
Research Article
IMBoost: A New Weighting Factor for Boosting to Improve the
Classification Performance of Imbalanced Data

SeyedEhsanRoshan , JafarTanha , FarzadHallaji , andMohammad-rezaGhanbari

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Correspondence should be addressed to Jafar Tanha; tanha@tabrizu.ac.ir

Received 9 September 2023; Revised 23 October 2023; Accepted 27 October 2023; Published 11 November 2023

Academic Editor: Giacomo Fiumara

Copyright © 2023 SeyedEhsan Roshan et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Imbalanced datasets pose signifcant challenges in the feld of machine learning, as they consist of samples where one class
(majority) dominates over the other class (minority). Although AdaBoost is a popular ensemble method known for its good
performance in addressing various problems, it fails when dealing with imbalanced data sets due to its bias towards the majority
class samples. In this study, we propose a novel weighting factor to enhance the performance of AdaBoost (called IMBoost). Our
approach involves computing weights for both minority and majority class samples based on the performance of classifer on each
class individually. Subsequently, we resample the data sets according to these new weights. To evaluate the efectiveness of our
method, we compare it with six well-known ensemble methods on 30 imbalanced data sets and 4 synthetic data sets using ROC,
precision-eecall AUC, and G-mean metrics. Te results demonstrate the superiority of IMBoost. To further analyze the per-
formance, we employ statistical tests, which confrm the excellence of our method.

1. Introduction

Imbalanced problems have occurred in various felds such as
fault detection [1], anomaly detection [2], credit risk pre-
diction [3], and cancer diagnoses [4]. Imbalanced datasets
have been one of the challenging issues in the feld of
machine learning, where samples belonging to one class,
majority or negative, outnumber the other class, minority or
positive. Terefore, most classifers have difculties in
dealing with such problems since they tend to bias towards
majority samples, resulting in weak performance in the
classifcation of minority class samples. In recent years,
various methods have been developed to cope with imbal-
anced problems that can be categorized into four
taxonomies, namely, the data level, algorithm level, and
hybrid approaches.

Data-level methods aim to balance classes and include
under-, over-, and hybrid-sampling methods. Under-
sampling involves removing majority class samples until the
minority and majority classes are balanced. Tis simplifes
training and improves run time and storage [5]. However,

the main drawback of this method is the removal of po-
tentially useful samples. Oversampling, on the other hand,
duplicates or adds minority class samples [6]. While this
increases the training set size and time, it might also add
meaningless samples to the data set. Hybrid-sampling
methods combine multiple sampling techniques to over-
come the limitations of individual sampling methods. [7].
Algorithm-level methodsmodify the algorithm to remove its
bias towards the majority classes [8]. Cost-sensitive learning
is a commonly used approach in handling imbalanced data
sets. It involves assigning a higher cost to misclassifed
samples from the minority class, forcing the classifers to
classify the minority samples correctly [9]. Defning costs of
misclassifcation is challenging in these methods and is
disadvantageous [10]. Hybrid methods are a combination of
the aforementioned techniques, with ensemble methods
being one of the most common approaches in this category
[8]. Ensemble learning algorithms demonstrate strong
performance in addressing balanced problems; however,
they encounter challenges when faced with skewed data sets
due to their primary focus on maximizing accuracy. To

Hindawi
Complexity
Volume 2023, Article ID 2176891, 19 pages
https://doi.org/10.1155/2023/2176891

https://orcid.org/0009-0001-0157-7237
https://orcid.org/0000-0002-0779-6027
https://orcid.org/0009-0003-3882-4275
https://orcid.org/0009-0000-4439-4003
mailto:tanha@tabrizu.ac.ir
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2176891

address this limitation, the literature proposes the in-
tegration of ensemble learning algorithms with other ap-
proaches, including algorithm-level and data-level
techniques, to efectively handle imbalanced data sets. By
combining these methods, ensemble learning algorithms can
better adapt to imbalanced issues and improve their clas-
sifcation performance. [11].

Overall, ensemble methods train base learners and
combine them and the results show that a combination of
base classifers outperforms individual classifers [12].
Bagging [13] and boosting [14] are the most common en-
semble methods. In the bagging technique, classifers are
trained in parallel using training sets known as “bags.”Tese
bags are created by sampling the original data set with re-
placement, a method called bootstrap sampling [13]. On the
other hand, boosting algorithms work iteratively by placing
a stronger emphasis on difcult samples. Tis is accom-
plished by increasing the weights assigned to samples that
are incorrectly classifed by the base classifer at each
iteration [14].

Boosting is a widely recognized approach in ensemble
learning, known for its ability to create a strong and robust
classifer by combining multiple weak classifers [15]. Te
strength of boosting lies in its serial learning aspect, which
leads to excellent generalization. In essence, weak classifers
are learned sequentially with the objective of reducing the
errors made by previously trained classifers. Over time,
various boosting approaches have been proposed. AdaBoost
is a popular boosting technique used in ensemble schemes. It
follows an iterative process where a set of weak classifers is
trained on weighted data. Te outputs of these weak clas-
sifers are combined through a weighted summation to
produce the fnal boosted classifer. Despite the good per-
formance of AdaBoost, its performance against unbalanced
data sets should be improved due to giving the same weight
to minor and major samples [16]. Moreover, the weak
performance of base classifers in AdaBoost can afect the
performance of AdaBoost against imbalanced problems. In
this work, we propose a new approach to improve the
performance of AdaBoost in dealing with imbalanced
problems. To do this, unlike traditional AdaBoost, we
compute the performance of classifers on minor and major
samples separately. Furthermore, as part of the boosting
process, the training data are resampled based on the weights
assigned to each sample. Terefore, a new training data set is
created by sampling (with replacement). In the new data set,
samples with higher weights are repeated multiple times.
Tis repetition allows the classifer to bias towards these
particular samples, leading to a better learning process. By
giving more importance to these weighted samples, the
classifer can focus on capturing their patterns and char-
acteristics, potentially resulting in improved performance.
In addition, the initial weights of positive and negative
samples are calculated based on their distribution. To val-
idate the efectiveness of our proposed approach, we perform
comprehensive experiments and compare our approach
with state-of-the-art methods.

Te remaining sections of the paper are structured as
follows. Section 2 provides a review of existing methods for

imbalanced data sets. Section 3 explains the proposed
method. Sections 4 and 5 present the experimental setup and
results, and conclusions are fnally presented in Section 6.

2. Related Works

Te advantages of ensemble learning motivate researchers to
focus on the feasibility of using boosting algorithms. Te
base concept of ensemble learning refers to using multiple
learning models instead of a single model to get better
performances. Recently, a lot of ensemble-based methods
have been proposed to cope with imbalanced problems. In
this section, we shortly discuss these methods.

Chawla et al. [17] have proposed a method to oversample
the data of minority class called the SMOTE boost method
for learning from imbalanced data sets. For the frst time, the
issue of using the majority class to make the data set bal-
anced was raised in [18]. RUSBoost is an ensemble method
that combines data sampling and boosting to enhance
classifcation performance in the presence of imbalanced
training data. It addresses the limitations of SMOTEBoost by
addressing the complexity and time-consuming nature of
data sampling.

Undersampling is one of the popular methods to address
imbalanced problems. Liu et al. [19] proposed a method in
which many majority class samples were ignored. Te main
idea of this work was to sample several subsets from the
majority class and then train a learner using each of them
and fnally combine the outputs of those learners.

To improve the performance of the boosting algorithm
for imbalanced data, Iosifdis et al. [20] proposed a novel
cost-sensitive boosting approach (called AdaCC) that dy-
namically adjusts the misclassifcation costs over the
boosting rounds in response to the model’s performance.
Tis approach is more efective than using a fxed mis-
classifcation cost matrix.

Yuan and Ma [21] proposed a novel approach to
addressing imbalanced data sets by combining oversampling
with AdaBoost and retraining the weights of the classifers
using optimization techniques such as genetic algorithms.
Tis approach allows for the direct optimization of targeted
performance measures, such as G-mean and F-measure, and
can improve the overall performance of the AdaBoost al-
gorithm on imbalanced data sets.

Mostafaei and Tanha [22] proposed a new technique for
addressing imbalanced data sets. Te technique involves
undersampling the majority class using peak clustering. In
addition, the paper proposed a boosting-based algorithm
called OUBoost, which combines the peak undersampling
technique with SMOTE. It selectively chooses useful ex-
amples from the majority class and generates synthetic
examples from the minority class, thereby indirectly mod-
ifying the update weights.

Ke et al. [23] proposed a method called majority
resampling via subclass clustering (MRSC). Tis approach
tried to address the issue of imbalanced data sets. It utilized
a clustering algorithm to cluster the majority class instances
into numerous groups or subclasses. Subsequently, a new
training set was created by combining these subclasses with

2 Complexity

the minority class data. Te imbalanced ratio (IR) of the new
multiclass data set had lower IR compared to the original data
set. Finally, the classifer was trained using the created data set.

Roshan and Asadi [10] proposed a multiobjective ap-
proach to address imbalanced problems. Tey utilized
NSGA-II to undersample the majority samples. Finally, the
solutions obtained from the Pareto front were used to train
classifers.

Zhai et al. [24] introduced a novel approach to address
the shortcomings of SMOTE, particularly its limited di-
versity and the overlapping nature of generated minority
samples. Teir method incorporated the use of generative
adversarial networks (GANs) and combined an over-
sampling technique with a two-class imbalanced data
classifcation approach. Te oversampling method consisted
of an enhanced GAN model, while the classifcation method
involved fusing classifers using fuzzy integral.

Puri and Kumar [25] introduced an enhanced hybrid
bag-boost model that incorporates a novel resampling
technique. Tis technique comprises two main components,
namely, K-means SMOTE for oversampling and edited
nearest neighbor (ENN) for undersampling to eliminate
noise from the data set. Tis technique operated in three
steps as follows: frst, it clustered the data set using K-means
clustering, then it applied SMOTE within each cluster to
address class imbalance by generating synthetic instances of
the minority class, and fnally, it employed ENN to eliminate
instances that contribute to noise.

Wang et al. [26] introduced a hybrid strategy called
Majority-to-Minority Resampling (MMR) and a boosting
algorithm called Majority-to-Minority Boosting (MMBoost)
for classifcation tasks. MMR was developed to tackle class
imbalance by taking samples from the majority class to
augment the minority class. Tis adaptive resampling ap-
proach aimed to mitigate information loss. In addition, the
MMBoost algorithm adjusts weights of the sampled in-
stances to further enhance classifcation performance.

Arafa et al. [27] proposed a preprocessing method called
Reduced Noise-SMOTE (RN-SMOTE) to address un-
balanced problems. Te RN-SMOTE method consisted of
several steps. First, it used SMOTE to oversample the
training data. However, since SMOTE added noise to mi-
nority classes, DBSCAN was applied to identify and remove
noise. Once the noise was eliminated, the clean synthetic
instances were combined with the original data. Ten, RN-
SMOTE was employed to rebalance the data set again using
SMOTE before feeding it into the underlying classifer.

Li et al. [28] presented a novel ensemble method that
combined ensemble learning techniques with a new
undersamplingmethod called binary PSO instance selection.
Te proposed method aimed to address the challenges of
imbalanced classifcation problems. By leveraging the
strengths of ensemble learning and the undersampling
technique, the method efectively selected a suitable com-
bination of majority class samples to create a new data set
that incorporates minority class samples. Te approach
utilized a multiobjective strategy to optimize the perfor-
mance of imbalanced classifcation while preserving the
integrity of the original data set.

Dong and Qian [29] introduced DBRF, a density-based
random forest algorithm, to enhance prediction perfor-
mance for imbalanced problems. DBRF focuses on identi-
fying challenging boundary samples and employs a density-
based approach to augment them. Two distinct random
forest classifers are then built to model the augmented
boundary samples and the original data set separately. Te
fnal output is determined using a bagging technique, which
combines the predictions from the two random forest
classifers.

Gu et al. [30] proposed the DCI-ISSA equilibrium en-
semble method to address class imbalance issues. It in-
troduced two techniques as follows: data center
interpolation (DCI) for creating balanced data sets and the
improved sparrow search algorithm (ISSA) for parameter
optimization in random forest (RF). Tese techniques im-
proved classifcation performance and adapted to diferent
imbalanced data sets.

Zhao et al. [31] introduced a weighted hybrid ensemble
method, called WHMBoost, designed to classify imbalanced
data in binary classifcation tasks. WHMBoost combined
two data sampling methods and two base classifers within
a boosting algorithm framework. Each samplingmethod and
base classifer were assigned specifc weights to leverage their
complementary advantages and enhance performance.

Morais and Vasconcelos [32] introduced the k-
infuential neighborhood for oversampling (k-INOS) algo-
rithm, which aimed to enhance the robustness of over-
sampling algorithms when dealing with noisy examples in
the minority class. Te k-INOS algorithm followed a three-
step process. First, it detected and removed instances in the
minority class that were likely to be noise. Ten, an over-
sampling algorithm was applied to the undersampled data
set. Finally, the previously removed minority examples were
reintroduced into the data set after oversampling, ensuring
that they were not used to augment the minority class
directly.

In [33], an ensemble algorithm called BPSO-Ada
Boost-KNN for addressing multiclass imbalanced data
classifcation was proposed. Te algorithm combines feature
selection and boosting techniques within the ensemble
framework. In this model, BPSO (binary particle swarm
optimization) is employed as the feature selection algorithm
using AUCarea as the ftness measure. Finally, a boosting
classifer was built in which KNN was chosen as the base
classifer.

Wang and Sun [16] presented a method to enhance the
AdaBoost algorithm by introducing weighted vote param-
eters for the weak classifers. Te proposed approach
determined the weighted vote parameters based not only on
the global error rate but also on the classifcation accuracy
rate of the positive class, which is the primary focus of
interest.

Piao et al. [34] introduced a cost-sensitive ensemble
learning method for classifying imbalanced data, utilizing
a support vector machine (SVM) as the base learner within
the AdaBoost. Te method was developed to rebalance the
weights of AdaBoost, infuencing the training of the base
learner. Tis weighting strategy focused on increasing the

Complexity 3

sample weight of misclassifed minority instances while
decreasing the sample weight of misclassifed majority in-
stances in each round, efectively equalizing their distribu-
tions. By employing this method, the classifcation
performance on imbalanced data can be improved. More-
over, other methods had been developed that adjusted
weights to instances according to their labels, such as
AdaC1-2-3 [35], AdaCost [36], and CSB1-2 [37].

Hao and Huang [38] proposed an algorithm that begins
by obtaining a group of k-base classifers through K-fold
cross validation with a set of training samples. A subclassifer
was then obtained using a voting method. Concurrently,
weight coefcients for each subclassifer were derived based
on the training error and adjustments were made to the data
distribution of the training samples.

Furthermore, multiple base classifer groups contributed
to obtaining more diverse subclassifers. Finally, these
subclassifers were combined with weights to create an in-
tegrated enhanced classifer.

3. IMBoost

3.1. Original AdaBoost. Before delving into our method for
improving AdaBoost to deal with imbalanced problems, we
frst review AdaBoost. Let S� {(x1, y2), . . ., (xm, ym)} be
a training set, where each sample xi belongs to sample space
X and each label yi belongs to label space Y.

Te concept behind AdaBoost is to utilize a weak learner
to make precise predictions by iteratively training the weak
learner on diferent distributions of the training samples.
Te algorithm for AdaBoost is presented in Algorithm 1.
AdaBoost assigns weights to the training samples based on
their classifcation errors and increases or decreases the
weights of the samples that are classifed incorrectly or
correctly, respectively.

3.2. IMBoost. In our work, we focus on binary imbalanced
problems, where the minority class is labeled as ymin �+1
and the majority class is labeled as ymaj � −1. We consider
a weak learner that accepts the training set as input along
with a distribution D over {1, . . ., m}, which is our training
set, and m is number of samples. Given this input, the weak
learner computes a weak hypothesis h that maps x to R. Te
sign of h(x) is used to determine the predicted label to be
assigned to sample x. If h(x) is positive, the predicted label is
assigned as the positive class, and if h(x) is negative, the
predicted label is assigned as the negative class.

In general, AdaBoost is not well suited for imbal-
anced classifcation problems. Tis is because the mi-
nority class samples are underrepresented and AdaBoost
tends to bias towards the majority class. Consequently,
the overall performance of the classifer can negatively be
impacted. Terefore, it is important that the weights of
minority and majority class samples are adjusted
according to classifer performance on them. In this
paper, we propose an improved version of AdaBoost that
revised the weighting mechanism of AdaBoost for binary
imbalanced data sets.

In our method, at frst, we set the initial weights to
1/Nmin and 1/Nmaj for minority and majority class
samples, respectively, where Nmin is the number of
samples belonging to the minority class, Nmaj is the
number of samples belonging to the majority class, imin
and imaj are ith example that belongs to minority class
samples and ith example that belongs to majority class
samples, respectively.

Similar to original AdaBoost, we train a weak classifer
ht(x) using the distribution over the training set.

While in AdaBoost, the weighted classifcation error ε is
computed over all the training set, we calculate ε for both
minority and majority class samples (equation (1)).

Error rate of minortiy class samples: εmin �
i

I yimin
≠ ht xi(,

Error rate of majority class samples: εmaj �
i

I yimaj
≠ ht xi(,

(1)

where I is an indicator that yields a value of 1 if the condition
inside the parentheses is true and 0 if it is false.

Ten, the weights of ht on minority and majority
samples, denoted by αtmin

and αtmin
, are computed based on

εmin and εmaj. Intuitively, αtmin
and αtmin

measure the sig-
nifcance of ht on minority and majority sample classes; αtmin

and αtmin
get larger if εmin and εmaj get smaller. αtmin

and αtmin

are calculated as follows:

αtmin
�
1
2

log
1 − εmin

εmin
,

αtmaj
�
1
2

log
1 − εmaj

εmaj
.

(2)

Once the error rate and hypothesis weight are computed,
the weights of the training samples are then modifed ac-
cordingly, where exp(−αt × yi × ht(xi)) and exp(−αt × yi ×

ht(xi)) are the weight update factor for minority and ma-
jority class samples, respectively. Te misclassifed samples
by ht get higher weights, and correctly classifed samples get
lower weights. Subsequently, the training data undergo
a resampling process based on the updated weights of the
samples. At this stage, the weights of both minority and
majority class samples are reinitialized. In the updated data
set, samples with higher weights have a higher likelihood of
being repeated multiple times. As a result, the classifer
becomes biased towards these samples, leading to improved
learning performance. Finally, the fnal classifer H(x) is
obtained by combining all weak classifers using their
weights. Te pseudocode of our method is presented in
Algorithm 2.

3.3. Forward Stagewise Additive Modeling (FSAM).
Friedman et al. [39] presented a statistical interpretation of
the binary AdaBoost algorithm and demonstrated that the
two-class AdaBoost algorithm can be considered as a for-
ward stagewise additive modeling using the exponential loss
function as follows:

4 Complexity

L(y, f) � exp (−yf(x)). (3)

In this part, we show that our method can be interpreted
as forward stagewise additive modeling employing the ex-
ponential loss.

Given the training set, we try to fnd f(x)� f1(x), ..., fK(x)
such that

min
f(x)

i�1
L yi, f xi((,

subject tof1(x) + · · · + fK(x) � 0.

(4)

We assume that f(x) has the following form:

f(x) �

M

m�1
β(m)

g
(m)

(x), (5)

where β(m) is the coefcient, and g(m) (x) is the basis
function. We need g(x) to satisfy symmetric constraint as
follows:

g1(x) + ... + gK(x) � 0, (6)

where g: x⟶ y ymin orymaj .

FSAM aims to build a predictive model by incrementally
adding simple base models to the existing model without
adjusting the parameters and coefcients of models that have
already been added. Te pseudocode of FSAM is presented
in Algorithm 3.

Now, using exponential loss, we are trying to fnd β and
g(m) (x) to solve the following equation:

Input: training set S� {(x1, y2), . . ., (xm, ym)}, where xi is the feature vector and yi is the label; number of iterations: T. Output: fnal
classifer H(x).

(1) Initialize weightsD1(i) � 1/m, for i � 1, . . . , m

(2) For t � 1 to T:

(a) Train aweak classifier ht(x) using the distributionDt

(b) Compute the training errorrate εt with respect toDt given by:
εt �

m
i�1Dt(i) × I(yi ≠ ht(xi))

(c) Computetheweightofht:
αt � 1/2 × log (1 − εt/εt)

(d) Update theweights by:

Dt+1(i) � (Dt(i) × exp(−αt × yi × ht(xi)))/Zt

whereZt is a normalization factor
(3) Output the final classifier:

H(x) � sign(
t
i�1αtft(x)

ALGORITHM 1: Te pseudocode of AdaBoost.

Input: training set S� {(x1, y2), . . ., (xm, ym)}, where xi is the feature vector and yi is the label; number of iterations: T. Output: fnal
classifer H (x).

(1) Initialize weightsD1(imin) � 1/Nmin andD1(imaj) � 1/Nmaj, for i � 1, . . . , m

(2) Fort � 1 to T:

(a) Train aweakclassifier ht(x) using the distributionDt

(b) Compute the training error rates εmin and εmaj (with respect toDt) given:
εmin � iI(yimin

≠ ht(xi))

εmaj � iI(yimaj
≠ ht(xi))

(c) Compute the weight of ht:

αtmin
� 1/2 log 1 − εmin/εmin

αtmaj
� 1/2 log 1 − εmaj/εmaj

αt � αtmin
+ αtmaj

(d) Update theweights by:

Dt+1(imin) � Dt(imin) × exp(−αtmin
× yi × ht(xi))/Zt

Dt+1(imaj) � Dt(imaj) × exp(−αtmaj
× yi × ht(xi))/Zt

∗whereZt is a normalization factor
(e) R − sample the training data according toweights and initialze theweights of samples as step1.

(3) Output the final classifier:
H(x) � sign(

t
i�1αtft(x)

ALGORITHM 2: Te pseudocode of the proposed method.

Complexity 5

Considering: b xi; c(⟶ G xi(,

β(m)
, G

(m)
 � argminβ,G

i

exp

· −yi fm−1 xi(+ βG xi(((.

(7)

Assuming yi to be yimin
and yimaj

, we expand equation (7)
as follows:

β(m)
, G

(m)
 � argminβ,G

Nmin

imin

exp −yimin
fm−1 xi(− yimin

βminG xi(+

Nmaj

imaj

exp −yimaj
fm−1 xi(− yimaj

βmajG xi(, (8)

and

wimin
� exp −yimin

fm−1 xi(,

wimaj
� exp −yimaj

fm−1 xi(,
(9)

where wimin
and wimaj

are the weights of minority and ma-
jority class samples, respectively. It worth noting that when
the data set is balanced, (8) reduces to (7). Moreover, note
that in (8), wimin

and wimaj
are not a function of G and β and

they depend on fm and change at each iteration.
We can expand equation (8) as follows:

β(m)
, G

(m)
 � argminβ,G

Nmin

imin

exp −yimin
βminG xi(wimin

+

Nmaj

imaj

exp −yimaj
βmajG xi(wimaj

�

I yimin�G xi()

wimin
exp −βmin(+

I yimin≠G xi()

wimin
exp βmin(

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

I yimaj�G xi()

wimaj
exp −βmaj +

I yimaj≠G xi()

wimaj
exp βmaj .

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

Now, we minimize (10). To do this, frst, we assume βmin
and βmaj are fxed, and we just minimize over G. Terefore,
for fxed βmin and βmaj, G(x) is as follows:

G � argminG
i

wimin
I yimin
≠G xi(+

i

wimaj
I yimaj
≠G xi(.

(11)

(1) Initializef0(x) � 0
(2) Form � 1 to M:

(a) (βm, cm) � argminβ,c
N
i−1L(yi, fm−1(xi) + βb(xi; c))

(b) fm(x) � fm−1(x) + βb(x; cm)

ALGORITHM 3: Te pseudocode of FSAM.

6 Complexity

Next, we want to minimize βmin and βmaj. We keep βmaj
as the constant and take derivative with respect to βmin and
set to zero as follows:

−

I yimin
�G xi()

wimin
exp −βmin(+

I yimin
≠G xi()

wimin
exp βmin(�

−
i

1 − I yimin
≠G xi(wimin

exp −βmin(+
i

I yimin
≠G xi(wimin

exp βmin(� 0,

⟶
errmin � imin

I yimin
≠G xi(

βmin �
1
2
log

1 − errmin

errmin

(12)

For βmaj, we do the same calculation as (12). Tus, βmaj is
calculated as follows:

βmaj �
1
2

log
1 − errmaj

errmaj
. (13)

Finally, the model and weights are updated according to
equations (14) and (15), respectively.

fm(x) � fm−1(x) + β(m)
G

(m)
(x), (14)

wimin
� exp −yimin

βminfm−1 xi(,

wimaj
� exp −yimaj

βmajfm−1 xi(.
(15)

4. Experimental Setups

Our goal is to demonstrate that the proposed method can
improve the performance of AdaBoost over imbalanced data
sets. To do this, we conducted comprehensive experiments
and compare our method with the state-of-the-art method on
diferent data sets with diferent IR. In the following section,
frst, information about the data sets and the tuned param-
eters are presented and then the used metrics are presented.

4.1. Data Sets. In this study, four synthetic data sets and 30
imbalance data sets available at KEEL [40] are used to
evaluate the proposed method. Te distribution of these
synthetic data sets is presented in Figure 1. Tables 1 and 2
show the features of data sets including the number of
attributes, number of samples, and proportion of number
of majority class samples to minority ones (IR). In ex-
periments, the area under ROC and the precision-recall
curve and geometric mean (G-Mean) estimations are ob-
tained using 5-fold cross validation; each dataset is par-
titioned into fve folds, with each fold containing an equal
number of samples. Subsequently, the learning algorithms
are trained on four of the folds and tested on one fold for
each iteration.

4.2. Tuning of Parameters. Te performance of an algorithm
can be greatly infuenced by the assigned parameter values.
Modifying parameter values in algorithms can yield diferent
solutions. Tis subsection focuses on parameter tuning,
where values are selected in a manner that facilitates
comparison with other methods under similar conditions.

To compare IMBoost with other methods, six methods,
i.e., OUBoost, AdaCC SMOTEBoost, AdaCost, AdaC1, and
AdaBoost are used. In Table 3, the related parameters for all
methods are presented. Other parameters are adjusted based
on the original paper.

4.3. Metrics. In this section, we introduce the utilized
metrics, including the area under ROC and the precision-
recall curve and geometric mean (G-Mean)

4.3.1. ROC and Precision-Recall AUC. Both ROC and
precision-recall AUC (PR AUC) are used for imbalanced
problems; however, PR AUC is more robust under imbal-
anced data sets [41]. ROC AUC measures the area under
ROC curve, while PR AUC measures the area under pre-
cision and recall curve (equation (16)).

Te ROC AUC represents the area under this curve and
is a measure of how well your model can distinguish between
minor and major instances. On the other hand, PR AUC
focuses on the performance of the model within the positive
class and is particularly relevant when dealing with imbal-
anced data sets.

ROC − AUC � AUC(FPR,TPR),

PR − AUC � AUC(precision, recall).
(16)

4.3.2. G-Mean. G-mean (geometric mean) is an important
metric for evaluating imbalanced classifcation problems. It
focuses on measuring the balance between the performance
of a classifer in both the majority and minority classes. It
helps prevent overftting of the majority class and

Complexity 7

Synthetic 1 Synthetic 2

Synthetic 3 Synthetic 4

2

1

0

–1

–2

–3 –2 –1 0 1

2
3

1
0

–1
–2
–3
–4

–2 –1 0 1 2 3 4

4
3
2
1
0

–1
–2
–3

–3 –2 –1 0 1

4

2

0

–2

–4
–3 –2 –1 0 1 2

Figure 1: Te distribution of synthetic data sets.

Table 1: Te attributes of synthetic data sets.

Data sets # of features # of samples IR
Synthetic 1 2 100 1.5
Synthetic 2 2 500 2.33
Synthetic 3 2 1000 4
Synthetic 4 2 2000 9

Table 2: Attributes of data sets.

Data set # of features # of samples (IR)
1 glass1 9 214 1.82
2 ecoli-0_vs_1 7 220 1.86
3 Wisconsin 9 683 1.86
4 iris0 4 150 2
5 glass0 9 214 2.06
6 haberman 3 306 2.76
7 Vehicle3 18 846 2.99
8 glass-0-1-2-3_vs_4-5-6 9 214 3.2
9 Ecoli1 7 336 3.36
10 new-thyroid1 5 215 5.14
11 Ecoli2 7 336 5.46
12 segment0 19 2308 6.02
13 glass6 9 214 6.38
14 yeast3 8 1484 8.1
15 ecoli3 7 336 8.6
16 yeast-2_vs_4 8 514 9.08
17 yeast-0-5-6-7-9_vs_4 8 528 9.35
18 vowel0 13 988 9.98
19 glass2 9 214 11.59
20 glass4 9 214 15.47
21 ecoli4 7 336 15.8
22 page-blocks-1-3_vs_4 10 472 15.86
23 abalone9-18 8 731 16.4
24 yeast-1-4-5-8_vs_7 8 693 22.1
25 glass5 9 214 22.78
26 yeast-2_vs_8 8 482 23.1
27 yeast4 8 1484 28.1
28 yeast-1-2-8-9_vs_7 8 947 30.57
29 yeast5 8 1484 32.73
30 yeast6 8 1484 41.4

8 Complexity

underftting of the minority class. A low G-mean indicates
poor classifcation of positive samples, even if negative
samples are classifed correctly. G-mean is calculated using
the following equation:

G −Mean �

����������������
TP

TP + FN
×

TN
TN + FP

. (17)

 . Results and Discussion

In this section, the results of the method are provided and
compared. First of all, we investigate the performance of
method on synthetic data sets. Ten, we compare the out-
come of the methods on 30 data sets.

5.1. Results on Synthetic Data Sets. To facilitate a more
comprehensive comparison, we created four synthetic data
sets, each with varying imbalanced ratios (IRs) and in-
corporating noise and outliers. In Tables 4–6, we present the
performance of various methods based on ROC AUC, PR
AUC, and G-mean. Te results reveal that our method
achieves the lowest ROC AUC score on synthetic 1 but
attains the highest ROC AUC scores on synthetic data sets 2
and 3. In Figure 2, we depict the performance of diferent
methods on synthetic data sets. It is evident that our method
outperforms the others, especially on data sets with the
high IR.

However, when considering the PR AUC, our method
falls short on synthetics 2 and 4. Furthermore, when using
the G-mean metric, our method exhibits slightly worse
performance on synthetic 4 compared to other methods.

5.2. Results on KEEL Data Sets. Te efciency of IMBoost is
reported in terms of ROC AUC, PR AUC, and G-mean in
Tables 7–9. In Tables 7–9, each row corresponds to the
results of OUBoost, AdaCC, SMOTEBoost, AdaCost,
AdaC1, and AdaBoost over each data set, where the average
of mentioned measures for 5-fold cross validation is

reported for each method. Te last row of the tables explains
the average and the frequency of each method achieving the
frst rank.

In Table 7, with respect to the ROC AUC metric, our
method achieves the frst rank 13 times, while OUBoost
and AdaCC hold the second-best rank. Figure 3 com-
pares the average of obtained results on diferent data
sets, and it depicts that the proposed method performs
better than OUBoost, AdaCC, SMOTEBoost, AdaCost,
AdaC1, and AdaBoost. Although OUBoost and AdaCC
achieve more frst rank in comparison with SMOTE-
Boost, SMOTEBoost outperformed them on average.
ROC AUC serves as a standard evaluation measure,
encompassing both positive (minority) and negative
(majority) samples.

Consequently, precision-recall AUC (PR AUC) emerges
as a valuable metric to assess the performances of methods,
specifcally concerning the minority class. In Table 8, we
evaluate the performance of various methods based on PR
AUC. Table 8 depicts that ourmethod attains the top rank 12
times, while AdaCC secures the frst rank in 8 data sets,
highlighting the excellence of our method. However, when
we consider the average results, there is not a signifcant
disparity in the performance among these methods. In
Figure 4, the performances of models are compared in terms
of their averages.

Moreover, Table 9 depicts that our method out-
performs other methods in terms of the G-mean metric.
According to the results, our method obtains the frst rank
13 times, indicating its superior performance. Figure 5
further illustrates that our method performs well on
average.

In addition, Figure 6 depicts the performance of the top
four methods, namely, our method, OUBoost, AdaCC, and
SMOTEBoost, based on the IR. Te regression line associ-
ated with each classifer illustrates how the performance of
the classifer decreases with an increase in the IR. However,
our method shows a signifcant reduction in performance
with a steep slope. After ecoli3 (with an IR of 8.6), it
demonstrates higher performance. In other words, our
method performs well on data sets with a higher IR com-
pared to the other methods.

Based on the results obtained from both the synthetic
and KEEL data sets, we can conclude that our method
exhibits superior performance on data sets with the
high IR.

5.3. Te Efect of Classifers. In this section, we will discuss
the impact of the number of classifers on our method.
Table 10 presents the results of our method with diferent
numbers of classifers, displaying the average results and
the number of times it achieved the frst rank. According
to the fndings, our method performs well with 10
classifers and the addition of extra classifers does not
signifcantly improve its average performance. However,
it is worth noting that our method with 20 and 30
classifers outperforms the aforementioned methods on
average.

Table 3: Te tuned parameters.

Methods Parameters

IMBoost
Decision tree�C4.5
Depth of each tree� 5
Number of trees� 10

OUBoost
Decision tree�C4.5
Depth of each tree� 5
Number of trees� 10

SMOTEBoost

Decision tree�C4.5
Depth of each tree� 10
k-Nearest neighbors� 3
Number of trees� 100
Quantity� balance

AdaCost Decision tree�C4.5
Depth of each tree� 10
Number of trees� 100

AdaC1
AdaBoost

AdaCC
Decision tree�C4.5
Depth of each tree� 1
Number of trees� 100

Complexity 9

Furthermore, it is important to note that our method
with diferent numbers of classifers still performs poorly on
specifc data sets, namely, glass1,Wisconsin, glass0, vehicle3,
ecoli2, glass2, page-blocks-1-3_vs_4, and abalone9-18.
However, when utilizing 20 classifers, our method dem-
onstrates improved performance on haberman and glass-0-
1-2-3_vs_4-5-6. In addition, with 50 classifers, it performs
well on vowel0 and ecoli4, and with 100 classifers, it ach-
ieves good results on new-thyroid1.

Figure 7 illustrates the impact of the number of classi-
fers, with the x-axis representing the number of classifers
and the y-axis indicating the average results across data sets.

As depicted, the performance of our method decreases with
an increase in the number of classifers. Tese results suggest
that adding more classifers is not suitable for enhancing the
performance of IMBoost.

5.4. Time Complexity. For further analysis, we investigate the
time complexity of our method and compare it with other
methods. Table 11 provides a comparison of the time complexity
of the methods, with the execution time presented in seconds. It
is noteworthy that our method, which includes 10 classifers,
exhibits the worst execution time among the methods. In

Table 4: Te average value of ROC AUC belongs to our method and six state-of-the-art methods on synthetic data sets.

Data set IMBoost OUBoost AdaCC SMOTEBoost AdaCost AdaC1 AdaBoost
Synthetic 1 91.20 100.00 92.26 100.00 100.00 100.00 98.00
Synthetic 2 98.59 89.92 98.45 89.92 89.03 89.03 86.56
Synthetic 3 99.06 98.75 96.44 98.43 98.75 98.75 95.21
Synthetic 4 97.90 92.68 100.00 96.72 92.12 92.12 90.10
Bold values represent the best result in each synthetic dataset.

Table 5: Te average value of PR AUC belongs to our method and six state-of-the-art methods on synthetic data sets.

Data set IMBoost OUBoost AdaCC SMOTEBoost AdaCost AdaC1 AdaBoost
Synthetic 1 94.00 77.48 82.03 75.26 89.03 89.03 81.25
Synthetic 2 93.74 98.00 98.00 93.24 98.75 98.75 95.32
Synthetic 3 100.00 86.86 82.65 69.14 82.12 82.12 80.12
Synthetic 4 82.40 100.00 100.00 100.00 100.00 100.00 83.25
Bold values represent the best result in each synthetic dataset.

Table 6: Te average value of G-mean belongs to our method and six state-of-the-art methods on synthetic data sets.

Data set IMBoost OUBoost AdaCC SMOTEBoost AdaCost AdaC1 AdaBoost
Synthetic 1 98.58 89.88 92.24 89.17 88.88 88.88 85.0
Synthetic 2 98.81 98.74 98.44 98.12 98.74 98.74 96.25
Synthetic 3 97.13 92.39 96.43 93.39 91.87 91.87 91.25
Synthetic 4 99.21 100.0 100 100.0 100.0 100.0 98.85
Bold values represent the best result in each synthetic dataset.

75

80

85

90

95

100

105

SYNTHETIC 1 SYNTHETIC 2 SYNTHETIC 3 SYNTHETIC 4

IMBoost
OUBoost
AdaCC
SMOTEBoost

AdaCost
AdaC1
AdaBoost

Figure 2: ROC AUC vs. IR.

10 Complexity

Table 7: Comparison of the ROC AUC of diferent methods (the better ones are bold).

Data set IMBoost OUBoost AdaCC SMOTEBoost AdaCost AdaC1 AdaBoost
glass1 71.68 76.83 74.24 71.64 75.59 75.59 71.95
ecoli-0_vs_1 97.64 97.64 96.23 97.59 96.56 96.56 95.16
wisconsin 95.00 96.14 95.70 93.73 93.71 93.71 92.43
iris0 100.00 100.00 100.00 100.00 100.00 100.00 100.00
glass0 75.03 81.18 77.0 80.92 79.53 79.53 76.65
haberman 56.11 56.96 55.25 56.66 55.9 51.83 51.12
vehicle3 69.23 70.81 63.83 72.63 66.79 68.06 65.93
glass-0-1-2-3_vs_4-5-6 87.19 91.86 88.86 91.62 90.93 90.93 92.46
ecoli1 87.41 86.37 86.27 83.96 83.60 83.41 81.60
new-thyroid1 94.92 90.04 97.14 95.15 93.17 93.17 92.30
ecoli2 86.92 88.31 89.92 85.34 85.2 85.2 84.20
segment0 99.26 99.26 99.47 99.03 99.21 99.21 98.63
glass6 91.75 90.52 90.52 85.77 82.98 82.98 79.96
yeast3 90.94 86.45 89.39 87.76 86.45 76.44 83.61
ecoli3 81.33 78.5 77.60 76.68 72.23 70.8 72.89
yeast-2_vs_4 91.50 82.59 86.54 87.84 83.67 83.61 82.85
yeast-0-5-6-7-9_vs_4 77.40 66.77 56.04 74.56 66.62 67.73 65.36
vowel0 94.16 93.16 95.38 95.33 91.77 91.77 92.66
glass2 64.79 67.95 64.36 63.07 62.63 62.13 60.10
glass4 85.08 84.50 84.50 83.75 84.25 84.25 80.10
ecoli4 86.21 84.52 84.36 89.05 81.70 81.70 86.55
page-blocks-1-3_vs_4 99.32 99.66 99.88 99.77 98.10 98.10 97.88
abalone9-18 76.77 64.78 77.04 79.98 67.12 67.12 72.79
yeast-1-4-5-8_vs_7 59.05 49.92 57.45 51.68 55.83 55.15 55.54
glass5 95.85 89.75 80.0 89.75 89.75 89.75 89.75
yeast-2_vs_8 81.31 67.39 76.63 74.68 71.41 71.41 66.74
yeast4 76.23 57.56 67.75 66.92 58.66 61.63 64.56
yeast-1-2-8-9_vs_7 62.49 56.61 63.04 55.19 56.28 57.29 61.69
yeast5 93.26 85.59 94.16 85.55 84.61 84.89 84.3
yeast6 78.32 75.43 82.42 76.03 73.38 77.67 71.64
Average/1st rank 83.53/13 80.56/9 81.69/9 81.72/3 79.58/1 79.38/1 79.04/1

Table 8: Comparison of the PR AUC of diferent methods (the better ones are bold).

Data set IMBoost OUBoost AdaCC SMOTEBoost AdaCost AdaC1 AdaBoost
glass1 50.94 57.43 57.09 54.51 62.15 57.09 56.02
ecoli-0_vs_1 94.68 92.96 91.71 93.89 93.66 93.66 91.98
wisconsin 90.51 91.60 90.99 88.58 88.64 88.64 87.54
iris0 100.00 100.00 100.00 100.00 100.00 100.00 100.00
glass0 62.22 55.69 57.80 53.08 61.97 61.97 58.23
haberman 28.74 30.10 34.36 29.41 30.34 27.05 25.31
vehicle3 37.50 32.69 43.90 45.81 40.21 41.14 36.24
glass-0-1-2-3_vs_4-5-6 79.82 79.69 78.26 76.67 79.95 79.95 76.87
ecoli1 68.07 59.71 65.38 64.30 63.80 62.15 59.58
new-thyroid1 96.87 80.65 95.21 80.82 81.31 81.31 82.07
ecoli2 55.53 52.99 60.93 52.54 55.37 55.37 48.72
segment0 96.50 97.61 97.61 97.70 96.91 96.91 96.07
glass6 74.66 51.12 76.67 64.80 65.29 65.29 64.51
yeast3 52.61 56.21 57.81 53.11 54.10 52.58 55.41
ecoli3 38.13 37.76 37.14 36.47 31.24 31.24 30.30
yeast-2_vs_4 56.81 51.86 57.41 59.38 58.87 56.31 55.24
yeast-0-5-6-7-9_vs_4 29.42 22.81 28.15 29.28 24.25 25.81 23.16
vowel0 86.78 83.16 88.06 82.91 79.88 79.88 80.20
glass2 27.82 19.06 23.13 24.19 21.52 21.52 19.87
glass4 59.33 48.99 65.19 47.32 55.74 55.74 55.32
ecoli4 53.41 49.65 59.87 62.73 53.33 53.33 58.45
page-blocks-1-3_vs_4 82.44 89.28 96.66 94.28 94.28 94.28 93.68
abalone9-18 28.87 29.62 32.45 26.18 25.02 24.71 24.12
yeast-1-4-5-8_vs_7 06.55 06.66 06.04 08.71 06.70 06.70 05.92

Complexity 11

contrast, AdaC1 demonstrates the lowest average execution
time, followed by AdaBoost as the second best. However, their
performance is not satisfactory compared to other methods.

Based on the results, it is evident that increasing the
number of classifers in our method leads to higher time
complexity. Terefore, since a larger number of classifers
does not contribute to an improvement in the performance
of our method, but increases the time complexity, it is not
advisable to increase the number of classifers.

5.5.Nonparametric StatisticalTests. To assess the presence of
a signifcant diference between the methods, statistical tests
are conducted on the obtained results. To conduct these

tests, we employ a two-stage approach proposed by
Desmar [42].

In the initial stage, a statistical test based on the ranking
of algorithms according to their performance is conducted.
Te null hypothesis assumes that the algorithms have equal
performance. Rejecting the null hypothesis indicates sta-
tistically signifcant diferences in the performance of the
algorithms.

In the preceding step, the algorithm with the highest
rank is identifed as the “control algorithm.” It is sub-
sequently compared to other algorithms in pairwise
comparisons using various nonparametric post hoc sta-
tistical tests, such as Holm [43], Hochberg [44], and
Hommel [45].

Table 8: Continued.

Data set IMBoost OUBoost AdaCC SMOTEBoost AdaCost AdaC1 AdaBoost
glass5 68.33 83.79 74.26 61.86 74.26 74.26 74.26
yeast-2_vs_8 27.33 24.15 36.58 19.11 31.98 31.98 31.08
yeast4 13.63 13.06 13.47 14.57 08.32 10.62 09.65
yeast-1-2-8-9_vs_7 05.20 11.25 06.19 05.61 11.91 05.77 06.89
yeast5 61.00 43.02 49.83 51.94 53.63 51.41 56.28
yeast6 26.93 24.16 22.17 20.85 25.37 25.37 24.57
Average/1st rank 55.35/12 52.55/3 56.81/8 53.35/7 54.33/4 53.73/2 52.91/1

Table 9: Comparison of the G-mean of diferent methods (the better ones are bold).

Data set IMBoost OUBoost AdaCC SMOTEBoost AdaCost AdaC1 AdaBoost
glass1 70.56 72.75 73.66 71.50 74.90 74.90 70.83
ecoli-0_vs_1 97.61 96.53 96.19 96.90 96.48 96.48 97.24
wisconsin 94.94 95.59 95.67 93.76 93.64 93.64 92.34
iris0 100.00 100.00 100.00 100.00 100.00 100.00 100.00
glass0 74.44 91.63 76.03 89.63 90.74 90.74 75.87
haberman 55.03 51.58 24.98 48.00 51.13 44.11 43.81
vehicle3 68.38 38.26 43.39 66.89 62.84 65.60 60.20
glass-0-1-2-3_vs_4-5-6 87.07 75.27 88.26 71.36 79.33 79.33 92.27
ecoli1-5 87.08 80.99 85.99 85.99 83.12 82.92 80.84
new-thyroid1 94.81 92.21 97.03 91.59 92.92 92.92 91.61
ecoli2 86.50 82.46 89.72 87.28 84.69 84.69 83.52
segment0 99.26 98.75 99.46 99.54 99.21 99.21 98.63
glass6 91.62 78.73 90.17 87.48 81.63 81.63 78.29
yeast3 90.88 79.31 89.23 83.28 85.83 65.59 82.36
ecoli3 80.75 74.72 74.42 75.86 68.10 66.36 68.84
yeast-2_vs_4 91.45 82.08 85.82 86.74 82.19 82.19 81.32
yeast-0-5-6-7-9_vs_4 76.07 59.04 15.70 70.73 59.36 61.07 57.68
vowel0 93.94 93.24 95.12 94.29 91.33 91.33 92.19
glass2 53.47 36.19 49.88 60.91 46.35 46.35 46.98
glass4 82.68 76.37 81.6 77.24 82.47 82.47 76.11
ecoli4 85.18 83.31 80.87 85.32 78.00 78.00 83.73
page-blocks-1-3_vs_4 99.32 99.55 99.88 99.77 98.03 98.03 97.81
abalone9-18 74.49 63.33 71.34 66.93 57.87 57.87 66.98
yeast-1-4-5-8_vs_7 52.47 34.95 47.01 32.38 27.59 22.56 35.08
glass5 95.66 93.90 68.28 79.75 79.75 79.75 79.75
yeast-2_vs_8 78.06 55.04 71.66 78.41 58.11 58.11 51.07
yeast4 73.36 54.74 55.2 65.87 42.60 49.72 53.97
yeast-1-2-8-9_vs_7 54.05 51.57 56.22 37.62 22.13 35.53 49.37
yeast5 92.76 79.48 94.07 88.31 83.48 83.51 82.23
yeast6 84.76 67.80 80.39 64.13 67.20 71.96 66.08
Average/1st rank 82.13/16 74.88/2 75.41/9 78.39/5 74.27/2 73.95/2 74.86/2

12 Complexity

76

77

78

79

80

81

82

83

84

RO
C

AU
C

Methods

IM
Bo

os
t

O
U

Bo
os

t

Ad
aC

C

SM
O

TE
Bo

os
t

Ad
aC

os
t

Ad
aC

1

Ad
aB

oo
st

Figure 3: Te average results of ROC AUC over methods.

50

51

52

53

54

55

56

57

58

PR
 A

U
C

Methods

IM
Bo

os
t

O
U

Bo
os

t

Ad
aC

C

SM
O

TE
Bo

os
t

Ad
aC

os
t

Ad
aC

1

Ad
aB

oo
st

Figure 4: Te average results of PR AUC over methods.

68

70

72

74

76

78

80

82

84

Methods

IM
Bo

os
t

O
U

Bo
os

t

Ad
aC

C

SM
O

TE
Bo

os
t

Ad
aC

os
t

Ad
aC

1

Ad
aB

oo
st

G
-M

ea
n

Figure 5: Te average results of G-mean over methods.

Complexity 13

0

20

40

60

80

100

120

AU
C

DATASETS

G
LA

SS
1

EC
O

LI
-0

_V
S_

1
W

IS
C

O
N

SI
N

IR
IS

0
G

LA
SS

-0
-1

-2
-3

_V
S_

4-
5-

6
H

A
BE

RM
A

N

G
LA

SS
0

EC
O

LI
1-

5
N

EW
-T

H
YR

O
ID

1
EC

O
LI

2
SE

G
M

EN
T0

G
LA

SS
6

YE
A

ST
3

EC
O

LI
3

YE
A

ST
-2

_V
S_

4
YE

A
ST

-0
-5

-6
-7

-9
_V

S_
_4

VO
W

EL
0

G
LA

SS
2

G
LA

SS
4

EC
O

LI
4

PA
G

E-
BL

O
CK

S-
1-

3_
VS

_4
A

BA
LO

N
E9

-1
8

YE
A

ST
-1

-4
-5

-8
_V

S_
7

G
LA

SS
5

YE
A

ST
-2

_V
S_

8
YE

A
ST

4
YE

A
ST

-1
-2

-8
-9

_V
S_

7
YE

A
ST

5
YE

A
ST

6

V
EH

IC
LE

3

IMBoost
OUBoost

SMOTEBoost
AdaCC

Figure 6: Regression line to ft the AUC and the IR.

Table 10: Te average value of AUC belongs to our method with diferent number of classifers.

Data set 10 20 30 40 50 70 80 100 150
glass1 71.68 62.72 61.1 63.56 61.77 62.68 64.31 52.41 63.29
ecoli-0_vs_1 97.64 96.25 97.65 98.64 98.66 96.98 97.31 89.74 95.65
wisconsin 95 94.06 93.62 94.05 94.66 94.22 92.33 94.34 92.9
iris0 100 100 99.5 100 100 99 100 93 98.5
glass0 75.03 63.41 72.56 71.68 55.92 61.35 57.84 62.18 56.05
haberman 56.11 58.63 53.21 56.25 55.14 51.76 53.13 44.82 53.06
vehicle3 69.23 69.1 67.25 62.74 64.04 54.95 60.47 56.91 53.76
glass-0-1-2-3_vs_4-5-6 87.19 94.92 91.08 88.16 90.03 87.09 83.4 85.94 90.26
ecoli1 87.41 80.79 83.13 83.7 66.53 61.51 71.52 79.34 72.27
new-thyroid1 94.92 93.25 92.06 94.04 89.88 95.23 90.43 96.62 90.43
ecoli2 86.92 82.09 85.97 84.87 83.23 80.92 72.57 75.39 70.63
segment0 99.26 98.71 98.5 98.71 97.64 97.24 97.54 98.07 96.66
glass6 91.75 84.05 91.8 88.82 90.13 91.17 90.36 79.77 90.36
yeast3 90.94 89 87.23 82.83 77.53 73.29 72.27 68.81 57.4
ecoli3 81.33 82.42 82.76 69.67 77.53 67.04 66.6 72.79 66.34
yeast-2_vs_4 91.5 89.65 87.98 89.55 84.13 81.8 88.17 80 83.66
yeast-0-5-6-7-9_vs_4 77.4 72.73 75.38 67.88 70.93 75.45 59.86 62.31 64.68
vowel0 94.16 94.44 94.22 89.33 96.54 92.26 92.54 92.6 90.69
glass2 64.79 62.64 64.17 67.8 58.51 57.45 58.41 61.69 52.03
glass4 85.08 85.18 82.72 85 80.95 80.39 77.69 71.03 87.31
ecoli4 86.21 86.35 86.51 89.17 86.64 87.41 86.95 80.81 84.36
page-blocks-1-3_vs_4 99.32 99.21 96.73 97.63 98.76 94.24 86.83 87.29 82.2
abalone9-18 76.77 72.31 76.61 68.56 65.59 72.15 61.62 63.52 54.33
yeast-1-4-5-8_vs_7 59.05 61.8 58.63 66.73 52.23 50.84 52.98 54.24 53.97
glass5 95.85 95.12 94.39 92.19 83.9 89.75 89.75 79.89 91.7
yeast-2_vs_8 81.31 81.55 80.13 75.35 66.46 71.57 61.41 58.35 51.53
yeast4 76.23 73 77.13 68.5 77.43 77.53 63.73 63.94 49.21
yeast-1-2-8-9_vs_7 62.49 64.24 66.57 50.09 68.42 62.41 62.79 59.17 63.57
yeast5 93.26 92.43 91 86.14 86.45 87.32 88.16 81.8 78.47
yeast6 78.32 80.75 79.47 83.44 75.52 74.06 77.73 71.89 72.25
Average/1st rank 83.53/15 82.02/4 82.30/3 80.5/5 78.5/4 77.63/1 75.95/1 73.95/1 73.58/0
Based on the number of trees, bold values represent the best result in each synthetic dataset.

14 Complexity

Table 12 presents the ranking results based on the ROC
AUC using the Friedman test. Te p value, which is smaller
than the signifcance level, indicates the rejection of the null
hypothesis, demonstrating signifcant diferences in per-
formance among the algorithms used. Our method ranks
frst among the other algorithms in terms of ROC AUC and
is, therefore, designated as the “control algorithm.” Sub-
sequently, this algorithm is pairwise compared to the other
employed algorithms using post hoc statistical tests, in-
cluding Holm, Hochberg, and Hommel. Te results of these
tests are reported in Table 13.

72

74

76

78

80

82

84

86

0 20 40 60 80 100 120 140 160
AU

C

Number of classifiers

Figure 7: Te efect of number of classifers on our method performance.

Table 11: Te time complexity of our method compared to 5 state-of-the-art methods.

Data set IMBoost OUBoost AdaCC SMOTEBoost AdaCost AdaC1 AdaBoost
glass1 0.680148 0.311335 0.814370 0.402105 0.006436 0.006353 0.008269
ecoli-0_vs_1 0.711841 0.40913 0.949293 0.617847 0.01316 0.008869 0.006247
wisconsin 2.334817 0.176958 0.969636 0.480909 0.007351 0.006742 0.005681
iris0 0.555059 0.00806 0.854523 0.308105 0.00906 0.005942 0.005438
glass-0-1-2-3_vs_4-5-6 0.701264 0.144232 0.958188 0.477068 0.005527 0.005469 0.006646
haberman 0.903955 0.188589 0.958188 0.383278 0.231583 0.069137 0.248758
vehicle3 3.001377 0.292414 0.499649 1.43819 0.597517 0.63525 0.774126
glass0 0.682704 0.176531 0.846364 0.416247 0.008579 0.007279 0.006417
ecoli1 0.995574 0.11928 0.929662 0.533222 0.009847 0.005569 0.00906
new-thyroid1 0.894101 0.139003 0.994520 0.479737 0.019937 0.025586 0.005324
ecoli2 0.995574 0.128287 0.951977 0.4296 0.005504 0.005569 0.006852
segment0 7.356576 0.340925 0.998483 3.546493 0.015306 0.015353 0.018524
glass6 0.670612 0.159746 0.978450 0.378248 0.005642 0.005635 0.006109
yeast3 4.550099 0.219679 0.960383 1.484923 0.197325 0.088621 0.05314
ecoli3 0.97971 0.136388 0.938859 0.455026 0.009862 0.008136 0.006105
yeast-2_vs_4 1.731223 0.128514 0.969571 0.467827 0.008302 0.006939 0.005811
yeast-0-5-6-7-9_vs_4 1.661534 0.101199 0.192670 0.560591 0.00937 0.008313 0.005915
vowel0 3.49743 0.164919 0.993348 1.59756 0.018093 0.020025 0.010061
glass2 0.677648 0.133019 0.948784 0.451205 0.00899 0.009994 0.006205
glass4 0.676413 0.102536 0.985117 0.44172 0.008662 0.009171 0.005702
ecoli4 0.981345 0.107385 0.984244 0.58351 0.007583 0.008247 0.007122
page-blocks-1-3_vs_4 2.69899 0.112687 0.998870 0.63347 0.011839 0.006191 0.006757
abalone9-18 2.172811 0.11797 0.963277 0.948631 0.014928 0.014531 0.016362
yeast-1-4-5-8_vs_7 2.135579 0.12574 0.920830 0.719552 0.077993 0.044838 0.008405
glass5 0.669755 0.131695 0.990418 0.46357 0.008244 0.005624 0.006244
yeast-2_vs_8 1.58693 0.118113 0.981532 0.554371 0.009059 0.007046 0.006161
yeast4 4.226671 0.152353 0.764113 1.209537 0.02398 0.024508 0.026595
yeast-1-2-8-9_vs_7 2.955871 0.19862 0.933641 0.910121 0.174815 0.030466 0.012869
yeast5 4.137762 0.159 0.985930 1.086509 0.016726 0.013052 0.006679
yeast6 4.187912 0.20405 0.977180 1.31572 0.035213 0.014928 0.0077483
Average 2.00037614 0.166945 0.906402 0.792496 0.052548 0.037446 0.043511

Table 12: Average rankings of the algorithms based on the ROC
AUC (P value computed by Friedman test� 0 and Friedman
statistic� 49.175).

Methods Ranking
IMBoost 2.1333
AdaCC 3.15
SMOTEBoost 3.667
OUBoost 4.6333
AdaCost 4.7
AdaC1 4.7667
AdaBoost 5.25

Complexity 15

Table 13, at a signifcance level of 0.05, shows that the
control algorithm outperforms the other algorithms pair-
wise, except for AdaCC. To gain insight into how our

method performs compared to AdaCC, we conducted
a pairwise comparison using the Wilcoxon signed-rank test
at a signifcance level of 0.05. As indicated in Table 14, the p

value exceeds the 0.05 signifcance level. In other words, the
observed diference between the sample change and the
expected change is not substantial enough to be considered
statistically signifcant. Consequently, concerning the ROC
AUCmetric, there is only a marginal diference between our
method and AdaCC. However, when considering the av-
erage performance across all data sets, our method surpasses
AdaCC, and on most of the data sets, IMBoost demonstrates
superior performance. In the identical experiments using the
PR AUC, as shown in Table 15, AdaCC secures the top
position and is designated as the “control algorithm.”
However, the outcomes of the Holm, Hochberg, and
Hommel tests, as presented in Table 16, reveal that AdaCC

Table 13: Post hoc comparison table for α� 0.05 based on the ROC AUC.

Algorithm p value Holm/Hochberg/Hommel Hypothesis
SMOTEBoost vs. IMBoost 0.027024 0.025 Rejected
OUBoost vs. IMBoost 0.000007 0.016667 Rejected
AdaC1 vs. IMBoost 0.000002 0.01 Rejected
AdaCost vs. IMBoost 0.000004 0.0125 Rejected
AdaBoost vs. IMBoost 0 0.008333 Rejected
AdaCC vs. IMBoost 0.068345 0.05 Not rejected

Table 14: Te obtained results of Wilcoxon signed-rank test based on the ROC AUC. W+ corresponds to our method and W− to AdaCC.

Comparison W+ W− Hypothesis p value
IMBoost vs. AdaCC 279 156 Not rejected 0.1901

Table 15: Average rankings of the algorithms based on the PR AUC (P value computed by Friedman test� 0 and Friedman
statistic� 25.557143).

Methods Ranking
IMBoost 3.3
AdaCC 2.88
SMOTEBoost 4.13
OUBoost 4.58
AdaCost 3.65
AdaC1 4.2
AdaBoost 5.25

Table 16: Post hoc comparison table for α� 0.05 based on the PR AUC.

Algorithms p value Holm/Hochberg/Hommel Hypothesis
SMOTEBoost vs. AdaCC 0.025023 0.016667 Rejected
OUBoost vs. AdaCC 0.002305 0.01 Rejected
AdaC1 vs. AdaCC 0.018247 0.0125 Rejected
AdaCost vs. AdaCC 0.169283 0.025 Rejected
AdaBoost vs. AdaCC 0.000022 0.008333 Rejected
IMBoost vs. AdaCC 0.455053 0.05 Not rejected

Table 17: Te obtained results of Wilcoxon signed-rank test based on the PR AUC. W− corresponds to our method and W+ to AdaCC.

Comparison W+ W− Hypothesis p value
IMBoost vs. AdaCC 290 145 Not rejected 1207

Table 18: Average rankings of the algorithms based on G-mean (P
value computed by Friedman test� 0 and Friedman
statistic� 50.067857).

Methods Ranking
IMBoost 2.5
AdaCC 3.1
SMOTEBoost 3.4667
OUBoost 3.5167
AdaCost 4.9
AdaC1 4.9167
AdaBoost 5.6

16 Complexity

does not outperform our method. In Table 17, the Wilcoxon
signed-rank test, conducted at a signifcance level of 0.05,
indicates no signifcant diference between our method and
AdaCC.

In addition, we conducted the Friedman test based on G-
mean and the results are presented in Table 18. According to
these results, our method claims the frst rank and is des-
ignated as the “control algorithm.” Moreover, the outcomes
of the Holm, Hochberg, and Hommel tests in Table 19
indicate that our method performs better than the other
methods at a signifcance level of 0.05, with the exception of
AdaCC. Consequently, the Wilcoxon test is used at a sig-
nifcance level of 0.05. As shown in Table 20, based on the G-
mean metric, our method outperforms the other methods.

Overall, the evaluation conducted using the Friedman
test reveals that the proposed method attains a higher rank
compared to other techniques, with AdaCC securing the
second rank. Subsequent post hoc tests confrm that the
employed algorithms exhibit varying performance in terms
of G-mean, and our method demonstrates the best
performance.

6. Conclusion

Most studies addressing imbalanced problems commonly
employ over- and undersampling techniques. However,
these methods may introduce noisy data or discard im-
portant information, respectively. In this paper, we propose
a novel method to enhance the performance of AdaBoost for
imbalanced data sets. Our approach involves initializing the
weights of minority and majority samples based on their
distribution. Subsequently, the weights are updated
according to the error of classifer on minority and majority
samples separately. Te data set is then resampled based on
these updated weights, and this process is iterated.

To evaluate the efectiveness of our method, we compare
it with six ensemble methods on 34 data sets. Te perfor-
mance of these methods is measured using the ROCAUC,
PR AUC, and G-mean metrics. Te results based on these
metrics demonstrate that IMBoost outperforms the others,
consistently achieving the highest rank on most data sets. In
addition, our method exhibits strong performance on data
sets with high imbalance ratios. According to statistical tests,
which included both PR and ROC AUC measures, no

signifcant diference was observed between AdaCC and
IMBoost. However, when we applied the G-meanmeasure, it
solidifed our method’s excellence. However, it is important
to note that our method has a drawback in terms of time
complexity since the increase in samples leads to higher
computational requirements.

For future studies, extending IMBoost to multiclass data
sets or semisupervised problems could be explored. In ad-
dition, applying metaheuristics and comparing the results
with our method could be considered as a promising further
research.

Data Availability

Te data are publicly available.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] X. Gong and W. Qiao, “Imbalance fault detection of direct-
drive wind turbines using generator current signals,” IEEE
Transactions on Energy Conversion, vol. 27, no. 2, pp. 468–476,
2012.

[2] J. Kong, W. Kowalczyk, S. Menzel, and T. Bäck, “Improving
imbalanced classifcation by anomaly detection,” in Parallel
Problem Solving from Nature--PPSN XVI: 16th International
Conference, PPSN 2020, pp. 512–523, Springer, Leiden,
Netherlands, 2020.

[3] A. Namvar, M. Siami, F. Rabhi, and M. Naderpour, “Credit
Risk Prediction in an Imbalanced Social Lending Environ-
ment,” 2018, https://arxiv.org/abs/1805.00801.

[4] S. Fotouhi, S. Asadi, and M. W. Kattan, “A comprehensive
data level analysis for cancer diagnosis on imbalanced data,”
Journal of Biomedical Informatics, vol. 90, Article ID 103089,
2019.

[5] M. A. U. H. Tahir, S. Asghar, A. Manzoor, andM. A. Noor, “A
classifcation model for class imbalance dataset using genetic
programming,” IEEE Access, vol. 7, pp. 71013–71037, 2019.

[6] E. Ramentol, Y. Caballero, R. Bello, and F. Herrera, “SMO-
TE-RSB ∗: a hybrid preprocessing approach based on over-
sampling and undersampling for high imbalanced data-sets
using SMOTE and rough sets theory,” Knowledge and In-
formation Systems, vol. 33, no. 2, pp. 245–265, 2012.

Table 19: Post hoc comparison table for α� 0.05 based on G-mean.

Algorithm p value Holm/Hochberg/Hommel Hypothesis
SMOTEBoost vs. IMBoost 0.083081 0.025 Rejected
OUBoost vs. IMBoost 0.068345 0.016667 Rejected
AdaC1 vs. IMBoost 0.000015 0.01 Rejected
AdaCost vs. IMBoost 0.000017 0.0125 Rejected
AdaBoost vs. IMBoost 0 0.008333 Rejected
AdaCC vs. IMBoost 0.282059 0.05 Not rejected

Table 20: Te obtained results of Wilcoxon signed-rank test based on G-mean. W+ corresponds to our method and W− to AdaCC.

Comparison W+ W− Hypothesis p value
IMBoost vs. AdaCC 338 97 Rejected 0.008008

Complexity 17

https://arxiv.org/abs/1805.00801

[7] D. Colton and M. Hofmann, “Sampling techniques to over-
come class imbalance in a cyberbullying context,” Journal of
Computer-Assisted Linguistic Research, vol. 3, no. 1, pp. 21–40,
2019.

[8] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour,
“Boosting methods for multi-class imbalanced data classif-
cation: an experimental review,” J. Big Data, vol. 7, no. 1,
pp. 70–47, 2020.

[9] C. X. Ling and V. S. Sheng, “Cost-sensitive learning and the
class imbalance problem,” Encyclopedia of Machine Learning,
vol. 2011, pp. 231–235, 2008.

[10] S. E. Roshan and S. Asadi, “Improvement of Bagging per-
formance for classifcation of imbalanced datasets using
evolutionary multi-objective optimization,” Engineering Ap-
plications of Artifcial Intelligence, vol. 87, Article ID 103319,
2020.

[11] B. Krawczyk, M. Galar, Ł. Jeleń, and F. Herrera, “Evolutionary
undersampling boosting for imbalanced classifcation of
breast cancer malignancy,” Applied Soft Computing, vol. 38,
pp. 714–726, 2016.

[12] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms,
Chapman & Hall/CRC, London, UK, 1st edition, 2012.

[13] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[14] Y. Freund and R. E. Schapire, “Experiments with a new
boosting algorithm,” Icml, vol. 96, pp. 148–156, 1996.

[15] O. Sagi and L. Rokach, “Ensemble learning: a survey,”WIREs
Data Mining and Knowledge Discovery, vol. 8, no. 4, 2018.

[16] W. Wang and D. Sun, “Te improved AdaBoost algorithms
for imbalanced data classifcation,” Information Sciences,
vol. 563, pp. 358–374, 2021.

[17] N. V Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer,
“SMOTEBoost: improving prediction of the minority class in
boosting,” in Knowledge Discovery in Databases: PKDD 2003:
7th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pp. 107–119, Springer,
Berlin, Heidelberg, 2003.

[18] C. Seifert, T. M. Khoshgoftaar, J. Van Hulse, and
A. Napolitano, “RUSBoost: a hybrid approach to alleviating
class imbalance,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 40, no. 1,
pp. 185–197, 2010.

[19] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory under-
sampling for class-imbalance learning,” IEEE Transactions on
Systems, Man, and Cybernetics - Part B: Cybernetics: A
Publication of the IEEE Systems, Man, and Cybernetics Society,
vol. 39, no. 2, pp. 539–550, 2009.

[20] V. Iosifdis, S. Papadopoulos, B. Rosenhahn, and E. Ntoutsi,
“AdaCC: cumulative cost-sensitive boosting for imbalanced
classifcation,” Knowledge and Information Systems, vol. 65,
no. 2, pp. 789–826, 2023.

[21] B. Yuan and X. Ma, “Sampling+ reweighting: boosting the
performance of AdaBoost on imbalanced datasets,” in Pro-
ceedings of the Te 2012 International Joint Conference on
Neural Networks (IJCNN), pp. 1–6, Brisbane, QLD, June 2012.

[22] S. H. Mostafaei and J. Tanha, “OUBoost: boosting based over
and under sampling technique for handling imbalanced data,”
International Journal of Machine Learning and Cybernetics,
vol. 14, no. 10, pp. 3393–3411, 2023.

[23] S.-W. Ke, C.-F. Tsai, Y.-Y. Pan, and W.-C. Lin, “Majority re-
sampling via sub-class clustering for imbalanced datasets,”
Journal of Experimental & Teoretical Artifcial Intelligence,
vol. 15, pp. 1–16, 2023.

[24] J. Zhai, J. Qi, and S. Zhang, “Imbalanced data classifcation
based on diverse sample generation and classifer fusion,”
International Journal of Machine Learning and Cybernetics,
vol. 13, no. 3, pp. 735–750, 2022.

[25] A. Puri and M. Kumar Gupta, “Improved hybrid bag-boost
ensemble with K-means-SMOTE--ENN technique for han-
dling noisy class imbalanced data,” Te Computer Journal,
vol. 65, no. 1, pp. 124–138, 2022.

[26] G. Wang, J. Wang, and K. He, “Majority-to-minority
resampling for boosting-based classifcation under imbal-
anced data,” Applied Intelligence, vol. 53, no. 4, pp. 4541–4562,
2023.

[27] A. Arafa, N. El-Fishawy, M. Badawy, and M. Radad, “RN-
SMOTE: Reduced noise smote based on DBSCAN for
enhancing imbalanced data classifcation,” Journal of King
Saud University - Computer and Information Sciences,
vol. 34, no. 8, pp. 5059–5074, 2022.

[28] J. Li, Y. Wu, S. Fong et al., “A binary PSO-based ensemble
under-sampling model for rebalancing imbalanced training
data,” Te Journal of Supercomputing, vol. 78, no. 5,
pp. 7428–7463, 2022.

[29] J. Dong and Q. Qian, “A density-based random forest for
imbalanced data classifcation,” Future Internet, vol. 14, no. 3,
p. 90, 2022.

[30] Q. Gu, J. Tian, X. Li, and S. Jiang, “A novel Random Forest
integrated model for imbalanced data classifcation problem,”
Knowledge-Based Systems, vol. 250, Article ID 109050, 2022.

[31] J. Zhao, J. Jin, S. Chen, R. Zhang, B. Yu, and Q. Liu, “A
weighted hybrid ensemble method for classifying imbalanced
data,” Knowledge-Based Systems, vol. 203, Article ID 106087,
2020.

[32] R. F. A. B. De Morais and G. C. Vasconcelos, “Boosting the
performance of over-sampling algorithms through under-
sampling the minority class,” Neurocomputing, vol. 343,
pp. 3–18, 2019.

[33] G. Haixiang, L. Yijing, L. Yanan, L. Xiao, and L. Jinling,
“BPSO-Adaboost-KNN ensemble learning algorithm for
multi-class imbalanced data classifcation,” Engineering Ap-
plications of Artifcial Intelligence, vol. 49, pp. 176–193, 2016.

[34] C. Piao, N. Wang, and C. Yuan, “Rebalance weights
AdaBoost-SVM model for imbalanced data,” Computational
Intelligence and Neuroscience, vol. 2023, Article ID 4860536,
26 pages, 2023.

[35] Q. Fu, B. Jing, P. He, S. Si, and Y. Wang, “Fault feature se-
lection and diagnosis of rolling bearings based on EEMD and
optimized Elman_AdaBoost algorithm,” IEEE Sensors Jour-
nal, vol. 18, no. 12, pp. 5024–5034, 2018.

[36] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “AdaCost:
misclassifcation cost-sensitive boosting,” Icml, vol. 99,
pp. 97–105, 1999.

[37] J. Shi, D. Wang, J. Wang et al., “Comparative analysis of the
complete mitochondrial genomes of three geographical
topmouth culter (Culter alburnus) groups and implications
for their phylogenetics,” Bioscience, Biotechnology, and Bio-
chemistry, vol. 81, no. 3, pp. 482–490, 2017.

[38] L. Hao and G. Huang, “An improved AdaBoost algorithm for
identifcation of lung cancer based on electronic nose,”
Heliyon, vol. 9, no. 3, Article ID e13633, 2023.

[39] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic
regression: a statistical view of boosting (with discussion and
a rejoinder by the authors),” Annals of Statistics, vol. 28, no. 2,
pp. 337–407, 2000.

[40] J. Derrac, S. Garcia, L. Sanchez, and F. Herrera, “Keel data-
mining software tool: data set repository, integration of

18 Complexity

algorithms and experimental analysis framework,” Journal of
Multiple-Valued Logic and Soft Computing, vol. 17, 2015.

[41] J. Davis and M. Goadrich, “Te relationship between
Precision-Recall and ROC curves,” in Proceedings of the 23rd
International Conference on Machine Learning, pp. 233–240,
Pittsburgh, PE, USA, August 2006.

[42] J. Demšar, “Statistical comparisons of classifers over multiple
data sets,” Journal of Machine Learning Research, vol. 7,
pp. 1–30, 2006.

[43] S. Holm, “A simple sequentially rejective multiple test pro-
cedure,” Scandinavian Journal of Statistics, vol. 6, pp. 65–70,
1979.

[44] Y. Hochberg, “A sharper Bonferroni procedure for multiple
tests of signifcance,” Biometrika, vol. 75, no. 4, pp. 800–802,
1988.

[45] G. Hommel, “A stagewise rejective multiple test procedure
based on a modifed Bonferroni test,” Biometrika, vol. 75,
no. 2, pp. 383–386, 1988.

Complexity 19

