕ20))
(s+sm)/sm ,

and φ20 � 1 + z2
2, ϕ22 � max b21 + b22, b23 + b24􏼈 􏼉.

In the simulation, the parameters are ϵ1 � 0.1, ϵ2 � 0.01,
σ1 � 0.04, σ2 � 0.035, b10 � b11 � b12 � 1, ρ � 1, b21 � b22 �

b23 � b24 � 1, and ϱ1 � ϱ2 � 1/10. Te initial conditions are
ξ(0) � − 0.8, x1(0) � 0.1, x2(0) � − 0.9, and 􏽢θ1(0) � 0.2,
􏽢θ2(0) � 0.1. Figures 2–4 give responses of states ξ, x1 and x2.
Figures 5 and 6 provide responses of adaptive laws 􏽢θ1 and 􏽢θ2.
Figure 7 supplies the trajectory of input u. Figures 2–7 show

ξ
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0
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2 4 6 8 10 12 14 16 18 200
t (s)

Figure 2: Te trajectory of ξ.
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Figure 3: Te trajectory of x1.
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Figure 4: Te trajectory of x2.
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Figure 5: Te trajectory of 􏽢θ1.
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Figure 6: Te trajectory of 􏽢θ2.
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that the closed-loop system is SGPFS. Tus, the raised
control method is valid.

6. Conclusion

Tis work has studied the regulation of complex systems.
Diferent from the reported researches, the considered
systems involve time-varying powers, inverse dynamics, and
uncertainties. Besides, the system powers can be either
smaller than one or bigger than one. By constructing a new
Lyapunov function and utilizing the adaptive control al-
gorithm and neural network, a semiglobal fnite time
adaptive controller is successfully designed. Indeed, there are
also some interesting but challenging problems. For ex-
ample, when the system contains time delay, can we design
the adaptive controller to guarantee the stability of the
system? Can we develop the proposed approach to study
stochastic systems? When the system output is the only

measured signal, can we construct the state observer and
design the output feedback controller?

Appendix

Proof of (24): When 0< sk− 1 < 1, there holds the following:

xk􏼆 􏼇
sk− 1 − πk− 1􏼆 􏼇

sk− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 2 zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sm + zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sh􏼐 􏼑, (A.1)

which indicates
ak− 1

λ1
2zk− 1 +(s + 1)z

s
k− 1( 􏼁 xk􏼆 􏼇

sk− 1 − πk− 1􏼆 􏼇
sk− 1( 􏼁

≤
2ak− 1

λ1
2 zk− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +(s + 1) zk− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
s

􏼐 􏼑 zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sm + zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sh􏼐 􏼑.

(A.2)

By Lemma 5, we have the following:

4ak− 1

λ1
zk− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sm + zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sh􏼐 􏼑≤ ρz

1+sh

k− 1 +
λ2
λ1

􏼠 􏼡

1+sh( )/sh

ϕk1z
1+sh

k + dk0, (A.3)

where ϕk1 and dk0 are constants. Similarly, we have the
following:

2ak− 1

λ1
(s + 1) zk− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sm + zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sh􏼐 􏼑≤ ρz

s+sm

k− 1 +
λ2
λ1

􏼠 􏼡

s+sm/sm

􏽥ϕk1z
1+sh

k , (A.4)

where φk0 ≥ z
sh− sm

k is a smooth function and 􏽥ϕk1 � sm/(s +

sm)(s/(ρs + ρsm))s/sm (2(s + 1)(1 + ϕk0))
(s+sm)/sm . Consider-

ing (A.2)–(A.4), we obtain the following:
ak− 1

λ1
2zk− 1 +(s + 1)z

s
k− 1( 􏼁 xk􏼆 􏼇

sk− 1 − πk− 1􏼆 􏼇
sk− 1( 􏼁

≤ ρ z
1+sh

k− 1 + z
s+sm

k− 1􏼐 􏼑 + θk1ϕk1 z
1+sh

k + z
s+sm

k􏼐 􏼑 + dk0,

(A.5)

where θk1 ≥max (λ2/λ1)
(1+sh)/sh , (λ2/λ1)

(s+sm)/sm􏽮 􏽯 and dk0 are
constants and ϕk1 � max ϕk1,

􏽥ϕk1􏽮 􏽯.
When sk− 1 ≥ 1, we get the following:

ak− 1

λ1
2zk− 1 +(s + 1)z

s
k− 1( 􏼁 xk􏼆 􏼇

sk− 1 − πk− 1􏼆 􏼇
sk− 1( 􏼁

≤ αk zk− 1 zk

􏼌􏼌􏼌􏼌
sk− 1 + αk zk− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sk− 1 + αk zk− 1

􏼌􏼌􏼌􏼌
����

����βk− 1zk− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
sk− 1− 1

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ αk zk− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
s βk− 1zk− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
sk− 1− 1

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(A.6)

where αk � 2λ2/λ1sh(1 + 2sh− 2)(s + 1). With the help of
|zk|sk− 1(t) ≤ (|zk|sm + |zk|sh ), |zk− 1|

sk− 1(t) ≤ (|zk− 1|
sm + |zk− 1|

sh ),
similar to (A.5), there is a smooth function ϕk1 and a con-
stant θk such that (24) holds.

Proof of (26): By Lemma 5, it yields that

2
λ1

zk Φ
⊤
k Sk

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
2
λ1

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 Φk

����
���� · Sk

����
����
1/sh􏼒 􏼓

sh

≤ bk1
Φk

����
����

λ1
􏼠 􏼡

1+sh

z
sh+1
1 + dk1,

(A.7)
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where bk1 is a constant and dk1 � 1/(sh + 1)((1/bk1
sh + bk1))

1/sh ‖Sk‖(1+sh)/sh2(1+sh)/sh . Similarly, we get the
following:

2
λ1

zk ηk

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ bk2
1
λ1

􏼠 􏼡

sh+1

z
sh+1
k + dk2,

s + 1
λ1

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s Φ⊤k Sk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ bk3

Φk

����
����

λ1
􏼠 􏼡

s+sm( )/sm

z
sm+s

k + dk3,

s + 1
λ1

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s ηk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ bk4

1
λ1

􏼠 􏼡

s+sm( )

z
sm+s

k + dk4,

(A.8)

where

dk2 �
sh

1 + sh

1
bk2 + bk2sh

􏼠 􏼡

1/sh

η 1+sh( )/sh

k (s + 1)
1+sh( )/sh ,

dk3 �
s

s + sm

s

bk3 + bk3sm

􏼠 􏼡

s/sm

Sk

����
����􏼐 􏼑

s+sm( )/sm
(s + 1)

s+sm( )/sm ,

dk4 �
sm

s + sm

s

bk4 + bk4sm

􏼠 􏼡

s/sm

η s+sm( )/sm

k (s + 1)
s+sm( )/sm .

(A.9)

Let θk2 ≥max (‖Φk‖/λ1)
1+sh , (1/λ1)

sh+1, (‖Φk‖/􏽮

λ1)
s+sm/sm , (1/λ1)

s+sm/sm }, ϕk2 � max bk1 + bk2, bk3 + bk4􏼈 􏼉, and
bk2, bk3, bk4 are constants. It follows that

1
λ1

2zk +(s + 1)z
s
k( 􏼁 Φ⊤k Sk + ηk( 􏼁≤ θkϕk2 z

1+sh

k + z
s+sm

k􏼐 􏼑 + 􏽘
4

j�1
dkj. (A.10)
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