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Engineering and applied mathematics disciplines that involve differential equations include classical mechanics, thermodynamics,
electrodynamics, and general relativity. Modelling a wide range of real-world situations sometimes comprises ambiguous,
imprecise, or insufficient situational information, as well as multiindex, uncertainty, or restriction dynamics. As a result,
intuitionistic fuzzy set models are significantly more useful and versatile in dealing with this type of data than fuzzy set models,
triangular, or trapezoidal fuzzy set models. In this research, we looked at differential equations in a generalized intuitionistic fuzzy
environment. We used the modified Adomian decomposition technique to solve generalized intuitionistic fuzzy initial value
problems. The generalized modified Adomian decomposition technique is used to solve various higher-order generalized
trapezoidal intuitionistic fuzzy initial value problems, circuit analysis problems, mass-spring systems, steam supply control sliding
value problems, and some other problems in physical science. The outcomes of numerical test applications were compared to exact
technique solutions, and it was shown that our generalized modified Adomian decomposition method is efficient, robotic, and

reliable, as well as simple to implement.

1. Introduction

Differential equation plays a vital role in every field of
science and engineering. Differential equations are used to
study bacterial growth, the motion of an object that moves to
and fro, to calculate the flow of electricity, to explain the
concept of thermodynamics, and to observe the propagation
of heat or sound, fluid flow, temperature problems etc.,
[1-4].

In 1965, Zadeh [5] introduced the concept of fuzzy set
theory as the extension of classical set theory. In classical set
theory, we deal only with true or false values and do not
analyze any values between them, whereas in fuzzy set
theory, we deal with uncertain environmental conditions as
membership values. The concept of fuzzy set theory has been
applied to various fields of science and engineering to handle

vagueness and uncertainty. In 1987, Kandel and Byatt in-
troduced the fuzzy differential equations [6]. The fuzzy
differential equations have been applied in numerous daily
life problems [7]. Vasavi et al. [8] discussed fuzzy differential
for cooling problems. Devi and Ganesan used fuzzy dif-
ferential equations in modelling electric circuit problem [9].
Ahmad et al. [10] studied a mathematical method to find the
solution of fuzzy integro-differential equations. Sadeghi et al.
[11] studied the system of fuzzy differential equation. In
1986, Atanassov [12] introduced an extension of fuzzy set
theory known as intuitionistic fuzzy set. The intuitionistic
fuzzy set not only provides the information about mem-
bership values but also the nonmembership values, re-
spectively, and so that the sum of both values is less than one.
Intuitionistic fuzzy differential equations are being studied
widely and being used in various fields of Physics,
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Chemistry, Biology as well as among other fields of Science
and Engineering. Melliani and Chadli obtained the ap-
proximate and numerical solutions of intuitionistic fuzzy
differential equations with linear differential operators
[13, 14]. Akin and Bayeg [15, 16] studied a method to find
general solution of second-order intuitionistic fuzzy dif-
ferential equation. Prasad Mondal and Kumar Roy [17-19]
studied the generalized intuitionistic fuzzy Laplace trans-
form method. Shams et al. used generalized trapezoidal
intuitionistic fuzzy numbers and triangular intuitionistic
fuzzy numbers in [20, 21] to solve a system of fuzzy initial
value problems. The Adomian decomposition method
(ADM) which is a semianalytical method was first presented
by George Adomian in 1980s [22, 23]. This method is very
efficient in finding the solutions of differential equations,
algebraic equations as well as integral equations. In this
article, we will propose the generalized modified Adomian
decomposition method (GMADM) to find the solutions of
generalized intuitionistic fuzzy differential equations with
linear differential operators. This modification was proposed
by Wazwaz [24]. He presented a reliable modification to the
ADM. In this modification, Wazwaz divides the original
function into two parts, one part assigned to the initial term
of the series and the other to the second term. This modi-
fication results in a different series being generated. The
efficiency of this method depends only on the choice of the
parts into which the original function is to be divided.

Motivated by the aforesaid work, in this article, we use
a GMADM to solve generalized trapezoidal intuitionistic
fuzzy initial value problems (FIVPs).

The main contributions of this research work are
summarized as follows:

(i) Using initial conditions as a generalized trapezoidal
intuitionistic fuzzy number, a differential equation
is solved using GMADM

(ii) The computational complexity of the proposed
GMADM is described in order to solve problematic
generalized trapezoidal intuitionistic fuzzy differ-
ential equations

(iii) Applications of generalized trapezoidal intuition-
istic fuzzy differential equations in mechanical and
electrical engineering are considered in a general-
ized trapezoidal intuitionistic fuzzy environment

(iv) The efliciency and applicability of the modified
technique are assessed using computational tools

This paper is organized as follows: in Section 2, we
recall some basic definitions which we will use in further
sections. In Section 3, we introduced our proposed
method and the efficiency of this method has been il-
lustrated by applications. In the last section, we give
conclusions.

2. Preliminaries

In this section, the fundamental definitions of fuzzy set and
intuitionistic fuzzy set are presented.

Complexity

Definition 1,[25]. Let X be the largest set under consider-
ation, then A be a subset of X is said to be a fuzzy set if it is
defined as follows:

l’l;‘ (x) =X— [07 1]) (1)

defines the degree of membership of an element xeX to the
set A which is a subset of X.

Definition 2 [25]. a-cut of a fuzzy set A is a crisp set A,
which is defined as follows:

*

A, ={<x|[4;x (x)>a: xeX}. (2)

Definition 3 [19]. If A is a fuzzy set, then height of a fuzzy set
is denoted by h (;\) and is defined as the largest membership
function obtained by any element in that set, i.e.,

h(A) = sup uA (x). (3)

Definition 4 [15]. Let X be a nonempty finite set of real
numbers, then an intuitionistic fuzzy set F on X is

IE :{<x,‘u;_(x),vg(x)>: xeX}, (4)

where the functions

y;(x) =X— [Os 1])

5
v}*:(x) =X — [0,1], ©)

define the degree of membership and degree of non-
membership, respectively, of an element xeX to the set F
which is a subset of X, and for every xeX, the
0< U (x) + v (x) €1, condition must be satisfied.

Definition 5 [19]. An intuitionistic fuzzy set F is said to be
normal if there exists an x,eX, such that ‘uﬁ(xo) =1 so
v, (x0) = 0.

.
Definition 6 [19]. An intuitionistic fuzzy set F is said to be
convex set for the membership function if it satisfies the
following condition:

i (9 O + (1= ) 2 min(w, (0,41, ) ) ¥, yeXo 0,11,
(6)

Definition 7 [19]. An intuitionistic fuzzy set F is said to be
concave set for the nonmembership function if it satisfies the
following condition:

v%(x) (mx+(1-1n)y) 2max(v% (x), v};(y)); Vx, yeX, nel0, 1].
(7)



Complexity

2.1. Generalized Intuitionistic Fuzzy Number

Definition 8 [26]. A generalized intuitionistic fuzzy number

N = <(ay,ay,a5,a4;74); (01,05, b5, b45v5) >, (8)

is said to be generalized trapezoidal intuitionistic fuzzy
number (GTIEN) if its membership and nonmembership
functions are defined as follows:

vA(x_al ) a, <x<ay,
a, — 4

) V> a,<x<as,
fy (x) =1
Y (i B a,<x<a
A ay—ay) 3SXSdy,
L 0, otherwise,
(9)
b,—x)+v -b
(b, xl)? _Z(x 1), b <x<b,,
2~ 0
Vg b, <x<b;,
vgj(x) = 3 5 !
- + -x
(x 327 _12(4 )’ b3<x<b4,
4~ 03
1, otherwise,

where b, <a,<b,<a,<a;<b;<a,<b,,0<v,,75<1 and
O<vy+vp<l.

Definition 9. (a,)-Cut set [27] of GTIFN Z(] = < (a;,a,,
as,ay;v4); (by,b,,bs,by; vp) > is a crisp subset of X which is
defined as follows:

Iil(oc, B) = {(x By (x), vy, (x)): xeX, y (%)=« vy (x) sﬁ},

{[M @5, @[5, @8, @}
(10)
where o + <1, ae[0, v,] and Be[vj, 1] as shown in Figure 1.
Figure 1 shows generalized trapezoidal intuitionistic

fuzzy number.
Arithmetic operations on GTIFNs are defined as follows.

Definition 10 [28-30]. Let Ny = < (ay,a,,a3,a4;7,4);
(by, by, b3,b457,4 ) > and N, = < (1,65, ¢3,¢437p); (dy, dy,
ds,dy;vg) > be two GTIFNs and w be a real number. Then,
(1) N1+N2 = < (a, +¢,a, + 645,05 + C3,a, + ¢4; min

{va,ve i (b) +d,, by +dy, by + ds, by + dy; max

{VAz’ VBZ}) >>

«
N, =<(a; —cpa,—c3,a;5 — ¢y, —

—d, b, —dy by —d,, b,

(i) N, -
(v, s i (&)
{VAz’VBz}) >

(iii) Ny x N, = < (a;¢y,

A,Cy, A3C3, A4C45 MIN VY, Vg 1)
(byd,, bydy, byds, byd,y; max {v, , v 1) >, where
N,>0,N,>0.

(iv) N; x N, = < (a,¢4,
min {v, ,vg }); (bydy, byds, byds, .
bédl; max vaz, VBZI}) >,where N, <0,N,>0.

(V) N X N, = < (a4¢4,a5C5,05C5, a,c;; min {VAl’
vg }); (bydy byds, bydy, bydy s max {vy v 1) >, w-
here N, <0,N, <0.

(vi) N, =N, = < (a,/cy, ay/c5,a5/cy, a4/
cy; min {v,, vy )i (b1/dy, bylds, byl
dy, byld,; max vy, VBZ}) >,where N, > 0.

(vii) wN, = < (way, wa,, wa;, wa,; min {VAI,VBl});
(wby, wb,, wbs, wb,; max |V, ,vg, ) >, where
w>0.

¢;; min

—d;; max

ayC3> 365, A4C1;5

«
(viii) wN; = < (way, wa,, wa,, wa,;; min
{VAI, VBI}); (wby, wbs, wb,, wbs; max {VAZ,
VBZ}) >, where w<0.

3. The Generalized Modified Adomian
Decomposition Method

A key concept is that the Adomian decomposition series
expansion about the initial solution component function
permits solution by recursion, in which the aforesaid
rearrangement is accomplished through the choice of the
recursion scheme. The modified ADM yields a rapidly
convergent sequence of analytic functions as the approxi-
mate solutions of the original mathematical model. Thus, the
modified Adomian decomposition method subsumes even
the classic power series method while extending the class of
amenable nonlinearity to include any analytic nonlinearity.
Here, we generalized the MADM to GMADM to solve
system of intuitionistic triangular fuzzy differential
equation.

Let us consider the intuitionistic fuzzy differential
equation with linear differential operator as follows [25]:

Ly(6) + Ry(6) + N (& 7(8) = f(O), (11)

where L is the highest order linear differential operator, R is
the remaining part of the linear differential operator, N may
be linear or nonlinear function of ¢ and y (t),and f (t) isan
intuitionistic fuzzy functlon Here, in this case, we take N as
a linear function of y (t) and t.

Taking (a, f)-cut of (11), we get

L([le (t,0); y, (t,oc)] [yl &Py (4, ﬂ)])+R([J71 (t,0); y, (t,a)]; [le (t.B) ¥, (t,ﬂ)])
+([N1<t»;1 (t:“));N2<t>Jj2 (t,oc))H 1(%51 (t,ﬁ));Nz(tsz (t,ﬁ))]) =[f*1 (t,oc);fz (t,a)]; [fl (W);fl (8|

(12)
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FIGURE 1: Generalized trapezoidal intuitionistic fuzzy number.

From (12), we obtain the following equations:

Ly, (t,a) + Ry, (4, a)+N1(t,y*1 (t,oc)) = f, (to),
(13)

Ly, (t,a)+ Ry, (t, a)+N2(t,)72 (t,oc)) - f, (ta),
(14)

g (ha) =¥, (ha) - L (Ry, () -L ' (N,(ty, & a))+L1

y, (ta) =¥, (t,a) -

v (6P =¥, (t.p) - LRy,

72 (LB =¥, (t,0) = L' (Ry, (5P)

CEDE
(85, o) -
(w5 @p)-
CEON

where

Y, (t,) = LY, (£, )
=0;i=1,2,
= LY, (t,B)

=0ji=1,2,

21
() (21)

the above functions are found by using the initial conditions.

LY(N,(t,y, ) +L7"

(vi( (4
({5 )+ 17 )
o 09)

(Na(e 5 ) +17(7

Liy () + Ry, (0)+ Ni(t3h (B) = /1 (4.B),
(15)

L)jz (t.B) + R;z (t.p)+ Nl(t’ ;2 (t)ﬁ)> = J:z (£, B).
(16)

By taking L™! operator on both sides of equations
(13)-(16), we get
) (17)
) (18)
) (19)
) (20)

Now by using the GMADM, the solutions of the
(17)-(20) can be expressed in the form of an infinite series
for the unknown functions as follows:

y, (ta) = z y*ln(t, o), (22)
n=0

y, (t,a) = Z)’*zn(t’ a), (23)
n=0
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n=0

Using (22)-(25), in (17)-(20), we have

5 (6P =Dy () (24)
n=0

v, (LB =Y vy () (25)
n=0

Yyt =¥ta-L [ RY ¥, (e | -1 (N[ 63 )

According to the GMADM, the recursive relation for the
(26)-(29) is as follows:

Vi, (@) =¥, (£ ),

y, (o) = L_1<]:1 (¢, oc)) - L‘1<Rj?10(t, oc)) - L‘1<N1(t,j}10(t, a))))
I, (6) = —L_1<R}1k(t, oc)) - L_1<N1(t,)*/1k(t, a))),kz 1

¥y, (t.0) =¥, (£, ),

¥y, (ta) = L‘1<f2 (t, oc)) - L‘1<R}20(t, 0c)> - L_1<N2(t, Vo a))>,
Vo, (60 = =17 (R, (1)) - L”(Nz(t, 3 (6 a))>,k2 1

1, (6B =¥, (1. ),

i, @p =1 (fi @) -1 (Ri wp)) -1 (N, (t i ©p))
. (6P = —L_1<R)*/1k(t,ﬂ)> (Nl(t i /;)>) k>

V2, (tB) = ¥o (8B,

3, B =17 (f2 6B) = L7 (Rin (68)) - L7 (Wo(8 3, B ) )
¥y, () = —L’1<R}2k(t,/3)> - L”(Nz(t, ;zk(t,/s)»,kz 1

The nth term approximation to the solution is defined as

follows:

( )2 (G o)
N2<f,§y’;n(t,a)>> +17(f, a)),
( G >>+L1(f} )
(e(gen))

L_l<f2 (f’ﬁ)>-

(26)

(27)

(28)

(29)

(30)



6
( n-1
(@) =) = yy (),
i=0
n-1
$on(t0) =Y+ 3, (),
; =0 (31)

3
L

¢1n (t’ﬂ) = Z * yli(t’ﬁ))

3~
[l
s

© y, (4.P)

$on () =

=0

Hence,
' nhl,nm ((/5171 (t’ “)) = le (t, 0(),
lim (¢, (1)) = 3, (1),
1 . (32)
nli_r)noo (¢ (& B) = y1 (£ ),

L nh—r>noo(¢2”(t’ﬁ)) = ;2 (t,ﬁ).

The complexity of the GMADM algorithm is approxi-
mately O(Nlog(N)), according to numerical results using
two or more fuzzy systems of intuitionistic differential
equations.

3.1. Stability of the Proposed Scheme. When the solution
produced by a technique is unaffected by small changes in
the inputs and parameters and when it is expected that
changes in the parameters carried on by impacts in equa-
tions and conditions, the method is said to be stable. By
giving examples and analyzing the stability of the GMADM
in this study, we suggested contrasting the GMADM with
other existing methods, i.e., ADM and Taylor series method
(TSM).

3.1.1. Applications. Here, we discuss some engineering ap-
plications [31-33] of generalized intuitionistic fuzzy
environments.

Example 1. Series Circuit Problem (An Electrical Engineering
Application).

Consider 05 = < (11,12,13,14;0.8); (10,12,13, 15;
0.2) > volt battery is connected to a series circuit in which
inductanceis 0; = < (0.4,0.5,0.6,0.7;0.8); (0.3,0.5, 0.6, 0.8;
0.2) > henry, and the resistance is 0, = < (8,9,10,11;0.8);

Complexity

(7,9,10,12;0.2) >, ohms. Determine the current i if the
initial current is i (0) = < (1,2,3,4;0.8); (0,2,3,5;0.2) >.

The intuitionistic fuzzy differential equation related to
above problem is as follows:

di (t .
01%+ 0y % i (t) =03,
(33)
i (0) =0,
In standard form, (33) can be written as follows:
L2 =2,
o, o (34)

i (0) = 0.

where  0,/0, = < (11,15,20,28;0.8); (9, 15,20, 40;0.2) >
and 0,/0, = < (16,20,26,35;0.8); (13,20,26,50;0.2) >.

By taking (a, f8)-cut of (34), we obtain the following
equations:

M+ (5a + 11)i*1 (t,0) = 5a + 16,
dt (35)

i (0,a) =1.25a + 1,

diy (£, ) : B
BT + (28 - 100)i, (t, ) =35—-11.25q, (36)
i*2 (0,) =4 - 1.25a,
di, (tp) ; B
ST (165 -756) () = 20758756, 1
i (0,B) = —2.56 + 2.5,
diy (t.p) oo
T + (25ﬁ + 15)12 (t, ﬁ) = 30[3 + 20, (38)

iy (0,B) = 2.58 + 2.5.

Here, L = d/dt and by taking L' (.) = [, (.)dt on both
sides of (35)-(38), and using the initial conditions, we obtain

* tot -
i, (t,a)=-5 I J (o +2.2)i; (x,0)dx + 5at + 1.25a0 + 16t + 1, (39)
0lo

* t

-

t

-

i, (t,a) =10 J (o —2.8)i, (x,)dx — 11.25at — 1.25« + 35t + 4, (40)
0

i () =75 J (a - 2.2)iy (x, f)dx — 8.756¢ + 21.75¢ — 2.58 + 2.5, (41)
0
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i (tB) = 25 J; (a0 +0.6)iy (x, B)dx + 308t + 2,58 + 20¢ + 2.5, (42)

Now by using GMADM, the solution of (39)-(42) can be
expressed as follows:

(7, (t,0) = 1250+ 1,
1i (t @) ={(5a+ 16) - (5a+ 11) (1.25a + D}, (43)

* t *
b, ()= =5 [ (@+22)i(nadx k=1,

b, (t,a) = =1.25a + 4,
4 i21 (t,a) ={(-11.25a + 35) + (10« — 28) (—1.25c + 4)}t, (44)

i, (t,a) =10 J

t

(a—2.8) ;ka (%, 0)dx, k>1,
0

[ 5. (t.p) = —25p+25,
d ;12 (t, ) ={(-8.758 + 21.75) + (7.5 — 16.5) (—2.58 + 2.5)}t, (45)

* t *
| ., (BR) =75 JO (€=2.2)i; (xB)dx, k=1,

i, (t,B) = 2.5+ 2.5,

13, (1.8 ={(308 + 20) — (258 + 15) (2.5 + 2.5)}t, (46)

;zkﬂ (t,B) =-25 .[o (a+0.6) ;Zk (x, B)dx, k>1.

By solving (43)-(46), we get the closed form solution
after four iterations as follows using GMADM:

i, (t,a) = 1.25a+ 1 + [(5a+16) — (5a+11) (1.25a + 1)] [1 — & 1],

S5a+11
* ~ 1 (- 10a+28)¢
i, (t,a) = 4—1.25a + 5 Ton [(-11.25a + 35) - (~10a + 28) (-1.25a + 4)] [1 - e )
) (47)
¥ _ —(=7.5B+16.5)t
t,B) =25-256+—+——[(-8.756 + 21.75) = (=7.56 + 16.5) (=2.56 + 2.5)] |1 — ,
iy (1) B+ o5 —7gp | (79 +2175) ~ (7.5 +16.5)(-2.56 +25)][1 - ]
* 1 _(25B+15)t
t,) = 2.5+ 2.5+ ———[(306 +20) — (256 + 15) (2.5 + 2.5)] |1 - .
i () B+ 355415 (308 +20) - (256-+19) 2.5+ 29)1[1 - ]
The exact and approximate solutions of the IVP-I used in The exact solution of Example 1 by classical method is

Example 1 are shown in Tables 1 and 2, respectively. given as follows:
Figures 2(a) and 2(b) shows an approximate solution of

the membership and nonmembership function for IVP-I

used in Example 1.
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4 ~ (5a+ 11)

* _ 5
i (tba)=e (5‘“11)[(04 +1

* — 5
iz (t,(x) — 62(50( 14)t(4__06

2 2

(5a+11)°

(5a + 16)) (5a + 16)

5 (-28+9a)\ 5 (28 +9a)
4" 8 (5a-14) ) '8

"3 (5a-14)°
(48)

6 (-11+5p)

6 (-11+5p)°

i*1 (t,p) = e(s/z)(sﬁ—11)r(§ 5, 1(-87+ 35/3)) +l (—87 +35p)

* 5
iy (t,B) = e5<5ﬁ*3>f(_ B+

2 2

Figure 3(a) depicts the exact solution of the membership
function of the generalized intuitionistic fuzzy IVP-I, 3(b)
depicts the exact solution of the nonmembership function,
and 3(c) depicts the exact solution of the generalized
intuitionistic fuzzy IVP-I as described in Example 1.

In Table 3, n represents the number of iterations, Err
represents the residual error, and CPU time represents the
computational time in seconds for finding the approximate
solution of the generalized intuitionistic fuzzy IVP-I de-
scribed in Example 1. Figures 2(a) and 2(b) show an ap-
proximate solution of the membership and nonmembership
function for IVP-I used in Example 1. The exact solutions to
the membership and nonmembership functions for IVP-I
used in Example 1 are depicted in Figures 3(a)-3(c).

Example 2. Mass Spring System (Physical Engineering
Application).

Consider a spring with a mass of m= < (2,3,4,5;0.6);
(1,3,4,6;0.3) > kg is held stretched $=< (0.5,0.6,0.7,0.8;
0.6); (0.4,0.6,0.7,0.9;0.3) > m beyond its natural length by
a force of F = < (19, 20,21,23;0.6); (18,20,21,24;0.3) > N.
If the spring begins at its equilibrium position, then a push
gives it an initial velocity of x; = < (11,12,13,14;0.6);
(10,12,13,15;0.3) >ms™ .

The intuitionistic fuzzy initial value problem related to
this problem is given as follows:

dx(t) *

m +kx(t) =0, (49)
e (1)

with initial conditions:
x(0) = <(5,6,7,8;0.6); (4,6,7,9;0.3) >,

x (0) = <(11,12,13,14;0.6); (10,12,13,15;0.3) >.
(50)

Here, k is spring constant and its value is calculated as
follows:

]’2:

» x| b

(51)
= <(24,29,35,46;0.8); (20,29, 35,60;0.3) > .

5 2038+2)\ 2(38+2)
G EEVA

(5+3)°

Using the values of m and k in (49), we get the following
intuitionistic fuzzy differential equation in standard form as
follows:

d*x (t) .
et <(5,7,12,23;0.6); (3,7,12,60;0.3) > x () = 0.
(52)
By taking (a, )-cut of (50) and (52), we get
d’x (t, ) .
T + (30( + 5)x1 (t, (x) = 0,
;1 (0,) =2+ 5, (53)
x1(0,a) = 2a+ 11,
2 *
G0 | 03 18a)%, (ta) = 0,
x,(0,a) = 8 -2a, (54)
x3(0,a) = 14 - 2a,
d’x (t, B) .
T + (9 - 6[3)961 (t,ﬁ) =0,
. 55
5 p=7-3
x,(0,B) = 13 - 34,
2 *
£, .
%ﬁﬁ) + (698 - 9)x, () =0,
(56)

%, (0,p) =3B +6,
x5(0,B) = 3+ 12.
Here, L = d*/dt> and by taking L™" (.) = [} [1 ()d¢ dt on

both sides of (53)-(56), and using the initial conditions, we
obtain
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TaBLE 1: Approximate solution of Example 1 at t=1.
4 i (t, @) i (t, a) B i (t,B) i, (t,B)
0 1.4546 1.2500 0.2 1.3333 1.3000
0.1 1.4348 1.2546 0.3 1.3421 1.2889
0.2 1.4167 1.2596 0.4 1.3519 1.2800
0.3 1.4000 1.2650 0.5 1.3627 1.2727
0.4 1.3846 1.2708 0.6 1.3750 1.2667
0.5 1.3704 1.2772 0.7 1.3889 1.2615
0.6 1.3571 1.28409 0.8 1.4048 1.2571
0.7 1.3448 1.2917 0.9 1.4231 1.2533
0.8 1.3333 1.3000 1.0 1.4444 1.2500
TaBLE 2: Exact solution of Example 1 at t=1.
49 i (t, ) i (t, ) ﬁ i (ﬁﬂ) i (tsﬂ)
0 1.4546 1.2500 0.2 1.3333 1.3000
0.1 1.4348 1.2546 0.3 1.3421 1.2889
0.2 1.4167 1.2596 0.4 1.3519 1.2800
0.3 1.4000 1.2650 0.5 1.3627 1.2727
0.4 1.3846 1.2708 0.6 1.3750 1.2667
0.5 1.3704 1.2772 0.7 1.3889 1.2615
0.6 1.3571 1.28409 0.8 1.4048 1.2571
0.7 1.3448 1.2917 0.9 1.4231 1.2533
0.8 1.3333 1.3000 1.0 1.4444 1.2500

1.8 4

1.6 1

1.4 4

1.2 1

0.8 1

0.6

0.4

0.2

(a)

Ficure 2: Continued.
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()

FIGURE 2: (a) Membership function and (b) nonmembership function.

0.8
o7
0.6
05

a 0.4 -
03 -
02
0.1 -

0

(a) (b) ()

FIGURE 3: (a) Exact solution of membership function for GITF-IVP-I, (b) exact solution of nonmembership function for GITF-IVP-I, and
(c) exact solution of GTIF-IVP-I.

TaBLE 3: Error comparison of GMADM, ADM, and TSM for solving GTIF-IVP-I used in Example 1.

Methods GMADM ADM TSM
n 04 17 08
Err 1.2e—32 6.2e—15 7.1e-5

CPU time 0.0123 0.2413 0.1452




Complexity

x, (t,a) = j; (-t + ) Ba+5)x; (y,a)dy + 2at + 2 + 11t + 5,

x, (ta) = J;(—(—t +9) (=23 + 18a)x, (, oc))dy —2at — 20+ 14t + 8,
1 X (6B = J;<—3(—t +9) (=3 +2p)x, (y,ﬂ))dy— 3Bt - 3+ 13t +7,
_ x, (t,p) = 123(4 +¥) (=3 +23B)x, (y,p)dy +3pt + 3B +12¢ +6.

Now, by using GMADM, we get

<

’ S‘clo(t,a) =5+ 2a+ 11)t + 2a,

. 43 55 25 25
] %, (ta)=-o’f - at® 6t3—3a2t2 ~at —71&2

t
b 0 = [ oG x, Guadnks

[ %), (t@) = 8.+ (14— 20)t - 2a,

s 149 5 161 4

X, (ta) = -6’ ——at’ - aie 180*> + 95at> — 92¢°,

3

t
o, () = [ (<) (23 4180) 3, (ra)dp k1.

[ x,, () =7+ (13- 3p)t - 3p,

* 39 63
x,,(tB) = =31 + —ﬁt ——t3 9Bt + —/St ——t2

t ot
| 1, 6P = JO JO(—3(—t+ P(=3+20)* x, (3, f)dy, k= 1.

[ X, (£,) =6+ (3 +12) + 3P,

690 267 s ; 207 ,, 387

o, (1.8) = S B = S0P 188 - ZER - R 278

S, (6B = IO 3(=t+ ) (=3 +23B) x, (3, Py k=1,

By solving the (58)-(61), we get the approximate solu-
tion after four iterations as follows:

11

(57)

(58)

(59)

(60)

(61)
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* 279841 625 161 3703 529 12167 12167 81 981
x, (t,&) = 8 — 2a + 14t — 2at + P g T T T T TS D P05+ 00t
25920 8064 3 3 360 90 140 140
7383 28037 6412009 729 3321 44091 69299 3783937 81 351
- o + o’ - Pa-"ta’ ot - o’ + o’ - ta——t’a' + —t'a’
280 630 181440 140 70 280 280 20160 35 14
10281 212129 81 1269 1311 126431 27 258 1265
- t o t o — —t%at + o’ - o + o - + 20 - Pa-27t4" + 177t%7
140 2520 5 10 4 360 5
3841
— ?# —6ta% + Sa— 1827 + 95t21x,
* 1053 729 39 63 351 189 1053 567 3 31 237
x, () =7=3B+13t =3t +———t 4+t - -+t -t -t P+ -
4480 640 2 2 40 8 560 80 280 560
27 3051 27 45 297 243 3159 9 159 27 2349
O P8 L4865 248 8 ﬁ ts _ Sg_ 247 2% ﬁ ¢ ¢ ﬁ [3
4480 280 56 112 896 70 140 560
123 621 1377 9 33 549 333 69
%t"’ o S EE’ ’ 4 ?ts - T B2 ﬂ + 241 - 4;3 3767 + t3ﬂ -9’ B + 7%[;.

The exact and approximate solutions of the IVP-II used
in Example 2 are shown in Tables 4 and 5, respectively.

(62)

The exact solution of Example 2 given by classical
method is as follows:

Figures 4(a) and 4(b) show an approximate solution of

the membership and nonmembership functions for IVP-II
used in Example 2.

x(t,a) = (2¢x+1\1/251—r1530c+ >t + (5 + 2a) cosV3a + 5t,
xz(t,oc)—2 ~18a+23 E(:S(x?szl;l ~18a+ 23 + (8 — 2a) cosV—18a + 23t,
(63)
x, (t,B) = L2765 +9 6@% 133)Sln _6ﬂ+9t+(7—3ﬁ)cosma
x, (6, ) = YOP OB+ sinyEOB =9 | 35) cosvfo9p o1,

2363

Figure 5(a) depicts the exact solution of the membership
function of the generalized intuitionistic fuzzy IVP-II, 5(b)
depicts the exact solution of the nonmembership function,
and 5(c) depicts the exact solution of the generalized
intuitionistic fuzzy IVP-I1 described in Example 2.

In Table 6, n represents the number of iterations, Err
represents the residual error, and CPU time represents the
computational time in seconds for finding the approxi-
mate solution of the generalized intuitionistic fuzzy
IVP-II described in Example 2. Figures 4(a) and 4(b) show
an approximate solution of the membership and non-
membership function for IVP-II used in Example 2. The
exact solutions to the membership and nonmembership
functions for IVP-II used in Example 2 are depicted in
Figures 5(a)-5(c).

Example 3. Steam Supply Control Slide Value Problem
(Mechanical Engineering Application).

The motion y (t) of a steam supply control slide valve is
governed by the third-order differential equation as follows:

K *

d’y
i +hy

" dy
d

d*y
—+kdt

dr®
where m is mass of the valve, f is friction, k is a constant
characterizing the properties of the slide valve spring, h is
a constant depending on the dimensions of the equipment, «
is a proportionality constant relating the motion and the
acceleration of the control valve, and I is the moment of
inertia of the turbine. If we neglect the friction and take
m =50kg, k=25h=1,a04=6, and I =0.8, then the (64)
becomes

:O’

6*_0
08’

3% *
509 425V, (65)
dt dt

with initial conditions
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TABLE 4: Approximate solution of Example 2 at t=1.
o x, (t, ) x, (t, @) B x, () x, (¢, )
0 6.6109 -3.8972 0.3 5.7772 2.7760
0.1 6.5617 —-2.9696 0.4 6.0440 —1.4241
0.2 6.5010 —1.9884 0.5 6.2821 —4.5497
0.3 6.4290 —0.9561 0.6 6.4899 —6.6794
0.4 6.3461 0.1248 0.7 6.6661 —7.8787
0.5 6.2525 1.2514 0.8 6.8090 -8.1914
0.6 6.1483 2.4206 0.9 6.9174 -7.6319
1.0 6.9895 —6.1758
TaBLE 5: Exact solution of Example 2 at t=1.
o x, (8, @) x, (t, @) B x,(t,8) x, (8, 8)
0 6.6109 -3.8972 0.3 5.7772 2.7760
0.1 6.5617 -2.9696 0.4 6.0440 —1.4241
0.2 6.5010 —1.9884 0.5 6.2821 —4.5497
0.3 6.4290 —0.9561 0.6 6.4899 —6.6794
0.4 6.3461 0.1248 0.7 6.6661 —7.8787
0.5 6.2525 1.2514 0.8 6.8090 -8.1914
0.6 6.1483 2.4206 0.9 6.9174 -7.6319
1.0 6.9895 —6.1758
8 4 % £ Y P
= -
28BN _ ‘ToSZ==s by o
e = _—— -
627 N s L EREEZ< T RERE ST YY)
b S 6 A o T AT~ e T A
e RS EZZ00N T SRS ~
4 1 N \\ ™~ 4 4 \ i Wl .
N \\\‘\\ N 3 % STy N
\ NN \ % ﬁ‘\\ e SUUENIA S
2 W N 2 4 i g ~ ™~
N NN ‘ N I Iy {7\
N ‘ by 4}
\ NN \ % | ke
a 01 \ ARSI \ % By o
% v \ KQ PR
\ N 2] ! \ AN
-2 4 \ Ny, X ;f i NS
A Y ‘ »
\ ] / A
4 N, \ v f X
N 1A / N
6 4 \\ / 61 \ f \\
Y% Y ). )
= -8 \ y
8 o e
i p-
0 01 02 03 04 05 06 07 08 09 1 0 0.2 0.4 0.6 0.8 1
X X
() (b)
FIGURE 4: (a) Membership function and (b) nonmembership function.
)*}(0) = <(1,2,3,4:0.5): (0,2,3,5:0.3) >, In standard form, (65) can be written as follows:
! &y 1dy 3.
0) = <(7,8,9,10;0.5); (6,8,9,11;0.3) >, —L -+ -y =0. (67)

"

y (0) = <(21,22,23,24;0.5); (20,22,23,25:0.3) >.

(66)

By taking (a, 8)-cut of (67) and (66), we get the following
equations:
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0 -
0 03
0.1 04 02 -
0.2
o 05 - 04 4
0.6 - a
a 0.4 a ] 06 -
05 074 |
0.6 0.8 0.8 —
0.7 0.9 - 1
4 1 =
0.8 ] 02° 0
A 1 1.0 r 104 8642024 631 0_80_60);40.2
420 --6-4,202468108' X
2.4 002 x
(a) (b) (c)

FIGURE 5: (a) Exact solution of membership function for GITF-IVP-II, (b) exact solution of nonmembership function for GITF-IVP-II, and
(c) exact solution of GTIF-IVP-II.

TaBLE 6: Error comparison of GMADM, ADM, and TSM for solving GTIF-IVP-II used in Example 2.

Methods GMADM ADM TSM
n 04 14 06
Err 4.2¢ - 45 1.2e-19 0.le-7
CPU time 0.0143 0.2113 0.1872

[ &y t,a 1dy La) 3«
Jﬁg )*3‘%£ )+5V1““):Q

) )71 0,a) =1+ 2a, (68)

y1(0,a) = 7 + 2at,

[ 7 (0,a) = 21 + 20,

&y, (o) 1dy, (L)

3 . B
i : I +%y2 (t,a) =0,y, (0,a) =4 - 20,

(69)
Y4(0,&) = 10 — 2, ¥4 (0, &) = 24 — 2a,

[( &y, (t,8) 1dy, (t,B) 3 «
yih} ﬁ +g yldt ﬁ +%y1 (t,ﬁ)ZO,

y, (0,p) =3-3B, (70)
y1(0,8) =9 -3,

[ 90, ) = 23 - 3B,

A

[( &y, (t,8) 1dy, (t,8) 3 «
yilﬁ : 5 yzdt : t307 P =0

1y, 0.8 =243 71)

73(0,B) = 8+ 3B,

[ 72(0,8) = 22 + 3B,
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Here, = d*/d? and by taking
Q= s jo (.)dt dt d on both sides of (68)-(71), and
using the initial conditions, we obtain

* L 53 6
y, (ta) :J — (x,0) (x — 1) (3x — 3t — 8)dx + 1 + —t + —t2a + 2at + 2a + 7t,
o 40 5 5
. t 62, 6,
¥ (t,oc)zj ——y2 (x, ) (x—t)(Bx — 3t —8)dx + 4 + — —t"a — 2t — 20 + 10t,
o 40 5 5
(72)
t
1 «
5 (t,/S):J I o) (x =) (% - 3t—8)dx+3+—t t/s 3Bt — 38+ 1,
0
1. 56, 9,
y2 (t,B) = J Eyz (x,/:’)(x—t)(3x—3t—8)dx+2+?t +§t/3+3/3t+3/3+8t.
0

Now, by using GMADM, we get

( 1
y1 (t, oc)—1+—t (1+2(x)+ (21+2a)t + (7 + 20)t + 2a,

53 3 529 13 31 7 1, 1
o - -ttt - FPa-—t - —ta, (73)
2000 1000 2400 400 120 60 10 5

1, (ba) =

* f 1 *
P (ta) = | o (-0 Gx=3t-8)), (nadn k1
L 0

1
y2 (t, (x)—4+—t (4- 20c)+ (24 - 2a)t* + (10 — 2a)t — 2,

. 31 3 323 13 31, 7 2, 1
1y, (ta)= £+ - tr—tla- "+ —a- + -t (74)
i 1000 1000 12000 400 30 60 5 5

* ¢ 1 *
| i (00) = [ o (= Gx =3t - 83, (v addx k> 1.

1 1
¥, (6P =3 +Et2(3 —2p)+5 (23— 38)t> + (9 - 3B)t — 3,
R 50 & 9 5 607 4 394 35 73 32

E t,p) = t tp— "+ —tp——t +—t —t 75
)’11( P) 2000 +2000 P 2400 +800 B 8 +40 p- 10 /3 (75)

t
* 1 *
Y (6B = JO_E (x-H)(Bx -3t -8)7, (x,fdxk>1.
1 2 1 2
2o(t,[ﬁ):2+ﬁt (2+3[3)+5(22+3/3)t +(8+3p)t + 3B,
. 59 & 9 & 6074394 337 )

1 t,p) = t t —t -t —t ——t —t ) 76
yZl( P) 2000 +2000 B- 2400 +800 8 ﬁ B (76)
* t 1 *

Y (t.B) = JO 5 (K0 (x=3t=8)), (x. fidrk>1

By solving the (73)-(76), we get the approximate solu-
tion after four iterations as follows:
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. 5 1 1 37 » 41 " 47381 o ls 7,
y (ba)=1+ta+7t+ t o+ t o+ t o — t ——ta-—+t«
71751680000000 30750720000000 1013760000000 71751680000000 750 240
7, 7l s 7.4 31, 2357 u 57 6 18539 o, 113 4 2711 , 137
- fa-—t -t -+ '+ £0 - £+ £*+ £+ t o
60 3000 32 120 1330560000000 32000 14515200000 26880000 10080000 5040000
. 53 o 1801 o 3967 o, 109 7L, 1283,
430510080000000 184504320000000 1330560000000 221760000000 17280000000 7257600000

21, 1

- t o+ tstthtx,
2 1612800 144000

. ) 1 ” 37 51 41 w74 7.5 77 5 21,
¥, (t,a) = 4 — o+ 10t - e - B+ —tPa-———tPar ——tla+ ot -t
71751680000000 30750720000000 750 1013760000000 240 60 3000 80
13 1669 25927 5597 11 223 11 31
P4 T 10— £+ 2+ F e S S S L, Y
30 665280000000 362880000000 3628800000 3360000 720000 4800  215255040000000
97 1207 109 71 1283
+ T £12 - Mo+ 0 + o+ 12t + ———+t%a
8386560000000 3548160000000 221760000000 17280000000 7257600000 1612800
137 49
- t o — t o - 2ta,
5040000 144000
. 3 3 37 41 1 7 7 73 7
¥, (tB) = 2+2t°B + 8t + B+ BB+ t2f - — - —t'p- - —t — —t*
2 143503360000000 20500480000000 675840000000 500 160 © 40 7 3000 30
19 5 61 6109 911 4 157 4 89 , 281 ¢ 1 14

-t + t - t - t + £ + '+ £+ t
60 30240000000 90720000000 7257600000 40320000 315000 144000 7687680000000

2 1

239 i 709 2 109 u 71 0 1283 N
+ 7+ t 4+ 36+ t p— tp - B+ 11t ———+°f
23063040000000 2365440000000 147840000000 11520000000 4838400000 1075200
137, 49
+———t' f+——t p+3tf.
3360000 P 96000 P P
(77)

The exact and approximate solutions of the IVP-III used
in Example 3 are shown in Tables 7 and 8, respectively.

Figures 6(a) and 6(b) show an approximate solution of
the membership and nonmembership functions for IVP-III
used in Example 3.

The exact solution of Example 3 given by classical
method is as follows:
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168 (£)”" + 128887200000 + 7938000 (£)*° o + 97200 (£)*° V19185 o — 818424000 (8)' > — 5832000 ()"

S () = % %) e(®) 4 g )1((\/3 (84 +24(9a + 7608 ()" + 302400 (&) — 456480 (£) + 816 (€)*x + 86400 (£)'ox - 48960 (€)™ sin (05t) )
(&)™ -60)(x)
(42(&)™ - 8375400 (§)"a — 48600 (£)** VIOI85 & — 204606000 (£)'*or — 1458000 (£)"* VIII85 r + 32532597000
4 1
9 (& -60)(p)
VIOTSS +2520(8)"° + 720 (8)"a + 234819000 V19185
. 1
¥, (ha) =~

VI9185 a + 48 (£)"*a — 47871000 (£)*'* + 48600 (£)*° V19185 — 2864484000 (£)'"* - 20412000 (£)"* V19185 + 13258080000a

+95904000a/T9T85 + 10080 (£)° + 2880 (£)*a + 9305280009185

+12(8)a - 17147700 (£)2° - 24300 (£)*> VI9T85 - 716121000 (£)' — 5103000 (£)"* VISTS5 + 3936114000a + 283500000 |¢”" cos (t)

17

24(8)a + 47952000 V19185 a + 6629040000 + 1440 (£)*a — 74387160000 — 409212000 (£)*a — 2916000 (£)"*

2 ,zr)
9 273 . €
9 (&1 -60) () ( < VOS5 a + 48600 (£)* VIOI85 at + 3969000 (£)*at — 120 (&) - 97200 (£)* V19185 + 17982000 (£)*° + 2046060000 (£)'"* + 14580000 (€)' VI9185 ~ 7200 ()" - 537192000v/19185 )

73 l(ﬁ (129 a + 408 (8)a + 43200 (8)" o - 24480 ()P o - 60 (£)*" — 4416 ()" - 216000 (8)"” + 264960 (£)*° )™ sin (a3))
X

6(8)"a+ 1417500 VI9185 a + 1968057000a + 360 (£) o -

102303000 (&) — 729000 (£)"* V19185 & — 19218384000 — 4187700 (§)*a

3 1
S TR ey ( ( ) )e"“ cos(zf}t)),
(®™ - 60)(v) ~243000 (£)** V19185 & — 30 (2025 + 1519185 + 14855400 (£)** + 48600 (£)*> V19185 + 511515000 (£)""* + 364500 (£)"* V19185 — 1800 (£)""” — 138672000V19185

24(8)B + 479520008V19185 + 6629040008 + 1440 (£)*B — 409212000 (£)"* B — 2916000 (&)" V19185 B

- 1 1
tB) = =
1P =5 6 a0y

3969000 (£)2° B + 48600 (£)*° V19185  — 72 (£)”" + 13311000 (8)*" — 48600 (£)*° V19185 + 1227636000 (£)'"* + 8748000 (£)" e

ot

V19185 - 4320 (&)™ — 47381760000 — 342144000V/19185

- g %)()(\/3(12 (&)°B+408(8)" B +43200(§)'B - 24480 () - 36 (£)* - 2808 (§)"” - 129600 (&) + 168480 (§)**)e” sin (5t))

4
3@

- 1
LB = g
7P =5 (67 o)

8507700 (£) + 24300 () V19185 + 306909000 (£)'"* + 2187000 (£)

13

1 ( ( 6(8)B + 1417500089185 + 19680570008 + 360 (£)*B — 102303000 (£)'*B — 729000 (¢)"*BV/19185 — 4187700 (£)*B + 24300 (£)** V19185 § - 18 (&) ) )
%" cos (ost) |,

V19185 - 1080 (§)* — 12156237000 — 87723000V19185

1 ( ( 72(8) B + 143856000v/19185 B + 198871200008 + 4320 (£)*° — 1227636000 (£)"*B — 8748000 (£)'* VI9185 B + 11907000 (£)*°B + 145800 (£)** /19185 B ) l)
e

+192(8)"? + 135516240000 — 43902000 (£)*'> + 97200 (£)*> /19185 — 3273696000 (£)"* — 23328000 (§)"* V19185 + 11520 (£)** + 978480000V/19185

+ g %X)(\/E(ss(f)‘”/z +1224(8)"B+ 129600 (8)' B - 73440 ()" + 96 ()" + 8016 (§)"” + 345600 (£)" - 480960 (§)**)e™" sin (a5¢))

713

4 1 (( 18(8)" B + 4252500019185 + 59041710008 + 1080 (£)*B — 306909000 (£)'*B — 2187000 (£)'"* V19185 8 — 1255310(5)2%42900({)”«/19185;;) ) )
e cos(ost) |,

(@ -0\ s

where

1/60(2025 + 15v/19185 )*° - 1
(2025 + 15v/19185)"?

~1/30(2025 + 15v/19185)*® - 60
(2025 + 15v/19185)"?

1/60(2025 + 15v19185 )2 v/3 + 6013 (79)
0y = ,

(2025 + 15v/19185)"?

1
"~ 2302200 + 16200+/19185°

& =12025+15V19185.

X

Figure 7(a) depicts the exact solution of the membership
function of the generalized intuitionistic fuzzy IVP-III, 7(b)
depicts the exact solution of the nonmembership function,

+ 34500654000 — 21335400 (£)*° — 48600 (£)** V19185 - 818424000 (£)' — 5832000 (£)'* V19185 + 2880 (£)"” + 248994000 V19185

(78)

and 7(c) depicts the exact solution of the generalized
intuitionistic fuzzy IVP-III described in Example 3.

In Table 9, n represents the number of iterations, Err
represents the residual error, and CPU time represents the
computational time in seconds for finding the approximate
solution of the generalized intuitionistic fuzzy IVP-III de-
scribed in Example 3. Figures 6(a) and 6(b) show an ap-
proximate solution of the membership and nonmembership
functions for IVP-III used in Example 3. The exact solutions
to the membership and nonmembership functions for
IVP-III used in Example 3 are depicted in Figures 7(a)
and 7(¢).

Example 4. An Embedded Beam (A Physical Application).
A beam of length [ is embedded at its left end and free at
its right end. Find the deflection of the beam if a load w, =
24F] is distributed along its length.
The intuitionistic fuzzy initial value problem related to
above problem is given as follows:
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TABLE 7: Approximate solution of Example 3 at t=1.
« ¥, (@) ¥, () B 1 () 7, ()
0 18.00 25.28 0.3 20.67 22.61
0.1 18.49 24.80 0.4 19.94 23.34
0.2 18.97 24.31 0.5 19.21 24.07
0.3 19.46 23.83 0.6 18.49 24.80
0.4 19.94 23.35 0.7 17.76 25.52
0.5 20.43 22.85 0.8 17.03 26.25
0.9 16.30 26.98
1.0 15.57 27.71
TaBLE 8: Exact solution of Example 3 at t=1.
« 71 (t, ) 7, (t,a) B 7, (t,B) 7 (&)
0 18.00 25.28 0.3 20.67 22.61
0.1 18.49 24.80 0.4 19.94 23.34
0.2 18.97 24.31 0.5 19.21 24.07
0.3 19.46 23.83 0.6 18.49 24.80
0.4 19.94 23.35 0.7 17.76 25.52
0.5 20.43 22.85 0.8 17.03 26.25
0.9 16.30 26.98
1.0 15.57 27.71
~ .
24 1 7 26 //
/Y 475
22 x4 24 A g
7 A
20 - 7% 4 224 4554
& '/,f, 7 VA XY,
zLaC 27 20 - p L
18 227 %7 15027 &
Y x4 7 18 - Lo LY
16 4 7 47 A AT
’; é” 7 o 16 1 // XA/ /’; 5
. /;ﬁ%/// 14 "’///'///?”;/
a a T
4% 477 AN
12 4 /,;;,;//// 12 /»:f///;/ ,}5'//
101 ,,;;é//';f 10 /,r;//;/ ;//,«//
> e A
8 - /,ﬁ/ // = g = Z=" L “ = e
4227 T2 G227 LT
6 i = 64 - = o - T L
2 BP £ e =L
Z7 = T et
HEBT e VAIEEZT
4 J ?‘ . = s -t :'; Y e
ZF T s =
= 2 == ==
2 -; o= = 0 _i': ==
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X
(a) (b)
FIGURE 6: (a) Membership function and (b) nonmembership function.
d*y d*y
BTS2 = w, (80) S =, (81)
d dx

Using the above value of w, in (80), and writing in

standard form, we have

with initial conditions:
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Complexity
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FIGURE 7: (a) Exact solution of membership function for GITF-IVP-III, (b) exact solution of nonmembership function for GITF-IVP-II],
and (c) exact solution of GTIF-IVP-IIIL.

TaBLE 9: Error comparison of GMADM, ADM, and TSM for solving GTIF-IVP-III used in Example 3.

Methods GMADM ADM TSM

n 04 13 06

Err 52e-37 6.2¢ —28 1.0e-8

CPU time 0.1123 0.2013 0.0452
[+ By taking (a, 8)-cut of (81) and (82), we get

y(0) = <(1,2,3,4;0.5); (0,2,3,5;0.3) >,
y (0) = <(7,8,9,10;0.5); (6,8,9,11;0.3) >,
y (0) = <(21,22,23,24;0.5); (20,22,23,25;0.3) >,

[ 3 (0) = <(32,33,34,35;0.5); (31,33, 34,36;0.3) >.
(82)

*

’ d4y1 (x, )

dxt =

y, (0,a) = 2a +1,

) y1(0,a) =20+ 7, (83)
(0, ) = 2a + 21,
| ¥, (0,0) = 2+ 32,
e
i 5@)_,,
dx
3, (0,) = 20 + 4,
(84)

) y1(0,@) = —2a + 10,

y1(0,@) = —2a + 24,

m

| ¥, (0,a) = —2a + 35,
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(d'y, (x,0)
dx?

1 (0.9) = -3f+3,

1 710.8)=-3p+9,

y1(0,p) = -3B+23,

24,

m

| ¥, (0,8) = =3f + 34,
[ 4y (v
dx*

Y (0,B)=-38+3,
1 7i.p=-38+9,
71(0,p) = -38+23,

24,

| 3, (0,8) = -3 + 34,

Here, L = d*/dx*, and by taking
L) = I; '[g :)C I; ()dxdxdxdx on both sides of
(83)-(86), and using the initial conditions, we obtain

* 21 1 16
§2 (x,0) = x* +2ax + 20+ 7Tx + 1 + o+ —x> + - o+ —x°,

" 1 35
y, (x,a) = xt 4 -2ax - 20+ 10x - Xa + 12x° - =X + €x3,

* 3 23 1 17
y1 (x6,B) =x* +3—-3Bx—3B+9x —Exzﬂ +7x2 —5x3/3 +?x3,

* 3 1 11
v, (x,B) = x* +3[3x+3ﬁ+8x+2+5x2ﬁ+ 11x° +5x3ﬁ+7x3.

Now, by using GMADM, we get

# 21 1 16
ylo(x, a)=1+2ax+2a+7x+ o+ xt b =xPa+ —x°

>

* 4
n, (a) =x,

| jk)lkﬂ (%, ) =0,k>1.

* 1 35
¥y, (%, 0) =4 = 2ax - 2+ 10x — Ka+12x° - a+ —x,

* 4
¥, (x,a) = x7,

Vo, (x,0) = 0,k>1.

Complexity

(85)

(86)

(87)

(88)

(89)
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23 1 17
)’10 (x, ) =3-3Bx—-3B+9x - —x B+ =x’ 2x3/3 + ?x3,
1 0, (5P =", (90)
| 7, (6B =0,k>1.
(. 3, , 1, 11,
¥, (%, B) = 2+3ﬁx+3ﬁ+8x+5x B+ 11lx +5% ﬂ+7x
IBNCYIEES (91)
| 7, (6B =0,k>1.
By solving the (88)-(91), we get the approximate solu-
tion after four iterations as follows:
yl (x,0) = x* +2ax + 20+ 7x + 1 + x° oc+7x +§x (x+?x ,
) 1 35 ,
yzo(x,oc) =x" +4-2ax - 2a+ 10x — x*a + 1257 —3x (x+€x ,
(92)
23 1 17
(xﬂ)—x +3-3Bx - 3ﬁ+9x——xﬂ+ x* —=x’p+ ?x3,

* 3 1
Vs, (x, B) =x4+2+3ﬁx+3ﬁ+8x+§x2ﬁ+ 11x2+ix3ﬁ+7x

The exact and approximate solutions of the IVP-IV used
in Example 4 are shown in Tables 10 and 11, respectively.

Figures 8(a) and 8(b) show an approximate solution of

the membership and nonmembership functions for IVP-IV
used in Example 4.

x 4 2 21
¥y, (6 0) =x" +2ax +2a+7x + 1+ x (x+7x +-x"a
* 4 2 1
Yy, (6,0) = x" +4 = 2ax - 200+ 10x — x a+ 12x° —3x a+—x’,
23
1, (6 p) = +3-3Bx - 3ﬁ+9x——xﬂ+ x* -

yz (x,p) = x* +2+3/3x+3[3+8x+—x[3+11x +—xﬁ+

Figure 9(a) depicts the exact solution of the mem-
bership function of the generalized intuitionistic fuzzy
IVP-IV, 9(b) depicts the exact solution of the non-
membership function, and 9(c) depicts the exact solu-
tion of the generalized intuitionistic fuzzy IVP-IV de-
scribed in Example 4.

In Table 12, n represents the number of iterations, Err
represents the residual error, and CPU time represents the

11 ,

The exact solution of Example 4 determined by classical
method is as follows:

1 16
S+ 003
3 3
35 ,
6
(93)
1, 17
—x"f+ 3%
11 )

computational time in seconds for finding the approxi-
mate solution of the generalized intuitionistic fuzzy
IVP-IV described in Example 4. Figures 8(a) and 8(b)
show an approximate solution of the membership and
nonmembership functions for IVP-IV used in Example 4.
The exact solutions to the membership and non-
membership functions for IVP-IV used in Example 4 are
depicted in Figures 9(a)-9(c).
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TaBLE 10: Approximate solution of Example 4 at x=1.
a 7 (x.a) 72 (%) B 71 (x.p) 72 (x.p)
0 24.83 32.63 0.3 27.77 29.90
0.1 25.37 32.30 0.4 26.97 30.70
0.2 25.90 31.77 0.5 26.17 31.50
0.3 26.43 31.23 0.6 25.37 32.30
0.4 26.97 30.70 0.7 24.57 33.10
0.5 27.50 30.16 0.8 23.77 33.90
0.9 22.97 34.70
1.0 22.17 35.50
TaBLE 11: Exact solution of Example 4 at x=1.
a 1 (%, ) ¥, (%, a) B y1 (%, p) ¥, (x,B)
0 24.83 32.83 0.3 27.77 29.90
0.1 25.37 32.30 0.4 26.97 30.70
0.2 25.90 31.77 0.5 26.17 31.50
0.3 26.43 31.23 0.6 25.37 32.30
0.4 26.97 30.70 0.7 24.57 33.10
0.5 27.50 30.16 0.8 23.77 33.90
0.9 22.97 34.70
1.0 2217 35.50
32.5 7 25 7
30 1 1% 30 /
49 /4
27.5 14 py 27.5 A X
4
25 //;/,f" ,;;’; 25 y //
4% ;
225 | i /,gj’/’ 225 4 27 7
17 4% 20 4
20 1 47 /,;,!/ 1 // 4
17.5 Vd ; //:’ 17.5 4 ya / ‘
o 4% 297
a A a Vi
15 47 57 154 y
1 4% 57 7
L% £
125 27 .Y 125 y ,
= AH T e
7 s 7 & e
EHF T 10 A &
10 LH /4;/ . oo
257 257 7.5 4 X AP
7.5 4 2 T7 27 BT
2B Z 2T 5 | o -
] = - -
5 ¥ EZF ki o~
R T PR -
- e B 25 4l == 7
25 s
== 04
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X
(a) (b)
FIGURE 8: (a) Membership function and (b) nonmembership function.
Example 5. Higher-Order Generalized Intuitionistic Fuzzy FER di 4
. . . y 4 Yy (94)
Differential Equation. —S+t4——5+4->=0,
dx dx dx

Let us consider a generalized intuitionistic fuzzy initial
value problem in which the coefficients are real crisp values
and the initial conditions are generalized trapezoidal fuzzy
numbers as follows:

with initial conditions:
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FiGure 9: (a) Exact solution of membership function for GITF-IVP-IV, (b) exact solution of nonmembership function for GITF-IVP-IV,
and (c) exact solution of GTIF-IVP-IV.

TaBLE 12: Error comparison of GMADM, ADM, and TSM for solving GTIF-IVP-IV used in Example 4.

Methods GMADM ADM TSM

n 04 13 05

Err 7.2e—29 6.2e—11 71e—4

CPU time 0.0163 0.0293 0.1352
)*/(0) — <(1,2,3,4:0.5); (0,2,3,5:0.3) >, By taking (a, 8)-cut of (94) and (95), we get

y (0) = <(7,8,9,10;0.5); (6,8,9,11;0.3) >,

15 (0) = <(21,22,23,24;0.5); (20,22,23,25;0.3) >,
Y (0) = <(32,33,34,35:0.5); (31,33,34,36;0.3) >,
L (iv)

|3 = <(16,17,18,19;0.5); (15,17, 18,20;0.3) >.

(95)

[ &°y, (x,oc)+4d3;1 (x,oc)+4dy*1 (xa)_
dx? dx’ dx ’

y, (0,a) = 2a+1, y,(0,) = 2a +7,

nm

Y1 (0,a) = 2a +21, ¥, (0,a) = 2a + 32,

M
% (iv

)
| v, (0,a) =2a+ 16,
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dx dx dx

y, (0,a) = —2a + 4, y4 (0, &) = —2a + 10,

Y20, @) = —2a+ 24, 3, (0, &) = —2a + 35,

M
% (iv

)
L ¥y, (0,a) = -2a+ 19,

dx* dx? dx

71 (0.8) = =3B +3,3{(0,p) = ~3B+9,

Y0, B) = —3B+23, , (0,p) = 3B + 34,

« (i)
L vy, (0,B8)=-38+19,

dx dx dx

7, (0.8) =38+2,73(0,p) =36 +8,

5 (0,8) =38+22, 3, (0,p) = 36+ 33,

« (iv)
Ly, (0,B)=3B8+17.

Here, L=d/dx° and by taking
O =1, [o 5 [6 [5 (Vdxdxdxdxdx on both sides of
(96)-(99), and using the initial conditions, we obtain

r 5* 3* *
d’y, (ic,oc)+4d ¥ (;C’“)+4dy1 (x,oc):o

o S i
d’y, (x,oc)+4d 1 (x,oc)+4dy1 (x,oc)zo

rds* > 3y > ) >
ylf“w+4d”(fah4@%(x“)=o

>

>

>

Complexity

(97)

(98)

(99)
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* 2 x * 3

¥y (x,a) =—J yp (&, oc)(—x+t)(t2—2tx+x2 +6)dt+ 1+-x'a
3Jo 4
+?x +5x (x+2xoc+20c+7x+7x +§x o+ 10x7,

)72 (x, ) = %J )72 (t,a) (—x + t)(t2 —2tx +x” + 6)dt +4- ix40c
3Jo 4

131 53 25 3
+—x* = 5xa — 2xa — 2a + 10x + 20x° — =x° o +—x,
24 3 2

5 (%, p) = %j: F1 (6B (~x+ ) — 2tx+ 7+ 6)de +3 - §x4/3

5, 35,

—-—x"f+—x,

41 15
P 2 S

35
5" x“—3xp - 3ﬂ+9x+7x2

5 (x,p) =§j v, (6P) (—x + (£ = 2tx + 57 +6)dt+2+§x4/3
0

113 15 65
+§x4 x”B +3xB + 3B + 8x + 15x° + xﬁ+ o* X

Now, by using GMADM, we get

. 3, 13, 2 25 ,
ylo(x,oc)=l+1x (x+?x + 5x (x+2xoc+2a+7x+7x

5
+ §x3oc + 10x3,

17 (xa)=-2x"-—xa-—x'a-—x a—-x"a - —x
! 560 26 45 5 3
4 4 13 5 1 ; 43¢ 67 5 13 4
—xa-2xta - axa - ——x® - ——x - —x® - X - i
3 1260 1210 60 30 3

* 2 x *
v (%) :—J (—x+t‘)(t2 —2tx +x° +6)y1 (t, a)dt, k> 1.
| 7 lkn 3)0 k

3 131
¥y, (x,0) =4 - Zx4 a+ ﬂx4 — 5x°a — 2xa — 2 + 10x + 20x°

5 25
- a0,
3 2

* 1 1 7 2 20
1y, (x%,0a) = —8x* + —xla+t —x a+—x"a+x"a - —x
! 560 26 45 5 3

4 3 131 5 5 7, 194 17 5 22 ,
+ o+ 2x At - ———x — - —x® - X - kY
3 10080 84 200 6 3

% 2 (* %
v, (%, ) :—J (—x+l‘)(t2 —21‘x+xz+6)y2 (¢, a)dt, k> 1.
L k+1 3 0 k

25

(100)

(101)

(102)
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15 35
(xﬁ)—3——x/3 x* - 2/3 3xp - 3ﬁ+9x+?x2
5 35
- §x3ﬁ +?x3,
1 %l(x,ﬂ)=—6 ﬁxﬁ —xﬁ —x /3+—x/3 6x° (103)

41 1 79 79 19
+2x [3+3x /3+6x /3——3360 8_E 7—% 6 30x5—?x4,

i (x,/s):§J (—x + (P = 2tx + x> +6)yy, (1, Pt k> 1.
L +1 3 0 k

9 113 15
¥y, (6 B) =2+ —x4 + Ex4 + ?xzﬁ +3xB + 3B + 8x + 15x
5, 65
P 6
; B) = —4x? — —— B P 104
Y2, (0 P) 11zoxﬁ PR Tl o (104

113 13 143 73 16
2B 3B ex B B Ty 06 TOys O
10080 252 180 30 3

>

* 2 x *
¥, (%, B) = _J (—x+)(£ = 2tx +x° +6)y, (t,p)dt, k> 1.
+1 3 0 k

By solving the (101)-(104), we get the approximate so-
lution after three iterations as follows:

yl () =14+7x4+20x———X A——X @—————X @
22680 540 14968800

67 11 2 14 1 16
- X 0 — X 0———————————X «&
1247400 42567525 18162144000
1 15 2 13 197 9 181 12
— X - X 0 — X -
2043241200 6081075 22680 3742200

31 u_ 1 17 13 1 16
- X - X - X - X
103950 5040 8845200 3143448000

1 5 337 o 37 6 135 17 g

- 340540200x - 1362160800x 180 10 2520

31 2 16 21 1 1 1
X+t X e —xa e —
315 3 3 2 3 12 90

7 1 & 2 5 19
Xa——x o0——x 0 ———X oc+20c,
45 15 1680
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sz (x, )

7 (xp) =

¥ (x.p) =

=4+ 10x — 2ax +

27

10 I o 163 12
X0t —X A+ —————x
22680 540 14968800
67 2
PR G —— ;xmcx
1247400 42567525 18162144000

+ X o+ x o - x - X
2043241200 6081075 1134 29937600

1 11 5 10 47 13 131 16
- X - X - X - X
2640 1512 19459440 326918592000

1 5 33 43 6 35 103

- X - X X — =X
272432160 1362160800 180 2 10080

29 19 1 1
v —xt 2x 12x2 - fx3oc - —x'a
252 24 6 3 12

1 1 2 19
—xta——x o+ —xPa+ —x o+ ——x"a - 2a,
920 45 15 1680

|
—x'B+
360° P

163

3+9x-3Bx+—— —_—
9979200

10 12
+
520" P xp

67
+ —xuﬁ + x14/3 + x16ﬁ
831600 14189175 12108096000

1 15 13 239 o 17 1
+ X+ B - X - X
1362160800 2027025 22680 285120

439, 667 73 5, 41

- X - X - X = x'°
1247400 226800 32432400 108972864000

1 5 101 ., 7 ¢ 435 43

- X - X X X7+ X
291891600 340540200 30 30 10080
23 19 17 23 1 1 3

+x rxt X+ X - B - X - 2XP
210 24 3 2 2 8 2

-— +— +— +— - 3p,

e Y.
17
15120 9979200
67 1 1

_ xllﬁ_ X14/3— xléﬁ

831600 14189175 12108096000

1 58 <8 109 179 1
- - - X - x
1362160800 - 2027025 11340 3326400

2+ 8x +3fx — x''p - 260" x’B x'2B

811 ;29 4 29 4 113 16
- X - X - X - X
2494800 11340 13899600 326918592000
1 15 41 u 13 4 41 5 11
- X - X ——X —==X +t——X
314344800 151351200 60 30 10080
131 17 11 1 1 3,
+—x + —xt =+ 11X +—xﬁ+—x/3+—x[3
1260 24 2
1 7 1 6
+—x'f—-— -—xf+3
60 30" P P gt PP

(105)
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The exact and approximate solutions of the IVP-V used The exact solution of Example 5 found by classical
in Example 5 are shown in Tables 13 and 14, respectively. method is given as follows:

Figures 10(a) and 10(b) show an approximate solution of
the membership and nonmembership functions for IVP-V
used in Example 5.

)71 (x, @) :goc+26+£\/§sin(\/§x)(x+¥sin(\/§x)\/_—g\/fcos(\/ix)(x
—v25cos(\/§x)—Z\/Esin(ﬁx)xa—%ﬁsin(\@x)x

3 23
- Ecos(\/fx)xoc - Tcos(\/fx)x,

* 9 131 7 95 5
¥ (x,(x)=—5(x+T—Z ZSin(\/Ex)(x+§sin(\/§x)\/§+5\/§cos

. (ﬁx)cx—%cos(\/ﬁx)+Z\/§s§n(\/§x)xoc—%\/§sin

. (\/Ex)x+%cos(ﬁx)xa—i—5cos(ﬁx)x,

(106)
)71 (x,8) = —%{/3+1723—% 23in(\/§x)[3+ llsin(\/fx)\/f+§\/§cos

. (\/fx)ﬁ—%cos(\/fx)+§\/§sin(\/§x)x —%\/isin

. (ﬁx)x+§cos(\/§x)x/3— 13 cos (V2 x)x,

* 27 113 21 81 15
¥, (x,ﬁ):zﬁ+7+§ 25in(\/§x)ﬁ+§sin(\/§x)\/§—z\/§cos

. (ﬁx)ﬁ—%cos(\/ix)—%\/fsin(\/fx)xﬁ—%\/isin

. (\/ix)x—Zcos(\/ix)x/}—tﬁcos(\/fx)x.

Figure 11(a) depicts the exact solution of the mem-  3.1.2. Advantages of the GMADM
bership function of the generalized intuitionistic fuzzy IVP-
V, 11(b) depicts the exact solution of the nonmembership
function, and 11(c) depicts the exact solution of the gen-
eralized intuitionistic fuzzy IVP-V described in Example 5.

In Table 15, n represents the number of iterations, Err

(i) When solving generalized trapezoidal intuitionistic
fuzzy differential equations, it is found that
GMADM converges faster and more efficient as
compared to exact techniques

represents the residual error, and CPU time represents the (ii) The fundamental benefit of the GMADM algorithm
computational time in seconds for finding the approximate is that it can solve all types of fuzzy differential
solution of the generalized intuitionistic fuzzy IVP-V de- equations using. more generalizgd fg;ZY.nl.lmbers,
scribed in Example 5. Figures 10(a) and 10(b) show an ap- namely, generalized trapezoidal intuitionistic fuzzy
proximate solution of the membership and nonmembership number

functions for IVP-V used in Example 5. The exact solutions to (iii) The GMADM also offers the useful benefit of
the membership and nonmembership functions for IVP-V lowering computation costs while keeping im-

used in Example 5 are depicted in Figures 11(a)-11(c). proved numerical solution precision
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TaBLE 13: Approximate solution of Example 5 at t=1.
@ 71 (%) 7 (%) B 71 (%) 7P
0 23.09 30.98 0.3 26.02 28.08
0.1 23.61 30.45 0.4 25.23 28.87
0.2 24.14 29.92 0.5 24.44 29.66
0.3 24.67 29.40 0.6 23.65 30.45
0.4 25.19 28.87 0.7 22.86 31.24
0.5 25.72 28.35 0.8 22.07 32.03
0.9 21.28 32.82
1.0 20.50 33.60
TABLE 14: Exact solution of Example 5 at x=1.
a 7 (x.a) 72 (%) B 71 (x.p) 72(x.B)
0 23.10 31.01 0.3 26.04 28.11
0.1 23.63 30.48 0.4 25.25 28.90
0.2 24.16 29.96 0.5 24.46 29.69
0.3 24.68 29.43 0.6 23.67 30.48
0.4 25.21 28.90 0.7 22.87 31.28
0.5 25.74 28.38 0.8 22.08 32.07
0.9 21.29 32.86
1.0 20.50 33.65
£ J
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FiGure 10: (a) Membership function and (b) nonmembership function.

(iv) GMADM can efficiently, rapidly, and accurately solve
a large class of generalized trapezoidal intuitionistic
fuzzy differential equations with closed form solutions
that rapidly converge to exact solutions

(v) The GMADM has demonstrated to be very efficient
and produces significant accuracy and computation
time reductions, as illustrated in Figures 1-11 and
Tables 1 to 15
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FiGure 11: (a) Exact solution of membership function for GITF-IVP-V, (b) exact solution of nonmembership function for GITF-IVP-V,

and (c) exact solution of GTIF-IVP-V.

TaBLE 15: Error comparison of GMADM, ADM, and TSM for solving GTIF-IVP-V used in Example 5.

Methods GMADM ADM TSM
n 03 19 07
Err 0.2e—49 0.2e-21 7.9¢—-8
CPU-time 0.0723 0.5403 0.4512

4. Conclusion

In this article, we solved the generalized trapezoidal intui-
tionistic fuzzy differential equations by applying the procedure
of modified Adomian decomposition method with linear
differential operator. We have applied this procedure to me-
chanical engineering problems. From all Tables 1 to 15 and
Figures 1-11, it clearly shows the dominance efficiency of
GMADM over exact technique in terms of computational time,
number of iterations, and in errors. Moreover, we have shown
that this method is more reliable by comparing the approxi-
mations with the exact solution. Future research will therefore
focus on the solution of systems of linear and nonlinear first-
order differential equations and their applications [34-36] in
a generalized trapezoidal intuitionistic fuzzy environment, as
well as systems of higher-order generalized trapezoidal intui-
tionistic fuzzy differential equations [37, 38].
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