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Tis paper presents the design of an adaptive controller that solves the synchronization control problem of two identical
Nwachioma chaotic systems in a master-slave confguration. Te closed-loop stability is guaranteed by means of a Lyapunov-like
analysis. With the aim of verifying the feasibility and performance of the proposed approach, a comparison with an active control
algorithm is developed at the numerical simulation level. Based on such results, the master-slave Nwachioma chaotic system in
closed-loop with adaptive control is now being experimentally tested by using two personal computers and two low-cost Arduino
UNO boards. Te experimental results not only show the good performance of the adaptive control but also that Arduino UNO
boards are an excellent option for the experimental setup.

1. Introduction

It is well known that complex chaotic systems are nonlinear
dynamic systems characterized by being nonperiodic os-
cillators with high sensitivity to initial conditions and whose
solution can be hardly predictable in the long term [1, 2].
Despite the latter, these kind of systems are deterministic,
meaning that suitable control algorithms can be designed for
them [3, 4]. In this regard, the frst chaotic system was

presented by Lorenz in [5]. From that moment on, several
applications associated with chaotic systems have emerged.
Some of those are in the areas of neurosystems [6, 7],
chemical reactions [8, 9], secure communications [10–18],
turbines [19, 20], robotics [21–24], cryptosystems [25–29],
medicine [30–33], lasers [25, 34], among others.

When control strategies for complex chaotic systems are
designed, the tasks to be solved can be divided into the fol-
lowing: (1) chaos suppression and (2) synchronization. Te
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present paper is focused on the second control task. Hence, the
following state-of-the-art review describes some relevant
contributions related to the synchronization of chaotic systems.

1.1. Related Works. Te purpose of synchronization in
chaotic systems is to achieve that one or more systems, with
similar or diferent dynamics, converge to the same pre-
scribed trajectory. Such a synchronization is generally carried
out by means of a master-slave confguration. In this di-
rection, the pioneer paper of Pecora and Carroll [35] de-
scribed, for the frst time, the synchronization of the Lorenz
and the Rossler chaotic systems. Based on Pecora and Car-
roll’s contribution, the research related to the design of
controllers for synchronization of chaotic systems has been
intensively studied during the last four decades [36–89]. Te
proposed control strategies reported in those works can be
classifed as active control [36–42], nonlinear control [43–57],
linear feedback control [58–65], sliding modes [66–72], and
adaptive control [73–89]. Such a literature is described below.

1.1.1. Active Control. Based on the literature, the active
control approach was one of the frst control methods for
solving the synchronization problem. In this sense, Bai and
Lonngren in [36, 37] demonstrated that coupled Lorenz sys-
tems can be synchronized by active control theory. Te syn-
chronization was verifed at the simulation level. Meanwhile,
Tang et al. [38] introduced a control strength matrix in the
active control. With this extendedmethod, the authors showed
that the chaos complete synchronization can be achieved more
easily. Numerical simulations on Rossler, Liu’s four-scroll, and
Chen systems confrmed the latter. Also, Yassen [39] presented
simulation results of synchronizations between two diferent
chaotic systems: the Lorenz and Lü systems, the Chen and Lü
systems, and the Lorenz and Chen systems. On the other hand,
Pérez-Cruz et al. [40] investigated the synchronization of a new
three-dimensional chaotic system and, by means of Lyapunov
analysis, a nonlinear controller was designed in such a way that
the exponential convergence of the synchronization error was
guaranteed and the results of the numeric simulation verifed
the good performance of this controller. In [41] Varan and
Akful synchronized a hyperchaotic system and by using
a Lyapunov function, achieved global asymptotic stability;
numerical analysis was used to check the efectiveness of the
proposed active control design. Lastly, Zhu and Du in [42]
solved the antisynchronization of systems by using the active
control, and the feasibility of control was verifed via numerical
simulations.

1.1.2. Nonlinear Control. Related to the design of nonlinear
controllers for solving the synchronization problem, Suna et al.
[43] proposed a nonlinear control strategy for synchronizing
fve chaotic systems, where the performance of the proposed
approach was verifed by numerical simulations. Zheng
designed a nonlinear control in [44] to study multi-switching
combination synchronization of three diferent chaotic sys-
tems, i.e., two drive chaotic systems and a controlled response
chaotic system; simulation results depicted good performance

of the system in closed-loop. Likewise, Hettiarachchi et al.
presented a nonlinear control algorithm for solving the syn-
chronization problem over two time-delay coupled Hind-
marsh–Rose neurons [45], whose efectiveness of the proposed
approach was investigated through numerical simulations.
Additionally, Yadav et al. [46] developed a nonlinear control
method for combination-combination phase synchronization
in fractional-order nonidentical complex chaotic systems.
Simulation results were obtained, by using the
Adams–Bashforth–Moulton method, with the aim of showing
the performance of the system in closed-loop. Also, Yadav et al.
[47] analyzed a nonlinear control for the triple compound
synchronization among eight chaotic systems with external
disturbances, and the feasibility of the proposed control was
depicted through numerical simulations by using the Run-
ge–Kutta method. Ouannas et al. [48] used a nonlinear control
algorithm for the synchronization of a fractional hyperchaotic
Rabinovich master-slave pair and numerical simulations
demonstrated the validity and convergence of the proposed
synchronization scheme. Whereas, Abdurahman and Jiang
[49] introduced a nonlinear control strategy to investigate the
general decay projective synchronization (GDPS) problem of
a type of delayed memristor-based BAM neural networks;
numerical results were obtained and the efectiveness of the
proposed control was verifed. On the other hand, Al-Hayali
and Al-Azzawi [50] addressed the problem of synchronizing
4D identical Rabinovich hyperchaotic systems by using two
strategies: active and nonlinear control; the good performance
of the hyperchaotic systems in closed-loop was verifed via
simulation results. Another research was conducted by Al-
Obeidi and Al-Azzawi [51], where they reported a nonlinear
control strategy for chaos synchronization by using a 6D
hyperchaotic system and numerical simulations were carried
out to validate the efectiveness of the proposed control
technique. Subsequently, Al-Azzawi and Al-Obeidi [52] pro-
vided a nonlinear control for a new 6D hyperchaotic system
with real variables and a self-excited attractor. Te proposed
control allowed fnding the stability of error dynamics and its
performance was tested through numerical simulations. Also,
Trikha et al. [53] introduced a novel 3D fractional chaotic
system with two quadratic terms and designed a nonlinear
control strategy for solving the synchronization problem; the
simulations results demonstrated the efectiveness of the
proposed strategy. Lin et al. [54] addressed the issue of global
exponential synchronization for delayed impulsive and time-
varying delayed inertial memristor-based quaternion-valued
neural networks and the closed-loop system was verifed via
numerical simulations. Additionally, Jahanzaib et al. [55]
elaborated a nonlinear control scheme for a novel fractional-
order chaotic model with the aim of achieving the synchro-
nization of the system; simulations were obtained and the good
performance of the closed-loop system was demonstrated.
Another work was developed by Ouannas et al. [48], where
linear and nonlinear feedback controls were investigated and
both force the slave system to follow the trajectory set by the
master given diferent initial states; numerical simulations
validated the synchronization schemes. Also, Ouannas et al.
[56] developed two nonlinear control schemes to achieve as-
ymptotic convergence with the aim of solving the
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synchronization problem; experimental and simulation results
supported the proposed theory. Later, Mesdoui et al. [57]
designed nonlinear controls for solving the synchronization
problem in a nonlinear bacterial cultures reaction-difusion
model and the efectiveness of the proposed control was
verifed via simulation results.

1.1.3. Linear Feedback Control. Regarding this kind of
control, Wu [58] investigated the synchronization of the
general master-slave identical generalized Lorenz systems,
and the developed theory was validated via numerical sim-
ulations. Also, Yan and Yun [59] studied the synchronization
of an LC chaotic system via three types of state feedback
controls: (i) linear feedback control; (ii) adaptive feedback
control; and (iii) a combination of linear feedback and
adaptive feedback controls, where numerical simulations
demonstrated the obtained theoretical results. Whereas,
Rafkov and Balthazar in [60] formulated linear feedback
controllers for the control and synchronization of chaos
through an application of optimal control and Lyapunov
stability theories to guarantee the global stability of the
nonlinear error system; numerical simulations were provided
in order to demonstrate the efectiveness of this control
approach by achieving the synchronization of the hyper-
chaotic Rössler system. Later, Chen et al. [61] proposed the
global synchronization criteria for a class of third-order
nonautonomous chaotic systems consisting of cubic and
(or) intersecting nonlinearity terms under the master-slave
linear state error feedback control, whose efectiveness was
verifed through a numerical example. Likewise, Mobayen
and Tchier [62] studied the chaos synchronization problem
for a class of uncertain chaotic systems with Lipschitz non-
linearity conditions using an LMI-based state feedback sta-
bilization control method and simulation results were given
to show the efciency of the control scheme. On the other
hand, Zhao et al. addressesH∞ synchronization for uncertain
chaotic systems with one-sided Lipschitz nonlinearity under
the output and intrinsic state delays [63], where numerical
simulations proved the efectiveness of the proposed meth-
odology by achieving the synchronization of Chua’s circuit
chaotic systems. Moreover, Mahmoud et al. [64] designed
a single-state feedback track synchronization control algo-
rithm and the efectiveness of the proposed algorithm is well
illustrated via an exhaustive numerical simulation. Lastly,
Azar et al. [65] explored the stabilization and synchronization
of a chaotic system by means of a state feedback control that
moves the eigenvalues of the linearized chaotic system to
a point where the state variables reach equilibrium; numerical
experiments and simulation results were reported with the
aim of showing the efectiveness of the proposed approach.

1.1.4. Sliding Mode Control. Another control technique used
for synchronization of chaotic systems is the sliding mode.
For example, Siddique and Rehman [66] presented an
adaptive integral sliding mode control design method for
parameter identifcation and hybrid synchronization of
chaotic systems connected in ring topology, where the ef-
fectiveness of the proposed technique was validated through

numerical examples. Also, Mufti et al. [67] developed the
control design method for the transmission projective syn-
chronization of multiple nonidentical coupled chaotic sys-
tems, whose performance in closed-loop was checked via
numerical simulations. Another work was realized by Mufti
et al. [68], where the synchronization and antisynchroniza-
tion between the Chua and modifed Chua oscillators were
obtained and the efectiveness of the control strategies was
validated via numerical simulations. Based on the Lyapunov
stability theory and fractional-order integral sliding surface,
a novel active sliding mode controller to synchronize
fractional-order complex chaotic systems was proposed by
Nian et al. [69] and was verifed through numerical simu-
lations. Another work was developed by Song et al. [70],
where they focused on the robust synchronization issue for
drive-response fractional-order chaotic systems applying the
sliding mode control scheme; practical examples to illustrate
the feasibility of the theoretical results are developed. In [71],
Wan et al. proposed a discrete sliding mode controller to
ensure the synchronization of chaotic systems and experi-
mental results were given to demonstrate the performance of
the proposed cryptosystems. Te synchronization problem of
chaotic systems using the integral-type sliding mode control
for hyper-chaotic systems is considered in [72], where sim-
ulation results confrm the success of the designed control.

1.1.5. Adaptive Control. Tis approach is used when the
parameters of the chaotic system are unknown. For example,
Wu et al. [73] showed how adaptive controllers can be used to
adjust the parameters of two Chua’s oscillators to synchronize
them via simulations. Whereas, based on the Lyapunov sta-
bility theory, Liao developed an adaptive control law [74] for
synchronizing two Lorenz systems; the simulation results
validated the proposed approach. In [75], Behinfaraz et al.
developed a new fractional-order chaotic system where the
parameter’s adaption laws were obtained to design adaptive
controllers using the Lyapunov stability theory and numerical
examples were carried out to verify the performance of the
controllers. By means of the Lyapunov theory, Wang et al. [76]
proposed a nonlinear adaptive system to ensure the syn-
chronization of two Hindmarsh–Rose neuron models and its
simulation results verifed the feasibility and efectiveness of the
designed controller. Also, Pérez-Cruz [77] added a robustifying
term to the adaptive control law for the stabilization and
synchronization of an uncertain Zhang system; the perfor-
mance of this robust approach was verifed through numerical
simulations. In [78], Khennaoui et al. proposed a one-
dimensional adaptive control strategy that forces the states
of discrete-time chaotic systems to tend asymptotically to zero;
numerical results were presented to confrm the success of
these synchronization schemes. Later, Luo et al. [79] proposed
an adaptive synchronization scheme, which combines the best
of the Chebyshev neural network, extended state tracking
diferentiator, and adaptive backstepping for the fractional-
order chaotic arch microelectro-mechanical system; the ef-
fectiveness of the proposed adaptive synchronization scheme
was demonstrated through simulation results. On the other
hand, Xu et al. in [80] investigated an adaptive event-triggered
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transmission strategy for the exponential synchronization of
chaotic Lur’e systems; the designed control schemewas verifed
through numerical examples. Based on the complex-variable
inequality and stability theory for the fractional-order
complex-valued system, Zhang et al. presented [81] a new
scheme for adaptive synchronization of fractional-order
complex-variable chaotic systems with unknown complex
parameters, where simulation results proved the efectiveness
of the synchronization scheme. Liu et al. [82] developed the
fractional Mittag–Lefer stability theory, that is, an adaptive,
large-scale, and asymptotic synchronization control method
for the synchronization of two diferent fractional-order
chaotic systems under the conditions of determined param-
eters and uncertain parameters; the simulation results proved
the good reliability of the controller. Another work was re-
ported by Singh and Roy in [83] developed three diferent well-
known control techniques: nonlinear active control, sliding
mode control, and adaptive control, which are used for syn-
chronization between various pairs of chaotic systems; simu-
lation results are presented, which refect the successful
achievement of the objectives. In [84], Gao et al. proposed the
cluster synchronization of a class of nonlinearly coupled Lur’e
networks through a novel adaptive pinning control strategy,
whose performance was depicted through numerical simula-
tions. Another work was reported by Azar and Serrano in [85],
where the design of an adaptive terminal sliding mode control
for the stabilization of chaotic systems was proposed and
experimental results were introduced for validating the control
scheme. Javan et al. [86] showed a synchronization scheme
using a robust-adaptive control procedure with the help of the
Lyapunov stability theorem and the experimental results
revealed the capability and fexibility of this method in syn-
chronization of chaotic systems. Later, Javan et al. [87] de-
veloped an adaptive control method, and the defnition of
appropriate Lyapunov function was used for synchronization
for chaotic systems; the results showed the efectiveness of the
proposed synchronization technique in the medical images
encryption for telemedicine application. One more piece of
research was introduced by Wang and Rongwei [88], where
they applied the adaptive control method to investigate the
design of a universal controller to achieve the hybrid syn-
chronization of a class of chaotic systems; numerical examples
verify and validate the efectiveness of the proposed theoretical
results. In addition, Khennaoui et al. [89] proposed adaptive
control laws for solving the synchronization problem in three
diferent types of chaotic systems, the Stefanski, Rossler, and
Wang systems where the performance of the systems in closed-
loop was verifed by simulation results.

1.2. Discussion of Related Work, Motivation, and
Contribution. Te literature shows that several types of
complex chaotic systems have been proposed with the aim
of solving the synchronization control problem. Te
control strategies, usually developed, are active control
[36–42], nonlinear control [43–57], linear feedback control
[58–65], sliding modes [66–72], and adaptive control
[73–89]. Also, on the one hand, it was observed that exper-
imental results about synchronization of chaotic systems are

very scarce [90–97]. On the other hand, recently a new 3D
chaotic system with four nonlinearities was proposed in [98].
Surprisingly, a control algorithm for solving the synchroni-
zation control problem for this system has not been yet
proposed.

Motivated by the aforementioned and by the fact that
complex chaotic systems can be applied in a wide range of
felds, the contribution of this paper is to solve the syn-
chronization for the chaotic system [98] by means of pro-
posing an adaptive control. Moreover, with the purpose of
enhancing this contribution, a comparison between an ac-
tive control scheme and the adaptive control algorithm
developed in this research is presented. Later, the experi-
mental implementation of the adaptive control on the
Nwachioma chaotic system is carried out through a novel
experimental realization. For this latter, a low-cost testbed
composed of two personal computers and two Arduino
UNO boards along with MATLAB-Simulink are used.

Te rest of the paper is structured as follows: in Section 2,
the mathematical model of the new Nwachioma chaotic
system in the master-slave confguration is presented and
the adaptive control for solving the synchronization control
problem is developed. Te comparison between an active
control and the adaptive control proposed here along with
its experimental implementation is presented in Section 3.
Finally, conclusions related to this research and future work
are described in Section 4.

2. Materials and Methods

Tis section presents the generalities of the Nwachioma
chaotic system and the master-slave confguration to be used
throughout this paper. Also, the design of the adaptive
control that achieves the synchronization of the master-slave
confguration is introduced.

2.1. Nwachioma Chaotic System and Master-Slave
Confguration. Te Nwachioma chaotic system was pro-
posed in [98]. Te mathematical model describing its be-
havior is given by the following equations:

_x1 � a1x1 + a2x1x3 + a3x2x3,

_x2 � a4x2 + a5x1x3 + a6,

_x3 � a7x3 + a8x
2
1x2 + a9,

(1)

where ai (for i � 1, 2, . . . , 9) are constants and a8x
2
1x2 as-

sures the boundedness of the system [98]. As can be ob-
served in the previous equations, the Nwachioma system is
autonomous, i.e., the system does not have inputs that
modify its dynamics. On the other hand, the behavior of
such a system is purely chaotic when the following constant
values are considered in (1):

a1 � −0.1, a2 � 0.15, a3 � 0.18, a4 � 3.9,

a5 � −1.5, a6 � −4, a7 � −4.9, a8 � 2.5, a9 � 0,
(2)

and also when the initial conditions are set to x1(0) � 1,
x2(0) � 3, and x3(0) � 8 (see Figure 1).
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As can be observed in Figure 1, the planes and phase
portraits of system (1) show the self-excited attractor,
meaning that the states of the system are bounded over
a specifc region. It is worth mentioning that the system is
very sensitive to initial conditions due to the chaoticity of its
dynamics. Tis can be confrmed through the simulation
results depicted in Figure 2. Such results show the behavior
of the Nwachioma system when two sets of initial conditions
are used. Te frst set of initial conditions were reported in
[98] and were defned as x1(0) � 1, x2(0) � 3, and
x3(0) � 8, whereas the second set are those proposed in this
paper and are prescribed to be x1b(0) � 1, x2b(0) � 3.002,
and x3b(0) � 8.

Te master-slave Nwachioma chaotic system is com-
posed of two subsystems: a master Nwachioma system and
a slave Nwachioma-alike system. Te frst one is defned by
the following autonomous dynamics:

_x1m � a1x1m + a2x1mx3m + a3x2mx3m,

_x2m � a4x2m + a5x1mx3m + a6,

_x3m � a7x3m + a8x
2
1mx2m + a9,

(3)

and it is identifed through the subscript m. On the other
hand, the slave system is denoted with the subscript s and,
compared with the master, it is not an autonomous system,
since it is commanded through inputs u1, u2, and u3. Te
dynamics of the slave is defned as follows:

_x1s � a1x1s + a2x1sx3s + a3x2sx3s + u1,

_x2s � a4x2s + a5x1sx3s + a6 + u2,

_x3s � a7x3s + a8x
2
1sx2s + a9 + u3,

(4)

where constants ai are equal in both systems. However,
when the adaptive control is designed such constants are
considered to be unknown.

2.2. Adaptive Synchronization. Te objective of the adaptive
synchronization control proposed in this section is to
achieve that (x1s, x2s, x3s)⟶ (x1m, x2m, x3m). For such an
aim, the following synchronization errors are defned:

e1 � xs1 − xm1,

e2 � xs2 − xm2,

e3 � xs3 − xm3.

(5)

Tus, from (5), the error dynamics is given by

_e1 � _xs1 − _xm1,

_e2 � _xs2 − _xm2,

_e3 � _xs3 − _xm3.

(6)

After replacing the dynamics (3) and (4) in (6), the
following error dynamics in open-loop is obtained:

_e1 � a1xs1 + a2xs1xs3 + a3xs2xs3 + u1 − a1xm1 + a2xm1xm3 + a3xm2xm3( ,

_e2 � a4xm2 + a5xs1xs3 + a6 + u2 − a4xm2 + a5xm1xm3 + a6( ,

_e3 � a7xs3 + a8x
2
s1xs2 + a9 + u3 − a7xm3 + a8x

2
m1xm2 + a9 .

(7)
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Figure 1: Planes and phase portraits of the Nwachioma chaotic system, where the self-attractor of the system can be observed. Te initial
conditions considered for the plane and the phase portrait are x1(0) � 1, x2(0) � 3, and x3(0) � 8.

Complexity 5



Lastly, by considering (5) into (7), the error dynamics in
open-loop can be expressed in terms of the master dynamics
and the synchronization errors as follows:

_e1 � a1e1 + a2 e1e3 + xm3e1 + xm1e3(  + a3 e2e3 + xm2e3 + xm3e2(  + u1,

_e2 � a4e2 + a5 e1e3 + xm1e3 + xm3e1(  + u2,

_e3 � a7e3 + a8 e
2
1e2 + 2xm1e1 + x

2
m1e2 + xm2e

2
1 + 2xm1xm2e1  + u3.

(8)
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Figure 2: Simulation results showing the sensitivity of the Nwachioma chaotic system when small variations are considered in the initial
conditions. Te initial conditions considered in this simulation are x1(0) � 1, x2(0) � 3, x3(0) � 8, x1b(0) � 1, x2b(0) � 3.002, and
x3b(0) � 8.
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2.2.1. Adaptive Control Design. With the intention of
achieving that the slave subsystem tracks the master

subsystem, i.e., (x1s, x2s, x3s)⟶ (x1m, x2m, x3m), the fol-
lowing adaptive inputs u1, u2, and u3 are designed:

u1 � −a1e1 − a2 e1e3 + xm3e1 + xm1e3(  − a3 e2e3 + xm2e3 + xm3e2(  − k1e1,

u2 � −a4e2 − a5 e1e3 + xm1e3 + xm3e1(  − k2e2,

u3 � −a7e3 − a8 e
2
1e2 + 2xm1e1 + x

2
m1e2 + xm2e

2
1 + 2xm1xm2e1  − k3e3.

(9)

where ai (for i � 1, 2, 3, 4, 5, 7, 8) are the estimated param-
eters and gains ki (for i � 1, 2, 3) are greater than zero. When
replacing (9) in (8), and after defning the error in the

unknown parameters as ai � ai − ai (for i � 1, 2, 3, 4, 5, 7, 8),
then the following error dynamics in closed-loop is obtained:

_e1 � −a1e1 − a2 e1e3 + xm3e1 + xm1e3(  − a3 e2e3 + xm2e3 + xm3e2(  − k1e1,

_e2 � −a4e2 − a5 e1e3 + xm1e3 + xm3e1(  − k2e2,

_e3 � −a7e3 − a8 e
2
1e2 + 2xm1e1 + x

2
m1e2 + xm2e

2
1 + 2xm1xm2e1  − k3e3.

(10)

2.2.2. Stability Proof and Learning law. For demonstrating
the stability of the closed-loop system (10) by means of the
Lyapunov theory, the frst step is to propose and analyze an
energy candidate function defned in terms of states ei (for
i � 1, 2, 3) and parameters ai. Tus, the following function is
proposed:

V(t) �
1
2



3

i�1
e
2
i + 

5

i�1
a
2
i + 

8

i�7
a
2
i

⎛⎝ ⎞⎠. (11)

With the aim of verifying the stability of the closed-loop
system (10), the time-derivative of (11) along with (10) must
be analyzed [99]; that is,

_V(t) � a1
_a1 − e

2
1  + a2

_a2 − e
2
1e3 + xm3e

2
1 + xm1e1e3  

+ a3
_a3 − e1e2e3 + xm2e1e3 + xm3e1e2(   − k1e

2
1 + a4

_a4 − e
2
2 

+ a5
_a5 − e1e2e3 + xm1e2e3 + xm3e1e2(   − k2e

2
2 + a7

_a7 − e
2
3 

+ a8
_a8 − e

2
1e2e3 + 2xm1e1e3 + x

2
m1e2e3 + xm2e

2
1e3 + 2xm1xm2e1e3 ] − k3e

2
3.

(12)

Now, it is easily observed that a suitable learning law for
parameter estimation is the following:

_a1 � e
2
1,

_a2 � e
2
1e3 + xm3e

2
1 + xm1e1e3,

_a3 � e1e2e3 + xm2e1e3 + xm3e1e2,

_a4 � e
2
2,

_a5 � e1e2e3 + xm1e2e3 + xm3e1e2,

_a7 � e
2
3,

_a8 � e
2
1e2e3 + 2xm1e1e3 + x

2
m1e2e3 + xm2e

2
1e3 + 2xm1xm2e1e3.

(13)

After replacing (13) in (12), the following is obtained:

_V(t) � −k1e
2
1 − k2e

2
2 − k3e

2
3. (14)

Notice that (14) is negative semidefnite, i.e., _V(t)≤ 0.
Hence, system (10) is stable in the sense of Lyapunov [99].

However, with the aim of demonstrating the asymptotic
stability of (10) the Barbalat’s lemma needs to be invoked
[100].

Lemma 1 (Barbalat’s Lemma). If e(t): R+⟶ R+ is uni-
formly continuous for t≥ 0 and if

lim
t⟶∞


t

0
‖e(τ)‖dτ ≤ ϵ, (15)

for ϵ ∈ R+, then

lim
t⟶∞

e(t) � 0. (16)

Corollary 1. If e(t) ∈ L2 ∩ L∞ and _e(t) ∈ L∞, then

lim
t⟶∞

e(t) � 0. (17)

From Corollary 1 and when replacing
k � min k1, k2, k3  in (14), the following is obtained:
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_V≤ − k e
2
1 + e

2
2 + e

2
3 . (18)

Now, after integrating from 0 to t both sides of (18),


t

0
e
2
1 + e

2
2 + e

2
3 dτ ≤

V(0) − V(t)

k
, (19)

and since V(t)> 0, it means thatV(0) − V(t)<V(0). Hence,

V(0) − V(t)

k
<

V(0)

k
. (20)

When replacing the latter expression in (19) and after
fnding lim when t⟶∞, then

lim
t⟶∞


t

0
e
2
1 + e

2
2 + e

2
3 dτ ≤

V(0)

k
. (21)

Tus, it is concluded that

ei ∈ L2. (22)

In the following, the rest of conditions related to Cor-
ollary 1 are verifed. By considering that _V(t)≤ 0 and after
integrating such an expression from 0 to t, it is found that
V(t)≤V(0). Also, it is observed that V(t) is bounded since
V(t)> 0. Tus, from (11) ei and ai are also bounded and,
consequently,

ei ∈ L∞. (23)

On the other hand, since ei, ai, and the master system (3)
are bounded (it is worth remembering that the vector state of
a chaotic system is bounded), then _ei in (10) is also bounded.
Tus,

_ei ∈ L∞. (24)

Lastly, after considering (22), (23), and (24), it is easily
observed that Lemma 1 guarantees that

lim
t⟶∞

ei(t) � 0. (25)

Remark 1. Note that the estimation errors ai are bounded
but not tend to zero; however, the errors ei does tend to zero
when the time is large enough, as will be shown in the next
section.

Remark 2. It is important to mention that according to the
previous proof, from a strictly theoretical point of view, the
synchronization can be achieved for any value of the system

constant parameters ai whenever the control gains are k1 > 0,
k2 > 0, and k3 > 0.

3. Results

In order to enhance the contribution of this paper, in this
section, a comparison between an active control scheme and
the adaptive control algorithm previously developed in
Section 2 is presented. Such a comparison is executed via
simulation results with the aim of verifying the performance
in closed-loop of the Nwachioma chaotic system, in master-
slave confguration, with both controls. Later, the experi-
mental implementation of the adaptive control on the
Nwachioma chaotic system is carried out through a novel
experimental realization.

3.1. Comparison with respect to Active Control. Although
active control was one of the frst methods proposed for
solving the synchronization problem, currently, is still fre-
quently used [101–105]. Tis method can be considered
a kind of feedback linearization one. Active control com-
prises two stages: one for compensation of nonlinearities and
another one for decoupling. In this regard, and with the
purpose of executing the comparison with the adaptive
control developed in this paper; in the following, an active
control is designed for solving the synchronization problem
associated with the Nwachioma chaotic system.

3.1.1. Design of the Active Control. With the intention of
avoiding any kind of confusion regarding both control al-
gorithms, i.e. the adaptive control and the active control,
new variables are defned for the design of the active control.
Now the slave system, where the active control is applied, has
the following dynamics:

_xa1s � a1xa1s + a2xa1sxa3s + a3xa2sxa3s + ua1,

_xa2s � a4xa2s + a5xa1sxa3s + a6 + ua2,

_xa3s � a7xa3s + a8x
2
a1sxa2s + a9 + ua3,

(26)

whereas the tracking error is given by

ea1 � xa1s − xm1,

ea2 � xa2s − xm2.,

ea3 � xa3s − xm3.

(27)

By considering (26) and (27), the following error dy-
namics in open-loop is obtained:

_ea1 � a1ea1 + a2 ea1ea3 + xm3ea1 + xm1ea3(  + a3 ea2ea3 + xm2ea3 + xm3ea2(  + ua1,

_ea2 � a4e2 + a5 ea1ea3 + xm1ea3 + xm3ea1(  + ua2,

_ea3 � a7ea3 + a8 e
2
a1ea2 + 2xm1ea1 + x

2
m1ea2 + xm2e

2
a1 + 2xm1xm2ea1  + ua3.

(28)

In (28), note the nonlinearities and the coupling of the
variables. Hence, the following active control is proposed:
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ua1 � −a1ea1 − a2 ea1ea3 + xm3ea1 + xm1ea3(  − a3 ea2ea3 + xm2e3 + xm3ea2(  − k1ea1,

ua2 � −a4ea2 − a5 ea1ea3 + xm1ea3 + xm3ea1(  − k2ea2,

ua3 � −a7ea3 − a8 e
2
a1ea2 + 2xm1ea1 + x

2
m1ea2 + xm2e

2
a1 + 2xm1xm2ea1  − k3ea3.

(29)

After replacing the proposed control (29) in the error
dynamics (28), the following error dynamics in closed-loop
is obtained:

_ea1 � −k1ea1,

_ea2 � −k2ea2,

_ea3 � −k3ea3.

(30)

It is easily observed that the dynamics (30) is linear and
the time-varying error variables are decoupled. Additionally,
if k1 > 0, k2 > 0, and k3 > 0, then (ea1, ea2, ea3)⟶ (0, 0, 0).

3.1.2. Simulation Results. On the one hand, the efciency of
both controls, the adaptive one and the active one, is vali-
dated by using the criterion of the quadratic error integral as
an index performance. For the adaptive control, the index
performance is defned as

ϕ(t) � 
t

0
e
2
1 + e

2
2 + e

2
3  dξ, (31)

whereas the index performance for the active control is
defned as

ϕa(t) � 
t

0
e
2
a1 + e

2
a2 + e

2
a3  dξ. (32)

By using these indexes it is possible to obtain a measure,
for comparative purposes, between both controls. Such
a measure allows to observe graphically the sum of both
errors, the transient one and the stable one (if exists). On the
other hand, with the intention of comparing the perfor-
mance of the adaptive control and the active control, four
simulations are carried out when the parameters ai defned
in (2) of the master-slave Nwachioma chaotic system are
changed according to the values specifed in Table 1.

Te rest of parameters for the active control (29) were
defned previously in (2) and were given as

a1 � −0.1, a2 � 0.15, a3 � 0.18, a4 � 3.9,

a5 � −1.5, a6 � −4, a7 � −4.9, a8 � 2.5, a9 � 0.
(33)

Te gains of both controls were chosen as
(k1, k2, k3) � (1, 1, 1), while the initial conditions for the
master system were defned as (x1m(0), x2m(0), x3m(0)) �

(1, 3, 8), the initial conditions for the slave system when
using the adaptive control were selected as (x1s(0), x2s

(0), x3s(0)) � (0, 0, 0), and those for the same slave system
when using the active control were selected as (x1as(0),

x2as(0), x3as(0)) � (0, 0, 0). All simulations were executed in
MATLAB-Simulink with the variable-step solver ode23s.

(a) Numerical simulation 1: Te results presented in
Figure 3 show that both control algorithms solved

the synchronization control task. Tis is accom-
plished because the parameters of the Nwachiona
chaotic system, in the master-salve confguration,
and those of the active control were the same.

(b) Numerical simulation 2: Figure 4 depicts the per-
formance of the Nwachioma chaotic system in
closed-loop with both controls, the adaptive one and
the active one. Although the synchronization control
task is achieved, the transient response of the slave
system due to the active control is greater than the
one obtained in the previous simulation.

(c) Numerical simulation 3: As can be observed in
Figure 5, the synchronization control task is solved
for the master-slave Nwachioma chaotic system in
closed-loop with the adaptive control. However,
such a task is not solved for the active control.

(d) Numerical simulation 4: Similar to the previous
simulation results, those presented in Figure 6 show
that the chaotic system in closed-loop with the
adaptive control solved the synchronization control
problem. But when using the active control the
synchronization is not achieved. It is worth men-
tioning that this numerical simulation was executed
only for 4 s, since xa2s⟶∞ and ϕa(t)⟶∞
when t⟶∞, as can be observed in Figure 6.

3.1.3. Comments on the Numerical Simulations. As can be
noted in Figures 3–6, the adaptive control exhibits a better
performance compared with the performance achieved by
the active control. Such a superior behavior on the closed-
loop Nwachioma system, in the master-slave confguration,
with the adaptive control is observed through the perfor-
mance indexes of the quadratic error integral calculated for
both controls. Te results associated with the indexes ϕ(t)

and ϕa(t), for each numerical simulation, are shown in
Table 2.

3.2. Experimental Implementation. With the aim of high-
lighting the efectiveness of the adaptive control (9)
developed in this paper, a novel and easy to understand
implementation in closed-loop of the proposed approach
with the Nwachioma chaotic system, in the master-slave
confguration, is presented in this section. Te experi-
mental realization of the adaptive control is carried out by
using MATLAB-Simulink and two computers, one for the
master system and a second one for the slave system. Te
testbed is depicted in Figure 7, where the connections
diagram between the master computer and the slave
computer along with their corresponding Arduino UNO
boards are shown.
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Temaster system and the slave system are implemented
by programming their mathematical models (3) and (4),
respectively, in MATLAB-Simulink by using the numeric
method ode4 with sampling step of 1ms. Both the com-
puters are interconnected via the serial communication
protocol RS-232 along with two Arduino UNO development
boards [106]. It is worth mentioning that using MATLAB-
Simulink along with the RS-232 serial protocol and the

Arduino UNO board is, indeed, a low-cost implementation
of the approach presented in this paper. In fact, the syn-
chronization problem in chaotic systems is tremendously
afordable when using these kind of computational tools.

3.2.1. Synchronization of the Master-Slave Nwachioma
Chaotic System. Te synchronization of the master-slave
Nwachioma chaotic system is realized through the

Table 1: Changes in parameters ai for comparison purposes between the adaptive control and the active control via numerical simulations.

a1 a2 a3 a4 a5 a6 a7 a8 a9

Numerical simulation 1 −0.10 0.15 0.180 3.90 −1.5 −4 −4.90 2.5 0
Numerical simulation 2 −0.14 0.21 0.252 5.46 −2.1 −5.6 −6.86 3.5 0
Numerical simulation 3 −0.18 0.27 0.324 7.02 −2.7 −7.2 −8.82 4.5 0
Numerical simulation 4 −0.22 0.33 0.396 8.58 3.3 −8.8 −10.78 5.5 0
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Figure 3: Numerical simulation 1. Comparison between the adaptive control and the active control in closed-loop with the Nwachioma
chaotic system. Te used parameters are in accordance with those specifed on the frst line in Table 1. Te indexes obtained for this
simulation are ϕ(10  s) � 11.11 and ϕa(10  s) � 97.48.
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connections shown in Figure 7, whereas the fowchart shown
in Figure 8 depicts the process to be followed for achieving
the communication between the master system and the slave
system.

It is worth noticing that for achieving the synchroni-
zation of the chaotic system, the Arduino UNO boards and
the computers must be confgured. In this regard, the
Arduino UNO boards are interconnected to each other by
using a virtual serial port. Te code shown in the Listing 1
commands both Arduino UNO boards and establishes the
fow of information, i.e., master computer-board-board-
slave computer. Te virtual port directs the communication
between both Arduino boards. Te data are received from
the virtual (or the physical) serial port and are saved and sent
via the variable InData to the remaining serial port,
respectively.

On the one hand, Computer 1 is interconnected to the
Arduino UNO 1 board via a USB cable, where the Arduino
driver is used so that the connection is viewed as a serial port.
On the other hand, both Arduino UNO boards are inter-
connected through pins RX and TX, as can be observed in
the code presented in the Listing 1. Tis is the RX pin of the
frst board, which is connected to the TX pin and vice versa.
Lastly, the Arduino UNO 2 board is connected to Computer
2 in the same way as computer 1 is connected to its cor-
responding Arduino board.

Once the connections have been made, the next step is
the implementation of dynamics associated with the master
system (3) and the slave system (4) in computer 1 and
computer 2, respectively. Figure 9 depicts the block diagram
programmed in MATLAB-Simulink with the intention of
acquiring the response of master system (3) and send it to
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Figure 4: Numerical simulation 2. Results of the adaptive control and the active control in closed-loop with the Nwachioma chaotic system.
Te used parameters are in accordance with those specifed on the second line in Table 1. Te indexes obtained for this simulation are
ϕ(10  s) � 14.76 and ϕa(10  s) � 899.7.
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computer 2. Since the two Nwachioma systems of the
master-slave confguration are equal, the parameters (2) are
programmed in both systems for implementation purposes.
However, such parameters are considered to be unknown
and, consequently, are not used by the adaptive control (9).

In the following, the block diagram of Figure 9 is
described.

(i) Nwachioma master system: Tis block is composed
of the blocks ai,Master, and Integrator.Te block ai

contains this constant parameters of the system (3),
considered to be unknown. However, for imple-
mentation purposes, the parameters ai given by (2)
are programmed instead. Te equations (3) are
programmed in Master block, whose output is the
time-derivative of the vector state. Lastly, block
Integrator generates the vector state, i.e., the vector

whose elements are x1m, x2m, x3m along with its
corresponding initial conditions.

(ii) Sampling and scaling: With the aim of sending the
vector state of the master system, a Zero-Order Hold
is required for sampling the response of the system.
Additionally, since the data are sent in 1 byte
packages, a scaling factor is implemented through
the Scale block so that the elements of the vector
state are mapped into the interval [0, 255].

(iii) Data sending: All parameters for establishing the
serial communication, such as velocity trans-
mission, COM port, etc., are specifed in the Serial
Confguration block, whereas the Conversion block
transforms double type data into uint8 type
(equivalent to 1 byte). Lastly, data are sent through
the COM port specifed in the Serial Send block.
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Figure 5: Numerical simulation 3. Comparison between the adaptive control and the active control in closed-loop with the Nwachioma
chaotic system. Te used parameters are in accordance with those specifed on the third line in Table 1. Te indexes obtained for this
simulation are ϕ(10  s) � 18.57 and ϕa(10  s) � 4490.
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On the other hand, the block diagram programmed in
MATLAB-Simulink for implementing the slave system is
presented in Figure 10 and is divided into the following
parts:

(i) Data receiving: In this block, the Serial Confgura-
tion is used again with the purpose of selecting the
communication parameters. Te Serial Receive ac-
quires the uint8 data of the slave system, which are

×1011
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Figure 6: Numerical simulation 4. Results of the adaptive control and the active control in closed-loop with the Nwachioma chaotic system.
Te used parameters are in accordance with those specifed on the fourth line in Table 1. Te indexes obtained for this simulation are
ϕ(10  s) � 21.86 and ϕa(10  s) � 9.3 × 1011.

Table 2: Performance indexes of the quadratic error integral for the numerical simulations.

ϕ(t) ϕa(t) t (s)

Numerical simulation 1 11.11 97.48 10
Numerical simulation 2 14.76 899.70 10
Numerical simulation 3 18.57 4490 10
Numerical simulation 4 21.86 9.3 × 1011 4
Te index ϕ(t) represents the performance of the adaptive control, whereas the index ϕa(t) shows the performance of the active control.
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mapped in the scale [0, 255], and by using the
Conversion block the data are converted into type
double. Later, the block Scale recovers the original
scaling factor of the state vector.

(ii) Nwachioma slave system: It comprises the block of
parameters ai, where constants (2) are programmed
again for implementation purposes. Te block Slave

is where the equations (4) are programmed with the
aim of obtaining the time-derivatives _x1s, _x2s, and
_x3s. Te states x1s, x2s, and x3s are obtained by
considering the initial conditions of the slave system
through the block Integrator2.

(iii) Learning law: Equations (13) are programmed into
the blockUpdate lawwith the intention of obtaining

Computer 1

Computer 2

Arduino Uno
Board 2

Arduino Uno
Board 1

Figure 7: Experimental implementation of the Nwachioma chaotic system in the master-slave confguration. Te master system and the
slave system are implemented independently in two computers. Te communication between both systems is realized through the protocol
RS-232 via two Arduino UNO boards.
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Serial port available?
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Send Data

Send Data

Computer 2

End

Slave Nwachioma system
iteration

Adaptive contol
iteration

Processing and reception of the
master system state

Yes

Yes
No

No

Serial port available?
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Figure 8: Flowchart for implementing the adaptive control on the Nwachioma chaotic system, in the master-slave confguration, through
two computers and two Arduino UNO boards.
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# include <SoftwareSerial.h>
# defne rxPin 2
# defne txPin 3
SoftwareSerial VirtualSerial � SoftwareSerial(rxPin, txPin);
void setup()
{

Serial.begin(9600);
VirtualSerial.begin(9600);

}
void loop()
{

byte InData;
if (Serial.available())
{
InData� Serial.read();
VirtualSerial.write(InData);

}
if(VirtualSerial.available())
{
InData�VirtualSerial.read();
Serial.write(InData);

}
}

LISTING 1: Arduino code programming language for implementing the RS-232 serial communication.

Master
Integrator

Nwachioma Master System

Zero-Order
Hold Scale

Sampling and Scaling

COM8
9600

8, none, 1

uint8 Data COM8

Serial SendConversion

Data Sent

Serial Configuration

a a
1
s

xmsxm

xm

fcnfcn
xm
•

Figure 9: Block diagram programmed inMATLAB-Simulink for computer 1.With this program, the master system is implemented and the
corresponding data associated with the states are sent via the communication protocol RS-232 to the slave system.
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_ai. It is easily observed that after using the block
Integrator1, over the time-derivatives previously
mentioned, the corresponding signals ai are ob-
tained (after considering initial conditions equal to
zero) and now can be used into the proposed
adaptive control.

(iv) Adaptive control: Tis block generates the corre-
sponding inputs u1, u2, and u3 through (9) and by
taking into account, as parameters, the signals e1, e2,
e3, the estimated ones ai, and the states x1m, x2m,
and x3m.

3.2.2. Experimental Results. Te master system (3) is ex-
perimentally implemented in computer 1, where the pa-
rameters given in (2) and the initial conditions (x1m(0) � 1,
x2m(0) � 3, and x3m(0) � 8 retaken from [98]) for the
Nwachioma system, are specifed. On the other hand, the
slave system (4) is implemented in computer 2 and the
parameters given in (2) are used again.Te initial conditions
for the slave system are considered to be x1s(0) � 0,

x2s(0) � 0, and x3s(0) � 0, whereas for the learning law, and
the initial condition of the time-derivative of the estimated
values, _ai � 0.Te gains of the proposed adaptive control are
chosen to be k1 � 5, k2 � 7, and k3 � 5. With all these values,
the system in closed-loop achieves the synchronization
objective, i.e., (x1s, x2s, x3s)⟶ (x1m, x2m, x3m), as can be
observed in Figure 11.

Figure 12(a) shows that (e1, e2, e3)⟶ (0, 0, 0) even when
the initial conditions of both systems are not equal, whereas
Figure 12(b) depicts the control inputs of the slave system,
whose behavior not only allows that (e1, e2, e3)⟶ (0, 0, 0)

but also that (u1, u2, u3)⟶ (0, 0, 0).

3.2.3. Comments on the Experimental Results. As was pre-
viously mentioned, chaotic systems are very sensitive to
initial conditions (this phenomenon can be observed in
Figure 2). Notice that, in Figures 11 and 12, although such
initial conditions are diferent in both, the master and the
slave systems, the synchronization problem is solved. Also,
despite the master-slave communication is low-cost and

Data receiving
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8,none, 1
Serial Configuration

COM4 Data

Serial Receive

double

Conversion Scale

Update law

Integrator1 Update law Add1

[Error]
[Error]

Integrator2
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Adaptive control

Adaptive Control
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1
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1
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a
a
u

u
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xs
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xms xm

xmxm

ee
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Figure 10: Block diagram programmed inMATLAB-Simulink for computer 2.With this program, the slave system is implemented, the data
associated with the master system are acquired via the communication protocol RS-232, and the adaptive control is executed.

16 Complexity



5 100
t (s)

5 100
t (s)

5 100
t (s)

-10

-5

0

5

10

-5

0

5

0

1

2

3

4

x3s
x3m

x1s
x1m

x2s
x2m

Figure 11: Experimental comparison between the states of the master system versus the corresponding states of the slave system.Te initial
conditions of the master system are x1m(0) � 1, x2m(0) � 3, and x3m(0) � 8, whereas those of the slave system are x1s(0) � 0, x2s(0) � 0,
and x3s(0) � 0.

-8

-6

-4

-2

0

2

5 100
t (s)

e1
e2

e3

(a)

-40

-20

0

20

40

60

5 100
t (s)

u1
u2

u3

(b)

Figure 12: Experimental results indicators. (a) Synchronization errors of the Nwachioma master-slave system, described by (5). (b) Inputs
of the slave system allowing that (x1s, x2s, x3s)⟶ (x1m, x2m, x3m) are achieved.

Complexity 17



-2

-1

0

1

2

â1
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â5
a5

â7
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with communication delays, the synchronization is achieved
in a short period of time. As depicted in Figure 13, although
ai⟶ ai is not true, the errors ai � ai − ai are bounded.

4. Conclusions and Future Work

For the frst time in literature, an adaptive control algorithm for
solving the synchronization task on the Nwachioma master-
slave chaotic system was presented in this paper.Te feasibility
and performance of the closed-loop systemwere demonstrated
in two senses. Te frst one was by comparing via numerical
simulations the adaptive control with an active control by
implementing them in closed-loop on the master-slave
Nwachioma chaotic system via MATLAB-Simulink. Te
simulation results showed that the performance of the adaptive
control is superior to the one obtained with the active control,
i.e., (x1s, x2s, x3s)⟶ (x1m, x2m, x3m), and was verifed
through the performance indexes of the quadratic error integral
associated with both controls in closed-loop. In all simulations,
the parameters ai of the master system and those of the slave
system were diferent for both control algorithms. Te second
one was by executing the experimental implementation of the
adaptive control on a testbed of the master-slave Nwachioma
chaotic system. Te experimental implementation of the
master system was carried out on a computer via MATLAB-
Simulink. Tis computer sent the states x1m, x2m, and x3m

through the Arduino UNO board and the RS-232 serial
protocol. Ten, the computer associated with the slave system
received such states and executed the corresponding learning
law and the adaptive control, also viaMATLAB-Simulink, with
the aim of solving the synchronization task. Te experimental
results showed that the proposed adaptive control achieves in
fnite time that (x1s, x2s, x3s)⟶ (x1m, x2m, x3m).

As a future work, the current results will be generalized to
several slave systems synchronized only to one master system
[107]. Also, a potential extension of the results presented in this
paper could include external disturbances [108] on the Nwa-
chioma chaotic system in the master-slave confguration.
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implementation of polynomial chaotic Sun system,” Physical
Science International Journal, vol. 16, pp. 1–7, 2018.

[3] G. Chen, “On some controllability conditions for chaotic
dynamics control,” Chaos, Solitons & Fractals, vol. 8, no. 9,
pp. 1461–1470, 1997.

[4] L. M. Pecora and T. L. Carroll, “Synchronization of chaotic
systems,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 25, no. 9, pp. 097611-097612, 2015.

[5] E. N. Lorenz, “Deterministic nonperiodic fow,” Journal of
the Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.

[6] A. A. Ewees, M. A. Elaziz, Z. Alameer, H. Ye, and Z. Jianhua,
“Improving multilayer perceptron neural network using
chaotic grasshopper optimization algorithm to forecast iron
ore price volatility,” Resources Policy, vol. 65, pp. 101555–
101612, 2020.

[7] S. K. Palit and S. Mukherjee, “A study on dynamics and
multiscale complexity of a neuro system,” Chaos, Solitons &
Fractals, vol. 145, pp. 110737–110810, 2021.

[8] J. Gao, C. Gu, and H. Yang, “Spiral waves with interfacial
oscillatory chemical reactions emerge in a model of reaction-
difusion systems,” Chemical Physics, vol. 528, pp. 110507–
110516, 2020.

[9] K. M. Owolabi and B. Karaagac, “Chaotic and spatiotem-
poral oscillations in fractional reaction-difusion system,”
Chaos, Solitons & Fractals, vol. 141, pp. 110302–110315, 2020.

[10] J. Luo, S. Qu, Z. Xiong, E. Appiagyei, and L. Zhao, “Observer-
based fnite-time modifed projective synchronization of
multiple uncertain chaotic systems and applications to se-
cure communication using DNA encoding,” IEEE Access,
vol. 7, pp. 65527–65543, 2019.

[11] T. Karimov, D. Butusov, V. Andreev, A. Karimov, and
A. Tutueva, “Accurate synchronization of digital and analog
chaotic systems by parameters re-identifcation,” Electronics,
vol. 7, pp. 123–210, 2018.

[12] R. Babajans, D. Cirjulina, J. Grizans et al., “Impact of the
chaotic synchronization’s stability on the performance of
QCPSK communication system,” Electronics, vol. 10, no. 6,
pp. 640–714, 2021.

[13] L. Moysis, C. Volos, I. Stouboulos et al., “A novel chaotic
system with a line equilibrium: analysis and its applications
to secure communication and random bit generation,”
Tele.com, vol. 1, no. 3, pp. 283–296, 2020.

[14] A. S. Muhammad and F. S. I. E. A. Ózkaynak, “SIEA: secure
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