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When presented with multiple choices, we all have a preference; we may sufer loss because of conficts arising from identical
selections made by other people if we insist on satisfying only our preferences. Such a scenario is applicable when a choice cannot
be divided into multiple pieces owing to the intrinsic nature of the resource. Earlier studies examined how to conduct fair joint
decision-making while avoiding decision conficts in terms of game theory when multiple players have their own deterministic
preference profles. However, probabilistic preferences appear naturally in relation to the stochastic decision-making of humans,
and therefore, we theoretically derive confict-free joint decision-making that satisfes the probabilistic preferences of all in-
dividual players. To this end, we mathematically prove conditions wherein the deviation of the resultant chance of obtaining each
choice from the individual preference profle (loss) becomes zero; i.e., the satisfaction of all players is appreciated while avoiding
conficts. Further, even in scenarios where zero-loss confict-free joint decision-making is unachievable, we present approaches to
derive joint decision-making that can accomplish the theoretical minimum loss while ensuring confict-free choices. Numerical
demonstrations are presented with several benchmarks.

1. Introduction

Since the industrial revolution, we have witnessed important
technological advances; however, we are currently faced with
issues such as the fniteness of resources, which has led to the
need for developing strategies of competition or resource
sharing [1, 2]. We need to consider the choices of other
people or any entities and those of ours. In this regard,
decision conficts are a critical issue that needs to be
addressed. For example, assume that many people or devices
attempt to connect to the same mobile network simulta-
neously. In this case, the wireless resources available per
person or device will become signifcantly smaller, and it will
result in poor communication bandwidth or even zero
connectivity attributable to congestion [3]. Tis example
considers a case in which an individual sufers from choice
confict with others. Here, the division of resources among
entities is allowed, but in other cases, a separable allocation

to multiple entities is not permitted. As another example, we
consider a draft in a professional football league. Each club
has specifc players to pick in the draft; however, in principle,
only a single club can sign with one player. Tus, decision-
making conficts must be resolved. Tese examples highlight
the importance of achieving individual satisfaction while
avoiding confict.

Sharpley and Scarf proposed the top trading cycle (TTC)
allocation algorithm [4] to address this problem. A typical
example is a house-allocation problem; each of the n stu-
dents ranked the houses in which they wanted to live from a
list of n houses. In this scenario, the TTC allocates one house
to each student. Te solution provided by the TTC is known
to be game-theoretic core-stable; that is, arbitrary numbers
of students can swap houses with each other and still not
obtain a better allocation than the current one. Tere are
many other mechanisms that originate in TTC, which in-
clude those that allow indiference in preference profles
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[5–7] and those where agents can be allocated fractions of
houses [8].

Although TTC works well when players have deter-
ministic rankings, humans or artifcial machines can also
have probabilistic preferences. Tat is, unlike the house-
allocation problem, an agent with probabilistic preferences
would be unsatisfed by always receiving its top preference.
Instead, over repeated allocations, the distribution of out-
comes and their probabilistic preferences should be similar.
Such probabilistic preferences can appear naturally in re-
lation to the stochastic decision-making of humans. Te
multiarmed bandit (MAB) problem [9, 10] encompasses
probabilistic preferences.

In the MAB problem, one player repeatedly selects and
draws one of the several slot machines based on a certain
policy. Te reward for each slot machine is generated sto-
chastically based on a probability distribution that the player
does not know a priori.TeMAB problem aims to maximize
the cumulative reward obtained by a player under such
circumstances. First, the player draws machines, which
include those that do not generate many rewards, to ac-
curately estimate the probability distribution of the reward
that each machine follows; this is referred to as exploration.
However, the extensive drawing of the highest reward
probability machine increases the cumulative reward after
the player is confdent in the estimation. Tis is known as
exploitation. To successfully solve the MAB problem, it is
necessary to strike a balance between exploration and ex-
ploitation, especially in a dynamically changing environ-
ment; this is called the exploration-exploitation dilemma
[11].

An example of probabilistic preferences can be observed
in the context of the MAB problem. Te softmax algorithm,
a well-known stochastic decision-making method, is an
efcient method to solve this problem [12]. If the empirical
reward for each machine i at time t is μi(t), the probability
that a player selects machine i is

si(t) �
e
μi(t)/τ

􏽐ke
μk(t)/τ . (1)

Here, τ represents the temperature, which controls the
balance between exploration and exploitation. Tus, the
player has a probabilistic preference at each time step about
which machine to select and with what percentage.

Furthermore, we can extend the MAB problem to a case
involving multiple players, which is called the competitive
MAB problem [13, 14]. In a competitive MAB problem,
when multiple players simultaneously select the same ma-
chine and the machine generates a reward, the reward is
distributed among the players. Te aim is to maximize the
collective rewards of players while ensuring equality [15].
Decision conficts inhibit players from maximizing the total
rewards in such scenarios.

For example, wireless communications sufer from such
difculties, wherein the simultaneous usage of the same
band by multiple devices results in the performance deg-
radation of individual devices, as shown in Figure 1. Players
make a probabilistic decision to explore and exploit

simultaneously because they do not know the speed of each
bandwidth in advance (here, we assume that the speed
changes probabilistically to refect an uncertain environ-
ment). However, the line is shared if they choose the same
bandwidth, and there is a decrease in the transmission speed.

For solving competitive MAB problems, Chauvet et al.
theoretically and experimentally demonstrated the useful-
ness of quantum entanglement to avoid decision conficts
without direct communication [16, 17]. A powerful aspect of
entanglement is that the optimization of a reward by one
player leads to the optimization of the total rewards for the
team; this is not easily achievable because if everyone at-
tempts to draw the best machine, it can lead to decision
conficts that will diminish the total rewards in the com-
petitive MAB problem. Further, Amakasu et al. proposed
utilizing quantum interference such that the number of
choices can be extended to an arbitrary number while
perfectly avoiding decision conficts [18]. A more general
example is multiagent reinforcement learning [19, 20]. In
this case, multiple agents can learn individually and make
probabilistic choices while balancing exploration and ex-
ploitation at each time step. Successfully integrating these
agents and making cooperative decisions without selection
conficts can help accelerate learning [21].

Given suchmotivations and backgrounds, it is important
to clarify how the probabilistic preferences of individual
players can be accommodated while avoiding choice con-
ficts. Te question is whether it is possible to satisfy all
player preferences while eliminating decision conficts; if so,
what are the conditions for realizing such requirements?

Tis study theoretically clarifes the condition under
which joint decision-making probabilities exist such that the
preference profles of all players are satisfed perfectly. In
other words, the condition that provides the loss (the de-
viation of the selection preference of each player from the
resulting chance of obtaining each choice determined via the
joint decision probabilities) becomes zero is clearly for-
mulated. In addition, we derive joint decision-making
probabilities that minimize the loss, even when such a
condition is not satisfed.

? ? ?

Player A Player B

Figure 1: Internet connection through relays. Each player makes a
probabilistic decision about which bandwidth to connect; however,
when both select the same bandwidth, the line is shared, and there
is a decrease in the transmission speed.
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A related problem of satisfying the needs of multiple
players is a type of game theory called satisfaction games
[22, 23]. Here, a minimum utility threshold is defned for
each player, and a joint strategy is defned as a satisfaction
equilibrium if all players obtain utility above the threshold.
Like in other game theories, the payof and reward or utility
for each player can be defned by joint actions in the sat-
isfaction games; however, in our study, there is no such
external payof. Instead, we defne satisfaction as the cor-
respondence between players’ probabilistic preferences and
the selection probability of each choice as a result of joint
selection. In addition, players learn the optimal action by
observing the outcomes of the environment and updating
their actions in satisfaction games. However, in our study,
we consider joint selection resulting from deliberation by
players cooperating with each other rather than learning
over multiple trials.

Te consensus reaching process is another feld that is
closely related to our research [24–26]. In this area, con-
sensus reaching is achieved by aggregating the preferences of
multiple individual players using simple methods, such as
weighted sums, to obtain a collective preference, and then,
by calculating the distance between the collective preference
and individual preferences and by adjusting the individual
preferences through feedback [27]. Te players continue this

loop until they reach consensus. Meanwhile, our study fo-
cuses not on modifying individual preferences but on the
aggregation of the preferences of multiple players in this
process.

2. Theory

2.1. Problem Formulation. Tis section introduces the for-
mulation of the study problem. To begin with, we examine
cases where the number of players or agents is two: Player A
and Player B. Tere are N choices for each player; these
choices are called arms in the literature on the MAB
problem, where N is a natural number greater than or equal
to two.

Each player selects a choice probabilistically depending
on his/her preference probability. Here, the preference of
Player A is represented by

A � A1 A2 . . . AN( 􏼁. (2)

Similarly, the preference of player B is given by

B � B1 B2 . . . BN( 􏼁. (3)

Tese preferences have the typical properties of
probabilities:

A1 + A2 + · · · + AN � B1 + B2 + · · · + BN � 1, Ai ≥ 0, Bi ≥ 0 (i � 1, 2, . . . , N). (4)

Te upper side of Figure 2 schematically illustrates a
scenario where players A and B each have their own pref-
erences in a four-arm case.

Now, we introduce the joint selection probability matrix,
which is given as

P �

0 p1,2 · · · p1,N

p2,1 0 · · · ⋮

⋮ ⋮ ⋱ ⋮

pN,1 · · · · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Te nondiagonal element pi,j, with i≠ j, denotes the
probability that player A selects arm i and player B selects
arm j. Te diagonal terms are all zero because we consider
nonconfict choices. Here, the summation of pi,j over all is
and js is unity and pi,j ≥ 0.

􏽘
i,j

pi,j � 1, pi,j ≥ 0. (6)

Our interest is to fnd P that meets the preferences of
both players A and B. We formulate the degree of satis-
faction of the players to incorporate this perspective as
indicated in the following way. By summing up pi,js row-by-
row in the joint selection probability matrix, a preference
profle given by

πA(i) � 􏽘
j

pi,j, (7)

is obtained. πA(i) represents the probability that player A
selects arm i as a result of the joint selection probability
matrix P. We call πA(i) “satisfed preference” (the link with
preference Ai will be discussed hereafter).

􏽘
i

πA(i) � 1, (8)

holds based on the defnition of the joint selection proba-
bility matrix. Tis structure is illustrated by the red-shaded
elements in the second row of the joint selection probability
matrix shown in Figure 2.

Similarly, satisfed preferences along the columns of P

πB(j) � 􏽘
i

pi,j, (9)

represent the probability that player B selects arm j because
of the joint selection probability matrix P.

Our aim is to fnd the optimal pi,j, wherein

πA(i) ≈ Ai, πB(j) ≈ Bj, (10)

holds for all i � 1, 2, . . . , N and j � 1, 2, . . . , N; that is, the
players’ preferences (Ai, Bj) are the same or close to the
satisfed preferences (πA(i), πB(j)).

We defne loss L akin to an L2-norm to quantify the
degree of satisfaction.
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L � 􏽘
i

πA(i) − Ai( 􏼁
2

+ 􏽘
j

πB(j) − Bj􏼐 􏼑
2
, (11)

which comprises the sum of squares of the gap between the
preferences and the satisfed preferences of the two players.

We consider the scenario shown in Figure 2 as an ex-
ample. Te preferences of players A and B are

A1 � 0.1,

A2 � 0.2,

A3 � 0.3,

A4 � 0.4,

B1 � 0.3,

B2 � 0.2,

B3 � 0.2,

B4 � 0.3.

(12)

Now, we consider the following joint selection proba-
bility matrix P.

P �

0 0 0 0.1

0 0 0.1 0.1

0 0.2 0 0.1

0.3 0 0.1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

By taking the sum of the frst row, we can calculate the
probability that player A chooses arm 1 as a result of this
matrix.

πA(1) � 0 + 0 + 0 + 0.1 � 0.1. (14)

Similarly, if we calculate all satisfed preferences, we
obtain

πA(1) � 0.1,

πA(2) � 0.2,

πA(3) � 0.3,

πA(4) � 0.4,

πB(1) � 0.3,

πB(2) � 0.2,

πB(3) � 0.2,

πB(4) � 0.3.

(15)

All preferences are equal to the original preferences of
the players, which implies that loss L is zero. In other words,
this joint selection probability matrix P completely satisfes
the preferences of the player.

In the following sections, we prove that the loss defned
previously can be zero; in other words, perfect satisfaction
for the players can indeed be realized under certain

conditions. In addition, even in cases where zero loss is not
achievable, we can systematically derive a joint selection
probability matrix that ensures a minimum loss.

Now, we defne the popularity Si for each arm and
propose three theorems and one conjecture based on the
values of Si.

Defnition 1. Popularity Si is defned as the sum of the
preferences of players A and B for arm i.

Si ≔ Ai + Bi (i � 1, 2, . . . , N). (16)

Because preferences Ai and Bi are probabilities, it holds
that

􏽘
i

Si � 􏽘
i

Ai + 􏽘
i

Bi � 2. (17)

Hereafter, the minimum loss is denoted by Lmin.

Lmin � min
P

L{ }. (18)

Meanwhile, the loss function can be defned in other
forms such as the Kullback–Leibler (KL) divergence, which
is also known as relative entropy [28]. Extended discussions
on such metrics should be considered in future studies; we
consider that the fundamental structure of the problem
under study will not change signifcantly.

Key notations adopted in this paper are summarized in
Table 1.

2.2. Teorem 1

2.2.1. Statement

Theorem 1. We assume that all popularities Si are smaller
than or equal to one. Ten, it is possible to construct a joint
selection probability matrix that makes the loss L equal to
zero.

∀i; Si ≤ 1⇒Lmin � 0. (19)

2.2.2. Auxiliary Lemma. To proveTeorem 1, we frst prove
a lemma in which the problem settings are modifed slightly.
In the original problem, we treated the preference of each
player as a probability. In this modifed problem, however,
their preferences do not have to be probabilities as long as
they are nonnegative, and the sum of the preferences for
each player is given by a constant T, which we refer to as the
total preference. Teir preferences are called 􏽢A and 􏽢B. We
will put a hat over each notation to avoid confusion about
which defnition we are referring to between the original and
modifed problems.
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􏽢A � 􏽢A1
􏽢A2 . . . 􏽢AN􏼐 􏼑,

􏽢B � 􏽢B1
􏽢B2 . . . 􏽢BN􏼐 􏼑.

(20)

􏽢A1 + 􏽢A2 + · · · + 􏽢AN � 􏽢B1 + 􏽢B2 + · · · + 􏽢BN � T, 􏽢Ai ≥ 0, 􏽢Bi ≥ 0 (i � 1, 2, . . . , N). (21)

Player A Player B

I want
arm 1 with 10%,
arm 2 with 20%,
arm 3 with 30%,
arm 4 with 40%.

I want
arm 1 with 30%,
arm 2 with 20%,
arm 3 with 20%,
arm 4 with 30%.

Preference Preference

7 7 7 7 7 7 7 7 7 7 7 7

Arm 1 Arm 2 Arm 3 Arm 4

Joint selection probability matrix

0

0

0

0

p1,2

p3,2 p3,4

p4,2 p4,3

p2,1 p2,3 p2,4

p3,1

p4,1

p1,3 p1,4

Figure 2: Problem settings. Te sum of each row should be close to the corresponding preference of player A, and the sum of each column
should be close to the corresponding preference of player B.

Table 1: Summary of key notations.

Notation Description
N Number of arms/choices
Ai, Bi Preference of player on arm i

πA(i), πB(i) Satisfed preference; probability of each player selecting arm i as a result of the joint selection probability matrix
L Loss to measure the degree of satisfaction
Si Popularity; sum of the preferences of players A and B for arm i

T Total preference used in Section 2.2; sum of the preference of each player
􏽢Ai,

􏽢Bi, 􏽢pi,j, . . . Symbols used in the revised problem in Section 2.2
A†

i , B†
i , p†

i,j, . . . Symbols used in the general problem in Section 2.4

Complexity 5



We still refer to

􏽢P �

0 􏽢p1,2 · · · 􏽢p1,N

􏽢p2,1 0 · · · ⋮

⋮ ⋮ ⋱ ⋮
􏽢pN,1 · · · · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (22)

as a joint selection probability matrix, although technically,
each 􏽢pi,j is no longer a probability but a ratio of each joint
selection occurring, and the sum of all entries is T, instead of
1. Te other notations are defned in a manner similar to the
original problem.

Satisfied Preference: 􏽢πA(i) � 􏽘
j

􏽢pi,j,

􏽢πB(j) � 􏽘
i

􏽢pi,j,

Loss: 􏽢L � 􏽘
i

(􏽢πA(i) − 􏽢Ai)
2

+ 􏽘
j

(􏽢πB(j) − 􏽢Bj)
2
,

􏽢Lmin � min
􏽢P

􏽢L􏽮 􏽯,

Popularity: 􏽢Si � 􏽢Ai + 􏽢Bi.

(23)

Lemma 1. We assume that all popularities 􏽢Si are smaller than
or equal to the total preferenceT.Ten, it is possible to construct a
joint selection probability matrix that makes the loss 􏽢L equal to 0.

∀i; 􏽢Si ≤T⇒􏽢Lmin � 0. (24)

Teorem 1 is a special case of Lemma 1 when T � 1.

2.2.3. Outline of the Proof. We prove Lemma 1 using
mathematical induction. In Section 2.2.4, we show that Lemma
1 holds for N � 2 and N � 3. In Sections 2.2.5 and 2.2.6, we
suppose that Lemma 1 has been proven for N arms, and then,
we show that Lemma 1 also holds for N + 1 arms. In Sections
2.2.5, we assume the existence of pi,js that satisfy certain
conditions and prove that perfect satisfaction for the players is
achievable using these pi,js. Ten, in Section 2.2.6, we verify
their existence.

2.2.4. When N � 2 and When N � 3. When N � 2,
􏽢S1 � 􏽢S2 � T, (25)

is the only case in which the assumption of Lemma 1, i.e.,
∀i; 􏽢Si ≤T is fulflled. Due to the constraint (21),

􏽢A2 � T − 􏽢A1,

􏽢B1 � T − 􏽢A1,

􏽢B2 � 􏽢A1.

(26)

In this case,

􏽢P �
0 􏽢A1

􏽢A2 0
⎛⎝ ⎞⎠, (27)

makes the loss equal to zero.

When N � 3, the loss becomes zero when we set the
values in the joint selection probability matrix as

􏽢P �

0 􏽢p1,2 − 􏽢p1,2 + 􏽢A1

T − 􏽢p1,2 − 􏽢A3 − 􏽢B3 0 􏽢p1,2 − 􏽢A1 + 􏽢B3

􏽢p1,2 + 􏽢A3 − 􏽢B2 − 􏽢p1,2 + 􏽢B2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(28)
Te satisfed preferences for players A and B via 􏽢P result

in (􏽢A1,
􏽢A2,

􏽢A3) and (􏽢B1,
􏽢B2,

􏽢B3), which perfectly match the
preferences of players A and B, respectively.

However, all elements in 􏽢P must be nonnegative.

􏽢p1,2 ≥ 0, − 􏽢p1,2 + 􏽢A1 ≥ 0, T − 􏽢p1,2 − 􏽢A3 − 􏽢B3 ≥ 0,

􏽢p1,2 − 􏽢A1 + 􏽢B3 ≥ 0, 􏽢p1,2 + 􏽢A3 − 􏽢B2 ≥ 0, − 􏽢p1,2 + 􏽢B2 ≥ 0.

(29)

To summarize these inequalities, the following inequality
holds:

max 0, 􏽢A1 − 􏽢B3, − 􏽢A3 + 􏽢B2􏽮 􏽯≤ 􏽢p1,2 ≤min 􏽢A1,
􏽢B2, T − 􏽢A3 − 􏽢B3􏽮 􏽯.

(30)

If a nonnegative 􏽢p1,2 that satisfes (30) exists, 􏽢P given in
(28) is a valid joint selection probability matrix, whichmakes
the loss zero. In other words, if we can prove that 􏽢p1,2, which
is in the range of (30), exists, regardless of 􏽢A and 􏽢B, Lemma 1
holds for N � 3.

To prove that a nonnegative 􏽢p1,2 that satisfes (30) always
exists, we consider the following three cases depending on
the value of the left-hand term of (30). In each case, we show
that the three candidates for the right-hand term of (30) are
greater than the left-hand term.

[Case 1] When max 0, 􏽢A1 − 􏽢B3, − 􏽢A3 + 􏽢B2􏽮 􏽯 � 0.

6 Complexity



0≤ 􏽢A1, 0≤ 􏽢B2 are evident from the defnitions in (21).
In addition, 0≤T − 􏽢A3 − 􏽢B3 holds because of the assumption
of lemma 􏽢S3 � 􏽢A3 + 􏽢B3 ≤T. Tus,

0≤min 􏽢A1,
􏽢B2, T − 􏽢A3 − 􏽢B3􏽮 􏽯. (31)

[Case 2] When max 0, 􏽢A1 − 􏽢B3, − 􏽢A3 + 􏽢B2􏽮 􏽯 � 􏽢A1 − 􏽢B3.
First, the defnition (21) guarantees the following:

􏽢A1 − 􏽢B3 ≤ 􏽢A1. (32)

Next, using the assumption 􏽢S1 � 􏽢A1 + 􏽢B1 ≤T,
􏽢A1 − 􏽢B3 ≤ T − 􏽢B1􏼐 􏼑 − 􏽢B3 � B2. (33)

Finally,
􏽢A1 − 􏽢B3 � T − 􏽢A2 − 􏽢A3􏼐 􏼑 − 􏽢B3 ≤T − 􏽢A3 − 􏽢B3. (34)

Terefore,
􏽢A1 − 􏽢B3 ≤min 􏽢A1,

􏽢B2, T − 􏽢A3 − 􏽢B3􏽮 􏽯. (35)

[Case 3] When max 0, 􏽢A1 − 􏽢B3, − 􏽢A3 + 􏽢B2􏽮 􏽯 � − 􏽢A3 + 􏽢B2.
􏽢S2 � 􏽢A2 + 􏽢B2 ≤T implies the following equation:

− 􏽢A3 + 􏽢B2 ≤ − 􏽢A3 + T − 􏽢A2􏼐 􏼑 � A1. (36)

In addition, defnition (21) guarantees − 􏽢A3 + 􏽢B2 ≤ 􏽢B2.
Finally,

− 􏽢A3 + 􏽢B2 � − 􏽢A3 + T − 􏽢B1 − 􏽢B3􏼐 􏼑≤T − 􏽢A3 − 􏽢B3, (37)

holds because 􏽢B1 ≥ 0. Hence,

− 􏽢A3 + 􏽢B2 ≤min 􏽢A1,
􏽢B2, T − 􏽢A3 − 􏽢B3􏽮 􏽯. (38)

From (31), (35), and (38) for any 􏽢A, 􏽢B,

max 0, 􏽢A1 − 􏽢B3, − 􏽢A3 + 􏽢B2􏽮 􏽯≤min 􏽢A1,
􏽢B2, T − 􏽢A3 − 􏽢B3􏽮 􏽯.

(39)

Terefore, it is evident that 􏽢p1,2 that satisfes (30) exists.
Hence, 􏽢P given in (28) is a valid joint selection probability
matrix that makes the loss 􏽢L zero.

2.2.5. Induction. In this and the following sections, we
suppose that Lemma 1 has been proven to hold when there
are N arms (N≥ 3). Here, we show that Lemma 1 also holds
for N + 1 case. In the following argument, the arm with the
lowest 􏽢Si is denoted as arm K.

min 􏽢Si􏽮 􏽯 � 􏽢SK. (40)

Now, we make the following assumption, which focuses
only on the values in the Kth row or Kth column.

Assumption 1. Tere exist 􏽢pK,1, 􏽢pK,2, . . . , 􏽢pK,N+1,
􏽢p1,K, 􏽢p2,K, . . . , 􏽢pN+1,K that satisfy all of the following con-
ditions (41)–(45).

Te sum of the Kth row is equal to 􏽢AK.

􏽘

N+1

j�1

􏽢pK,j � 􏽢AK. (41)

Te sum of the Kth column is equal to 􏽢BK.

􏽘

N+1

i�1

􏽢pi,K � 􏽢BK. (42)

Te sum of the jth column without the Kth row is
nonnegative.

􏽘
i≠K

􏽢pi,j ≥ 0⇔􏽢pK,j ≤ 􏽢Bj, (j � 1, 2, . . . , K − 1, K + 1, . . . , N + 1).

(43)

Te sum of the ith row without the Kth column is
nonnegative.

􏽘
j≠K

􏽢pi,j ≥ 0⇔􏽢pi,K ≤ 􏽢Ai, (i � 1, 2, . . . , K − 1, K + 1, . . . , N + 1).

(44)

In the gray-shaded area of the joint selection probability
matrix in (48), all remaining popularities are less than or
equal to the remaining total preference. We note that 􏽢SK �

min 􏽢Si􏽮 􏽯.

􏽢Ai − 􏽢pi,K􏼐 􏼑 + 􏽢Bi − 􏽢pK,i􏼐 􏼑≤T − 􏽢SK (i � 1, 2, . . . , K − 1, K + 1, . . . , N + 1). (45)

First, we suppose that Assumption 1 is valid and show
the way to construct a joint selection probability matrix that
makes the loss 􏽢L zero, using these 􏽢pi,js. Later, we will prove
that Assumption 1 is indeed correct.

Here, we show that, using the 􏽢pi,js assumed to exist in
Assumption 1, we can make the loss 􏽢L equal to zero. From
conditions (41) and (42), (πA(K) − AK)2 + (πB(K) − BK)2,
which are terms in the defnition of 􏽢L regarding armK, are zero.

πA(K) − AK( 􏼁
2

+ πB(K) − BK( 􏼁
2

� 0. (46)

Next, we consider the loss for the remaining part of the
joint selection probability matrix in the gray-shaded region
described in (48), which is defned as

􏽢Lrem � 􏽢L − 􏽢πA(K) − 􏽢AK􏼐 􏼑
2

+ 􏽢πB(K) − 􏽢BK􏼐 􏼑
2

􏼚 􏼛. (47)
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(48)

􏽢Lrem represents the loss corresponding to a problem in
which the preference setting is described in Table 2. 􏽢A

∗
i and

􏽢B
∗
i are defned as follows:

􏽢A
∗
i � 􏽢Ai − 􏽢pi,K, 􏽢B

∗
j � 􏽢Bj − 􏽢pK,j. (49)

Now, we prove that the optimal 􏽢Lrem is zero. A∗i and B∗i
fulfll the requirements for the preference; that is, the preferences
need to be nonnegative because pi,Ks and pK,js follow (43) and
(44) and the total preferences for both players are the same. In
this section, we suppose we have proven that Lemma 1 holds
when there are N arms; furthermore, because of (45), all
remaining popularities 􏽢S

∗
i ≔ 􏽢A

∗
i + 􏽢B
∗
i � (􏽢Ai − 􏽢pi,K)+

(􏽢Bi − 􏽢pK,i) are smaller than or equal to the remaining total
preferenceT − 􏽢SK.Tus, Lemma 1 in the case ofN arms verifes

min 􏽢Lrem􏽮 􏽯 � 0. (50)

From (46) and (50), with
􏽢pK,1, 􏽢pK,2, . . . , 􏽢pK,N+1, 􏽢p1,K, 􏽢p2,K, . . . , 􏽢pN+1,K and the optimal
􏽢pi,js for the gray-shaded region,
􏽢Lmin � min 􏽢Lrem􏽮 􏽯 + 􏽢πA(K) − 􏽢AK􏼐 􏼑

2
+ 􏽢πB(K) − 􏽢BK􏼐 􏼑

2
􏼚 􏼛 � 0.

(51)

Terefore, if Assumption 1 is correct, Lemma 1 holds for
N + 1 arms.

2.2.6. Verifcation of Assumption 1. In this section, we prove
that Assumption 1 is correct. We refer to the arm with the
highest 􏽢Si as arm V(V≠K).

max 􏽢Si􏽮 􏽯 � 􏽢SV. (52)

First, by contradiction, we prove that there is at most one
arm that violates

􏽢Si ≤T − 􏽢SK, (53)

and if there is such an arm, arm V is the one that breaks (53).
Note that all the other arms, which satisfy (53), follow (45).

We assume that there are two arms that do not satisfy
(53) (we call them arm V1 and arm V2), and we prove that
this assumption leads to a contradiction.

􏽢SV1
>T − 􏽢SK, 􏽢SV2

>T − SK. (54)

If we add each side,

􏽢SV1
+ 􏽢SV2
> 2T − 2􏽢SK⇔2T< 􏽢SV1

+ 􏽢SV2
+ 2􏽢SK. (55)

As min 􏽢Si􏽮 􏽯 � 􏽢SK and N≥ 3,

􏽢SV1
+ 􏽢SV2

+ 2􏽢SK ≤ 􏽘
N+1

i�1

􏽢Si � 2T. (56)

Together with (55), we obtain the contradiction

2T< 2T. (57)

Terefore, by contradiction, at most one arm violates
(53). Such an arm follows

􏽢Si >T − 􏽢SK, (58)

and has the highest 􏽢Si since other popularities are no bigger
than T − 􏽢SK. We call it arm V so that max 􏽢Si􏽮 􏽯 � 􏽢SV.

Now, we can systematically determine 􏽢pi,js in the Kth
row or the Kth column to show that Assumption 1 is
correct; that is, 􏽢pi,js fulfll the conditions (41)–(45). We
cannot arbitrarily fll in the values in the Kth row or the K

th column such that their sum is 􏽢AK and 􏽢BK, respectively;
instead, we must consider the preferences of the other
arms. (43)–(45) give us boundaries for 􏽢pK,js and 􏽢pi,Ks to
exist. We must not only ensure that 􏽢pK,j and 􏽢pi,K do not
exceed these boundaries, but we must also ensure that a
sufcient probability is assigned to the most popular arm
V; otherwise, the left-hand side of (45) can sometimes be
greater than the right-hand side for arm V. We consider
the following three cases depending on the size relation of
􏽢AK, 􏽢BV, 􏽢BK, 􏽢AV. For each case, it is possible to construct
the optimal 􏽢pi,js that satisfy all conditions (41)–(45). Note
that these three cases are collectively exhaustive.

Case 1. 􏽢AK ≤ 􏽢BV and 􏽢BK ≤ 􏽢AV

Case 2. 􏽢AK > 􏽢BV

Case 3. 􏽢BK > 􏽢AV

As a reminder, arm K represents the arm with the lowest
popularity and arm V represents the arm with the highest
popularity. For detailed construction procedures, see Ap-
pendix A.

Te previous three cases prove that 􏽢pK,1, 􏽢pK,2, . . . ,
􏽢pK,N+1, 􏽢p1,K, 􏽢p2,K, . . . , 􏽢pN+1,K which satisfy (41)–(45) always
exist. In other words, Assumption 1 is indeed correct.
Terefore, if we assume that Lemma 1 has been proven to
hold for N arms, then Lemma 1 holds when there are N + 1
arms.

Hence, using mathematical induction, Lemma 1 holds
for any number of arms.

2.3. Teorem 2

2.3.1. Statement. Here, we return to the original problem,
where the preferences of players are probabilities. Popularity
Si can still be greater than one because it is the sum of the
preferences for each arm.
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Theorem 2. If any value of Si is greater than one, it is
impossible to make the loss L equal to zero, and the minimum
loss is given by

Lmin �
N

2(N − 1)
· SV − 1( 􏼁

2
. (59)

Note that SV � max Si􏼈 􏼉. In a case where the Nth arm is
the most popular, i.e., SV � SN > 1, the following joint se-
lection probability matrix is one of the matrices that min-
imize the loss:

􏽥P �

0 0 · · · 0 A1 + ϵ

0 0 · · · 0 A2 + ϵ

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 0 AN− 1 + ϵ

B1 + ϵ B2 + ϵ · · · BN− 1 + ϵ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ϵ �
SN − 1

2(N − 1)
.

(60)

2.3.2. Outline of the Proof. We can prove that the loss
function L is convex by showing that its Hessian is semi-
defnite. Appendix B provides the details of the proof. In
Section 2.3.3, we rewrite the problem into an optimization
problem with equality and inequality constraints and derive
􏽥pi,js that satisfy the Karush–Kuhn–Tucker conditions [29, 30]
(hereinafter, KKT conditions). In a convex optimization

problem, where the objective function and all constraints are
convex, points that satisfy the KKTconditions provide global
optima [31]. Terefore, the optimal joint selection probability
matrix comprises the aforementioned 􏽥pi,js.

2.3.3. KKT Conditions. We derive the optimal joint selection
probability matrix and calculate the minimum loss. Te
fattened vector of a joint selection probability matrix is
defned as

p � p1,2 p1,3 · · · p1,N p2,1 p2,3 · · · p2,N · · · pN,N− 1( 􏼁
T
.

(61)

Functions h and gi,j are defned as

h(p) � 􏽘
i,j

pi,j − 1, gi,j(p) � − pi,j (i≠ j). (62)

Te problem of minimizing the loss while satisfying the
constraints can be written as

min
p

L(p)

s.t. h(p) � 0, gi,j(p)≤ 0.
(63)

Here, L(p) is the loss corresponding to p. Because the
objective function and constraints are all convex, 􏽥p that
satisfes the following KKT conditions yields the global
minimum.

∇L(􏽥p) + 􏽘
i,j

λi,j∇gi,j(􏽥p) + μ∇h(􏽥p) � 0,

λi,jgi,j(􏽥p) � 0,

λi,j ≥ 0,

gi,j(􏽥p)≤ 0, h(􏽥p) � 0.

(64)

Te following parameters satisfy all conditions described
in (64).

Table 2: Preference setting followed by the remaining part of the joint selection probability matrix in the gray-shaded region. 􏽢A
∗
i �

􏽢Ai − 􏽢pi,K, 􏽢B
∗
j � 􏽢Bj − 􏽢pK,j.

Player Arm 1 Arm 2 · · · Arm (K − 1) Arm (K + 1) · · · Arm (N + 1) Sum
A 􏽢A

∗
1

􏽢A
∗
2 · · · 􏽢A

∗
K− 1

􏽢A
∗
K+1 · · · 􏽢A

∗
N+1 T − 􏽢SK

B 􏽢B
∗
1

􏽢B
∗
2 · · · 􏽢B

∗
K− 1

􏽢B
∗
K+1 · · · 􏽢B

∗
N+1 T − 􏽢SK
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ϵ �
SN − 1

2(N − 1)
,

μ � 2(N − 2)ϵ,

λi,j �
2Nϵ, (i≠N∧j≠N),

0, otherwise,

⎧⎪⎨

⎪⎩

􏽥pi,j �

0, (i≠N∧j≠N),

Ai + ϵ, (j � N),

Bj + ϵ, (i � N).

⎧⎪⎪⎨

⎪⎪⎩
(65)

See Appendix C for the verifcation of each condition. Hence,

􏽥P �

0 0 · · · 0 A1 + ϵ

0 0 · · · 0 A2 + ϵ

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 0 AN− 1 + ϵ

B1 + ϵ B2 + ϵ · · · BN− 1 + ϵ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ϵ �
SN − 1

2(N − 1)
, (66)

provides a global optimum. Te minimum loss is

Lmin � 􏽘
i

πA(i) − Ai( 􏼁
2

+ 􏽘
j

πB(j) − Bj􏼐 􏼑
2

� 􏽘
N− 1

i�1
πA(i) − Ai( 􏼁

2
+ 􏽘

N− 1

j�1
πB(j) − Bj􏼐 􏼑

2
+ πA(N) − AN( 􏼁

2
+ πB(j) − BN( 􏼁

� 􏽘
N− 1

i�1
ϵ2 + 􏽘

N− 1

j�1
ϵ2 + − (N − 1)ϵ{ }

2
+ − (N − 1)ϵ{ }

2

� (N − 1)ϵ2 + (N − 1)ϵ2 + (N − 1)
2ϵ2 + (N − 1)

2ϵ2

�
N

2(N − 1)
· SN − 1( 􏼁

2
.

(67)

Note that 􏽥P is an example of the global optima, and there
could be other matrices that provide the same minimum
loss.

Terefore, Teorem 2 was proven.

2.4. Teorem 3. Tus far, we presented two theorems con-
cerning two players and N arms. In this section, we consider
the case where M players exist and where M is greater than
two. Let the players be called players A, B, C, etc. Moreover,
the preference of player X for arm i is denoted by X†

i . As in
the original problem,

􏽘
i

X
†
i � 1, X

†
i ≥ 0, (68)

holds. Te sum of the preferences for each arm is denoted as
popularity:

S
†
i � A

†
i + B

†
i + C

†
i + · · · . (69)

We defne dx as the arm index selected by the xth player.
Ten, p†

d1 ,d2 ,...,dM
represents the joint selection probability of

the xth player selecting arm dx. Te collection of joint se-
lection probabilities is called the joint selection probability
tensor. Te satisfed preference or resultant selection
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probability for player X comprises the sum of all proba-
bilities of cases in which the xth player selects arm i:

π†
x(i) � 􏽘

d1 ∉ i{ }

􏽘

d2 ∉ i,d1{ }

· · · 􏽘

dM ∉ i,d1 ,d2 ,...,dM− 1{ }

p
†
d1 ,d2 ,...,dx�i,...,dM

􏽼√√√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√√√􏽽
Summationwithout thexth player

.

(70)

Te loss L† is defned as the sum of the squares of the gap
between the preferences and the satisfed preferences.

L
†

� 􏽘
x

􏽘
i

π†
x(i) − X

†
i􏼐 􏼑

2
. (71)

Here, the xth player is called player X.

2.4.1. Statement

Theorem 3. Suppose that there are M players and N arms. If
any S†i is greater than one, it is not possible to make the loss L†

equal to zero.

2.4.2. Proof by Contradiction. We suppose without loss of
generality that S†1 > 1. We frst assume that it is possible to
make the loss L† equal to zero and then prove that this leads
to a contradiction. If the loss L† becomes zero, the following
are required:

A
†
1 � 􏽘

d2∉ 1{ }

􏽘

d3∉ 1,d2{ }

· · · 􏽘

dM∉ 1,d2 ,d3,...,dM− 1{ }

p
†
1,d2 ,d3 ,...,dM

,
(72)

B
†
1 � 􏽘

d1∉ 1{ }

􏽘

d3∉ d1 ,1{ }

· · · 􏽘

dM∉ d1 ,1,d3 ,...,dM− 1{ }

p
†
d1 ,1,d3 ,...,dM

,
(73)

C
†
1 � 􏽘

d1∉ 1{ }

􏽘

d2∉ d1 ,1{ }

· · · 􏽘

dM∉ d1 ,d2 ,1,...,dM− 1{ }

p
†
d1 ,d2 ,1,...,dM

⋮
. (74)

Terms that appear on the right-hand side of (72) are not
identical to those on the right-hand side of (73) because
d1 ≠ 1 in (73). Similarly, any term on the right-hand side of
(72) is not identical to a variable on the right-hand side of all
equations (73) and (74) . . .. Terefore, if we consider the
sum of the right-hand sides of (72)–(74), . . ., it should be
smaller than or equal to the sum of all elements in the joint
selection probability tensor, which is 1.

In contrast, if we take the sum of the left-hand sides of
(72)–(74), . . ., we get A†

1 + B†
1 + C†

1 + · · · � S†1. Tus, by
comparing both sides, we obtain S†1 ≤ 1. Tis result con-
tradicts the assumption that S†1 > 1.

Hence, with a proof by contradiction, Teorem 3 holds
for any number of players and arms.

2.5. Conjecture. Te construction method introduced in
Teorem 1 is expected to be applicable to general M players.
Here, we propose the following conjecture.

Conjecture 1. Suppose that there are M players and N arms.
If all the values of S†i are less than or equal to one, it is possible
to make the loss L† equal to zero.

Tis conjecture seems true; however, thus far, the proof
has not been completed in generality and is left for future
studies.

3. Numerical Demonstrations

Tis section introduces several baseline models that output a
joint probability selection matrix for the probabilistic
preferences of two players. Ten, we show the extent to
which the loss can be improved by using the construction
method of the optimal joint probability selection matrix
introduced in Teorems 1 and 2 (henceforth, “the optimal
satisfaction matrix”). Te defnitions of the notations, such
as preference and loss, follow those in Section 2.1.

3.1. Baselines

3.1.1. Uniform Random. In what we call the “uniform ran-
dom” method, the resulting joint selection probability matrix is
such that all elements are equal except for the diagonals, which
are flled with zeros. In other words, decision conficts never
occur; however, the selection is determined completely ran-
domly by the two players. If we consider the preference settings
shown in Table 3, the output of this method is

0
1
6

1
6

1
6

0
1
6

1
6

1
6

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (75)

3.1.2. Simultaneous Renormalization. In this method, the
product of the preferences of both players is considered frst.
Ten, the diagonals where decision conficts occur are
modifed to zero, and fnally, the whole joint selection
probability matrix is renormalized so that the sum is 1. Te
formula used is

ri,j �

Ai · Bj, (i≠ j),

0, (i � j),

⎧⎪⎨

⎪⎩

pi,j �
ri,j

􏽐i,jri,j

.

(76)

Table 3: Example of a preference setting.

Player Arm 1 Arm 2 Arm 3
A 0.3 0.25 0.45
B 0.5 0.2 0.3
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Te joint selection probability matrix generated by this
simultaneous renormalization method for the case in Table 3
is

0 0.06 0.09

0.125 0 0.075

0.225 0.09 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠/0.665 �

0 0.090 0.1353

0.1880 0 0.1128

0.3383 0.1353 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(77)

3.1.3. Random Order. In what we call the “random order”
method, the players frst randomly determine in which order
they will draw arms.Tis was inspired by the random priority
mechanism proposed by Abdulkadiroğlu and Sönmez where
preferences are deterministic [32]. Instead, we consider
probabilistic preference profles. Each player selects an arm
based on a predetermined order; however, the arms already
drawn by the previous players cannot be selected again. Tus,
the selection probabilities for those arms are set to zero.
Under the settings in Table 3, if we want to calculate p1,2, two
possible orders are considered. In the frst case, player A
draws frst. In this case, the joint selection probability is

0.3 ·
0.2

1 − 0.5
� 0.12. (78)

In the other case, player B draws frst, and the probability
is

0.2 ·
0.3

1 − 0.25
� 0.08. (79)

Terefore, considering the average,

p1,2 �
0.12 + 0.08

2
� 0.1. (80)

Similarly, we can calculate all joint selection probabili-
ties, and the resulting matrix is

0 0.1 0.1718

0.1674 0 0.1151

0.3214 0.1243 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (81)

3.2. Performance Comparison. We compare the loss L of
uniform random, simultaneous renormalization, random or-
der, and the optimal satisfaction matrix. Four preference set-
tings are examined to evaluate the performance of eachmethod.
Namely, the degree of satisfaction with the players’ preferences
is investigated by comparing the loss L. ci is used as a nor-
malization term to ensure that the sum of the preference is one.

(1) Arithmetic progression and same preference.

A1: A2: · · · : AN � B1: B2: · · · : BN �
(1: 2: · · · : N)

c1
,

c1 �
(N + 1)N

2
.

(82)

(2) Modifed geometric progression with common ratio
2 and same preference.

A1: A2: · · · : AN � B1: B2: · · · : BN �
1: 1: 2: · · · : 2N− 2

􏼐 􏼑

c2
,

c2 � 2N− 1
.

(83)

(3) Modifed geometric progression with common ratio
2 and reversed preference.

A1: A2: · · · : AN � BN: BN− 1: · · · : B1 �
1: 1: 2: · · · : 2N− 2

􏼐 􏼑

c3
,

c3 � 2N− 1
.

(84)

(4) Geometric progression with common ratio 3 and
same preference.

A1: A2: · · · : AN � B1: B2: · · · : BN �
1: 3: · · · : 3N− 1

􏼐 􏼑

c4
,

c4 �
3N

− 1
2

.

(85)

In cases (1)–(3), the optimal satisfaction matrix achieves
L � 0 because ∀i; Si ≤ 1, whereas in case (4), it is impos-
sible to achieve L � 0 because

SN � 2 ·
3N− 1

􏽐
N− 1
i�0 3i

�
4 · 3N− 1

3N
− 1
>

3N

3N
− 1
> 1. (86)

For N, the following numbers are used.

N � 3, 4, 5, . . . , 50. (87)

Figure 3 summarizes loss L as a function of the number
of arms N accomplished by each method.

In all cases, the optimal satisfaction matrix performs the
best, followed by random order, simultaneous renormali-
zation, and uniform random. Te result in case (1) shows
that loss decreases with an increase in the number of arms
for all methods. Tis trend is because our choice of loss is
similar to the L2-norm.Te absolute value of each preference
Ai, Bi decreases with an increase in the number of arms.

In the real world, the ratio of preference settings in case
(2) is likely to appear more frequently than in case (1). For
uniform random, simultaneous renormalization, and ran-
dom order, the loss increases with the number of arms when
the two players have the same preference. In contrast, the
results show that the optimal satisfaction matrix consistently
achieves 0-loss, and this underlines the importance of the
construction method of the optimal joint selection proba-
bility matrix in the real world, where there are a vast number
of choices.

Te result in case (3) shows that simultaneous
renormalization and random order exhibit good accuracy
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together with the optimal satisfaction matrix. Tis result is
due to the fact that the probability of decision conficts
happening is signifcantly smaller in this case (3), where the
players have strong, reversed preferences. Te diagonal

terms are renormalized in simultaneous renormalization,
which perturbs the other terms in the joint selection
probability matrix. In case (3), these diagonal terms are
smaller than in the other cases; therefore, perturbations to
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Random order
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20 30 40 5010
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Figure 3: Loss comparison. Y axes are log scale for cases (1)–(3). Lines for the optimal satisfaction matrix overlap with X axes for these cases
to show the loss is zero. (1) Arithmetic progression + same preference, (2) geometric progression with common ratio 2 + same preference, (3)
geometric progression with common ratio 2 + reversed preference, and (4) geometric progression with common ratio 3 + same preference.
For cases (1)–(3), the minimum loss is zero, while for case (4), it is greater than zero.

Table 4: Example of [Case 1].

Player Arm 1 Arm 2 Arm 3 Arm 4 Total preference T

Player A 0.1 0.2 0.3 0.4 1.0
Player B 0.2 0.2 0.1 0.5 1.0
Popularity S 0.3 0.4 0.4 0.9 2.0

Table 5: Preference profle for the remaining part in [Case 1].

Player Arm 2 Arm 3 Arm 4 Total preference T

Player A 0.2 0.3 0.2 0.7
Player B 0.2 0.1 0.4 0.7
Popularity S 0.4 0.4 0.6 1.4
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the other terms are reduced. In random order, the second
player sets his/her preference for the arm drawn by the frst
player to zero; however, in the setup of case (3), this pref-
erence tends to be small because the frst player is more likely
to select an arm with a higher preference, which is an
unfavored arm for the second player. Tis implies that the
second player can select an arm based on a preference almost
equal to his/her original preference.

In case (4), SN is greater than 1, and thus, the optimal
satisfaction matrix also does not achieve 0-loss. However, at
approximately N � 50, the loss for random order is ap-
proximately 1.2 times smaller than the loss for simultaneous
renormalization, whereas the optimal loss is almost twice as
small as the loss for random order.

4. Conclusion

In this study, we theoretically examined how to maximize the
satisfaction of each player by designing joint selection proba-
bilities properly while avoiding decision conficts when there are
multiple players with probabilistic preferences. Te present
study demonstrated how to accomplish confict-free stochastic
decision-making among multiple players, wherein the prefer-
ence of each player is highly appreciated. We clarifed the
condition when the optimal joint selection probabilities per-
fectly eliminate the deviation of the resulting choice selection
probabilities and the probabilistic preference of the player in
two player, N-choice situations, which leads to what we call
zero-loss realizations. Furthermore, even under circumstances
wherein zero loss is unachievable, we showed how to construct,
what we call, the optimal satisfaction matrix, and whose joint
selection probabilities minimize the loss. Furthermore, we
generalized the theory to M-player situations (M≥ 3) and
proved the conditions under which zero-loss joint selection was
impossible. In addition, we numerically demonstrated the
impact of the optimal satisfaction matrix by comparing several
approaches that could provide confict-free joint decision-
making.Te situation addressed in this study is very generic and
can be widely applied to scenarios such as communication
technology, multiagent reinforcement learning, and resource
allocation, where multiple players make probabilistic choices,
and choosing the same option is detrimental.

Tere are still many interesting future topics, including
the mathematical proof of the conjecture shown in this
study, which discusses the condition of zero-loss confict-

free joint stochastic selection involving an arbitrary number
of players. Te detailed analysis of situations when we re-
place loss with other metrics such as KL divergence also
remains to be explored. Furthermore, extending the dis-
cussions to external environments and not just player sat-
isfaction will be important for practical applications. Tis
study paves the way for multiagent confict-free stochastic
decision-making.

Appendix

A. Construction Procedures for Assumption 1

In the induction step presented in Section 2.2, we assumed
the existence of pi,js that satisfy certain conditions, and we
proved that perfect satisfaction is achievable using these pi,js.
Here, we prove this assumption, namely, Assumption A.1 is
true.

Assumption A.1. Tere exist 􏽢pK,1, 􏽢pK,2, . . . , 􏽢pK,N+1,
􏽢p1,K, 􏽢p2,K, . . . , 􏽢pN+1,K that satisfy all of the following con-
ditions (A.1)–(A.5).

Te sum of the Kth row is equal to 􏽢AK.

􏽘

N+1

j�1

􏽢pK,j � 􏽢AK. (A.1)

Te sum of the Kth column is equal to 􏽢BK.

􏽘

N+1

i�1

􏽢pi,K � 􏽢BK. (A.2)

Te sum of the jth column without the Kth row is
nonnegative.

􏽘
i≠K

􏽢pi,j ≥ 0⇔􏽢pK,j ≤ 􏽢Bj(j≠K). (A.3)

Te sum of the ith row without the Kth column is
nonnegative.

􏽘
j≠K

􏽢pi,j ≥ 0⇔􏽢pi,K ≤ 􏽢Ai (i≠K). (A.4)

In the gray-shaded area of the joint selection probability
matrix as follows, all remaining popularities are less than or

Table 7: Preference profle for the remaining part in [Case 2].

Player Arm 2 Arm 3 Arm 4 Total preference T

Player A 0.1 0.15 0.4 0.65
Player B 0.3 0.35 0.0 0.65
Popularity S 0.4 0.5 0.4 1.3

Table 6: Example of [Case 2].

Player Arm 1 Arm 2 Arm 3 Arm 4 Total preference T

Player A 0.25 0.1 0.15 0.5 1.0
Player B 0.1 0.35 0.35 0.2 1.0
Popularity S 0.35 0.45 0.5 0.7 2.0
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equal to the remaining total preference. Note that
􏽢SK � min 􏽢Si􏽮 􏽯.

(A.5)

Now, we can systematically determine 􏽢pi,js in the Kth
row or the Kth column of the joint selection probability
matrix to show that Assumption A.1 is correct; that is, these
􏽢pi,js fulfll the conditions in (A.1)–(A.5). We cannot ar-
bitrarily fll in the values in the Kth row or the Kth column
such that their sum is 􏽢AK and 􏽢BK, respectively; instead, we
must consider the preferences of the other arms.
(A.3)–(A.5) give us boundaries for 􏽢pK,js and 􏽢pi,Ks to exist.
Not only must we ensure that 􏽢pK,j and 􏽢pi,K do not exceed
these boundaries, but we must also ensure that a sufcient
probability is assigned to the most popular arm V; oth-
erwise, the left-hand side of (A.5) can sometimes be greater
than the right-hand side for arm V. We consider the fol-
lowing three cases depending on the size relation of
􏽢AK, 􏽢BV, 􏽢BK, 􏽢AV. For each case, it is possible to construct the
optimal 􏽢pi,js that satisfy all conditions (A.1)–(A.5). Tese
three cases are collectively exhaustive.

[Case 1] 􏽢AK ≤ 􏽢BV and 􏽢BK ≤ 􏽢AV

[Case 2] 􏽢AK > 􏽢BV

[Case 3] 􏽢BK > 􏽢AV

Arm K represents the arm with the lowest popularity,
and arm V is the arm with the highest popularity. All arms
except for arm V satisfy the following condition:

􏽢Si ≤T − 􏽢SK. (A.6)

[Case 1] 􏽢AK ≤ 􏽢BV and 􏽢BK ≤ 􏽢AV

Te following 􏽢pi,js on the K th row or Kth column
satisfy the conditions (A.1) and (A.2).

􏽢pK,V

􏽢pV,K � 􏽢BK,

􏽢pK,j � 0 (j≠V),

􏽢pi,K � 0 (i≠V).

(A.7)

In addition, (A.3) and (A.4) are satisfed because
􏽢AK ≤ 􏽢BV and 􏽢BK ≤ 􏽢AV in this particular case. Moreover,
(A.5) is satisfed because for i � V,

􏽢pK,V + 􏽢pV,K

� 􏽢SK ≥ 􏽢SK − T − 􏽢SV􏼐 􏼑 � 􏽢SV + 􏽢SK − T,
(A.8)

which leads to
􏽢AV − 􏽢pV,K􏼐 􏼑 + 􏽢BV − 􏽢pK,V􏼐 􏼑≤T − 􏽢SK. (A.9)

For the other is, (A.5) follows because they satisfy (A.6),
and (A.6) is equivalent to (A.5) when 􏽢pK,i � 􏽢pi,K � 0.
Hence, 􏽢pi,js described in (A.7) fulfll all conditions
(A.1)–(A.5) in [Case 1].
Table 4 illustrates an example of a case where 􏽢AK ≤ 􏽢BV and
􏽢BK ≤ 􏽢AV. Here, the most popular arm K is arm 1 and the
least popular arm V is arm 4. In this case, the frst row and
frst column of the joint selection probability matrix should
be flled as

(A.10)

Ten, the remaining gray-shaded region should satisfy
the preference setting described in Table 5. Each
popularity is less than or equal to the total preference in
the remaining part, i.e., the assumption of Lemma 1
holds for this part.

[Case 2] 􏽢AK > 􏽢BV

In this case, as 􏽢SK ≤ 􏽢SV, it follows that
􏽢BK < 􏽢AV. (A.11)

When 􏽢BV + 􏽢B1 < 􏽢AK, let m be the arm index satisfying
the inequality
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􏽢BV + 􏽢B1 + 􏽢B2 + · · · + 􏽢Bm− 1􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

does not contain􏽢BV or􏽢BK

< 􏽢AK ≤ 􏽢BV + 􏽢B1 + 􏽢B2 + · · · + 􏽢Bm􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

does not contain􏽢BV or􏽢BK

.
(A.12)

When 􏽢BV + 􏽢B1 ≥ 􏽢AK, we defne m � 1. m always exists
because

􏽢BV + 􏽢B1 + 􏽢B2 + · · · + 􏽢BN+1􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

does not contain􏽢BV or􏽢BK

� T − 􏽢BK ≥ 􏽢AK.
(A.13)

Ten,

[Whenm � 1],

􏽢pK,V � 􏽢BV, 􏽢pK,1 � 􏽢AK − 􏽢BV, 􏽢pK,j � 0 (j ∉ 1, V{ }),

􏽢pV,K � 􏽢BK, 􏽢pi,K � 0 (i≠V),

[Whenm≥ 2],

􏽢pK,K � 0, 􏽢pK,V � 􏽢BV, 􏽢pK,j � 􏽢Bj (j<m and j ∉ K, V{ }),

􏽢pK,m � 􏽢AK − 􏽢BV + 􏽢B1 + 􏽢B2 + · · · + 􏽢Bm− 1􏼐 􏼑
􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽

does not contain􏽢BK

, 􏽢pK,j � 0 (m< j and j ∉ K, V{ }),

􏽢pV,K � 􏽢BK, 􏽢pi,K � 0 (i≠V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.14)

satisfy conditions (A.1) and (A.2). Moreover, 􏽢pi,js in
(A.14) fulfll (A.3) because for j � V, 1, 2, . . . , m − 1,

􏽢pK,j � 􏽢Bj ≤ 􏽢Bj. (A.15)

For j � m, the defnition of m satisfes the con-
dition􏽢AK ≤ 􏽢BV + 􏽢B1 + 􏽢B2 + · · · + 􏽢Bm􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

does not contain􏽢BV or􏽢BK

, which implies that

􏽢AK − 􏽢BV + 􏽢B1 + 􏽢B2 + · · · + 􏽢Bm− 1􏼐 􏼑
􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽

does not contain􏽢BK

≤ 􏽢Bm.
(A.16)

For j � m + 1, m + 2, . . . , N + 1,

􏽢pK,j � 0≤ 􏽢Bj. (A.17)

Furthermore, with 􏽢pi,j described in (A.14), condi-
tion (A.4) is also satisfed because for i � V, (A.11)
verifes

􏽢pV,K � 􏽢BK ≤ 􏽢AK, (A.18)

and for the other i,

􏽢pi,K � 0≤ 􏽢Ai. (A.19)

Finally, (A.5) is satisfed because for i � V,

􏽢pK,V + 􏽢pV,K

� 􏽢SV + 􏽢SK − T.
(A.20)

T − 􏽢AV − 􏽢AK is always nonnegative because T≥ 􏽢AV +
􏽢AK. (A.20) is equivalent to

􏽢AV − 􏽢pV,K􏼐 􏼑 + 􏽢BV − 􏽢pK,V􏼐 􏼑≤T − 􏽢SK. (A.21)

Te other is follow (A.6), and with the prerequisites
􏽢pi,K ≥ 0, 􏽢pK,i ≥ 0, it follows (A.5).
Terefore, 􏽢pi,js given in (A.14) satisfy all conditions
(A.1)–(A.5) in [Case 2]
Table 6 shows an example of [Case 2] Here, the most
popular arm K is arm 1 and the least popular arm V is
arm 4. In this case, m � 2 because
􏽢BV(� 0.2)< 􏽢AK(� 0.25)≤ 􏽢BV(� 0.2) + 􏽢B2(� 0.35). (A.22)

Terefore, the frst row and frst column of the joint
selection probability matrix should be flled as

(A.23)

Ten, the remaining gray-shaded region should satisfy
the preference setting described in Table 7. Each
popularity is less than or equal to the total preference in
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the remaining part, i.e., the assumption of Lemma 1
holds for this part.

[Case 3] 􏽢BK > 􏽢AV

Tis case is similar to [Case 2] If we swap 􏽢Ai and 􏽢Bi in
the discussion of [Case 2], we obtain 􏽢pi,js that satisfy all
conditions (A.1)–(A.5).

B. Convexity of loss L

When we derived the optimal joint selection probability
matrix in Section 2.3 of the main text, we used the fact that
the loss function L is convex. Here, we prove that the loss
function L is convex.

L � 􏽘
i

πA(i) − Ai( 􏼁
2

+ 􏽘
j

πB(j) − Bj􏼐 􏼑
2
. (B.1)

We prove that each (πA(i) − Ai)
2 and (πB(j) − Bj)

2 are
convex, and we know that L is convex because the sum of
convex functions is also convex.

Te frst term of L is defned as

L1 ≔ πA(1) − A1( 􏼁
2

� p1,2 + p1,3 + · · · + p1,N − A1􏼐 􏼑
2
.

(B.2)

Te Hessian matrix for L1 in terms of all
pi,js(i≠ j, i � 1, 2, . . . , N, j � 1, 2, . . . , N) is

H1 �
D O

O DO

􏼠 􏼡, (B.3)

where

D �

2 2 · · · 2

2 2 · · · 2

⋮ ⋮ ⋮ ⋮

2 2 · · · 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽺√√√√√√√􏽽􏽼√√√√√√√􏽻N− 1

, DO �

0 0 · · · 0

0 0 · · · 0

⋮ ⋮ ⋮ ⋮

0 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽺√√√√√√√􏽽􏽼√√√√√√√􏽻(N− 1)2

.
(B.4)

As this is a block diagonal matrix, the eigenvalues of H1
are the union of the eigenvalues of D and Do. Te eigen-

values of Do are obviously 0, 0, . . . , 0
􏽺√√√√􏽽􏽼√√√√􏽻(N− 1)2

, and those of D are

2(N − 1), 0, 0, . . . , 0
􏽺√√√√􏽽􏽼√√√√􏽻N− 2

.
Terefore, all eigenvalues of H1 are nonnegative, which

means that H1 is positively semidefnite, and this implies that
L1 is convex. Similarly, each (πA(i) − Ai)

2 and (πB(j) − Bj)
2

is convex because of the symmetry of the loss function, given
that i � 1 is not unique among all is. From the previous ar-
gument, we know that loss function L is convex.

C. Verification of the KKT Conditions

In Section 2.3.3 of the main text, where we derived the point
which satisfes all the KKT conditions, we defned new

notations and functions. Te fattened vector of a joint
selection probability matrix is defned as

p � p1,2 p1,3 · · · p1,N p2,1 p2,3 · · · p2,N · · · pN,N− 1( 􏼁
T
.

(C.1)

Functions h and gi,j are defned as

h(p) � 􏽘
i,j

pi,j − 1, gi,j(p) � − pi,j (i≠ j). (C.2)

Te problem can be written as

min
p

, L(p),

s.t. h(p) � 0, gi,j(p)≤ 0,
(C.3)

L(p)represents the loss corresponding to p. Because the
objective function and constraints are all convex, 􏽥p that satisfes
the KKT conditions as follows gives the global minimum.

∇L(􏽥p) + 􏽘
i,j

λi,j∇gi,j(􏽥p) + μ∇h(􏽥p) � 0, (C.4)

λi,jgi,j(􏽥p) � 0, (C.5)

λi,j ≥ 0, (C.6)

h(􏽥p) � 0.
(C.7)

Here, we show that

ϵ �
SN − 1

2(N − 1)
, (C.8)

μ � 2(N − 2)ϵ, (C.9)

λi,j �
2Nϵ, (i≠N and j≠N),

0, (otherwise),

⎧⎨

⎩ (C.10)

􏽥pi,j �

0, (i≠N and j≠N),

Ai + ϵ, (j � N),

Bj + ϵ, (i � N),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(C.11)

satisfy (C.4)–(C.7).

Condition C.1. Stationarity (C.4).
In the following argument, we call the element in each

vector, which is in the same dimension as pi,j “the (i, j) th
element” in a vector.

From the defnition of L, the (i, j) th element of ∇L(p),
denoted by ∇L(p)[i,j], is

∇L(p)[i,j] � 2 πA(i) − Ai( 􏼁 + 2 πB(j) − Bj􏼐 􏼑. (C.12)
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With 􏽥pi,j described in (C.11),

(∇L(􏽥p))[i,j] �
2ϵ + 2ϵ � 4ϵ, (i≠N and j≠N),

− 2(N − 1)ϵ + 2ϵ � − 2(N − 2)ϵ, (otherwise).
􏼨 (C.13)

In addition, with 􏽥pi,j and λi,j described in (C.10) and
(C.11), the (i, j) th element of 􏽐i,jλi,j∇gi,j(􏽥p) is

􏽘
i,j

λi,j∇gi,j(􏽥p)⎛⎝ ⎞⎠

[i,j]

�
− 2Nϵ, (i≠N and j≠N),

0, (otherwise).
􏼨

(C.14)

Moreover, the (i, j) th element of μ∇h(􏽥p) is

(μ∇h(􏽥p))[i,j] � 2(N − 2)ϵ. (C.15)

Terefore, stationarity is successfully achieved with 􏽥pi,j,
λi,j, and μ given in (C.8)–(C.11).

∇L(􏽥p) + 􏽘
i,j

λi,j∇gi,j(􏽥p) + μ∇h(􏽥p) � 0. (C.16)

Condition C.2. Complementary slackness (C.5).
From (C.10) and (C.11) in both cases where i≠N∧j≠N,

λi,jgi,j(􏽥p) � − λi,j
􏽥pi,j � 0≥ 0. (C.17)

Condition C.3. Dual feasibility (C.6).
Because SN − 1> 0, ϵ is positive and so is 2Nϵ. Tus,

λi,j ≥ 0. (C.18)

Condition C.4. Primal feasibility (C.7).
Because ϵ> 0, it follows that Ai + ϵ and Bj + ϵ are

nonnegative. Ten,

gi,j(􏽥p)≤ 0. (C.19)

Furthermore,

h(􏽥p) � 􏽘
i,j

pi,j − 1

� 􏽘
N− 1

i�1
Ai + ϵ( 􏼁 + 􏽘

N− 1

j�1
Bj + ϵ􏼐 􏼑 − 1

� 􏽘
N− 1

i�1
Ai + Bi( 􏼁 + 2(N − 1)ϵ − 1

� 2 − SN + SN − 1( 􏼁 − 1

� 0.

(C.20)

Terefore,

h(􏽥p) � 0, (C.21)

holds.
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