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Tis paper addresses a method to solve a multi-period portfolio selection on the stock market. Te portfolio problem seeks an
investor to trade stocks with a fnite budget and a given integer number of stocks to hold in a portfolio.Te trade must be performed
through a stockbroker that charges its respective transaction cost and has its minimum required trade amount. A mathematical
model has been proposed to deal with the constrained problem.Te objective function is to fnd the best risk-return rate; thus, Sharpe
Ratio and Treynor Ratio are used as objective functions. Te returns are the same for these ratios, but the risks are not Sharpe
considering covariance and Treynor systematical risk. Te returns are predicted using a Neural Net with Long-Short-TermMemory
(LSTM). Tis neural net is compared with simple forecasting methods through Mean Absolute Percentage Error (MAPE).
Computational experiments show the quality prediction performed by LSTM. Te heteroskedastic risk is estimated by Generalized
Autoregressive Conditional Heteroskedasticity (GARCH), adjusting the variance for every period; this risk measure is used in Sharpe
Ratio. Te experiment contemplates a weekly portfolio selection with 5 and 10 stocks in 122 weekly periods for each Chilean market
ratio. Te best portfolio is Sharpe Ratio with ten stocks, performing a 62.28% real return beating the market, represented by the
Selective Stock Price Index (IPSA). Even the worst portfolio, Treynor Ratio, overcomes the IPSA cumulative yield with ten stocks.

1. Introduction

Stocks are a capitalization investment instrument whose
proftability depends on the company’s results in its business
environment, which is refected in the purchase or sale of
stock prices [1, 2]. Negotiating and exchanging fnancial
products is carried out internationally; therefore, any in-
vestor has access to products from all over the world [3].
Individuals who want to buy stocks must decide which and
how much they must acquire. Tis problem, without con-
sidering risk, as was considered by [4] and introduced by [5],
is a combinatorial optimization problem known as “Te
Knapsack Problem,” which is cataloged as NP-Hard. Mar-
kowitz [5] introduced the modern portfolio theory and

expresses the expected return of a fnancial asset as the mean
of its historical returns, the risk explained by the variance of
the historical returns, and the concepts of diversifcation.
Investors who want to buy securities should decide which
and how many assets to include in the portfolio without
considering the risk.

Te sale and purchase of stocks must seek to increase the
investor’s wealth, where the recommended proportions to
invest in the current period compared to those of the
previous period refect the decision to sell, buy, or stay in the
current position. An optimization model must be aligned
with an econometric prediction method or artifcial intel-
ligence scheme of expected returns to obtain the best re-
lationship between risk and return.
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Te context of the problem is to consider the require-
ments of an investor with a fnite budget to invest in the stock
market, maximizing an expected return while minimizing the
risk. Tese stocks must be traded by a stockbroker charging
their respective transaction costs. Every stock is assumed as an
integer asset. A stock portfolio must be rebalanced weekly.
Once the stock portfolio is performed, the investor maintains
the acquired position until it is time to rebalance the pro-
portions. Terefore, the next week, the investor must decide
which stocks to sell, buy, or hold. Te asset must be selected
due to the investor’s risk aversion and return expectations to
fnd the optimal proportion. Tis optimal combination must
reach the best risk-return ratio [6].

Tis paper addresses a method to solve the stock market’s
multi-period portfolio selection problem. A mathematical
model has been proposed to deal with the constrained
problem. Te objective function is to fnd the best risk-return
rate; thus, Sharpe Ratio and Treynor Ratio are used as ob-
jective functions.Te returns are the same for these ratios, but
the risks are not Sharpe considering covariance and Treynor
systematical risk. Te returns are predicted using a Recurrent
Neural Network with Long-Short-Term Memory (RNN-
LSTM); this neural net is compared to simple forecasting
methods through Mean Absolute Percentage Error (MAPE).
A pilot test demonstrated the superior quality prediction
performed with Long-Short-Term Memory (LSTM).

Te heteroskedastic risk is estimated by Generalized
Autoregressive Conditional Heteroskedasticity (GARCH),
adjusting the variance for every period; this riskmeasure is used
in Sharpe Ratio. Te proposed approach is novel and could
apply to a rich portfolio problem.Temain contribution of this
paper is to design a model that allows an investor to allocate
money to the stock market, considering constraints such as
transaction cost, integrality, minimum trade amount, and
budget, among others. Te mathematical model analyzes the
return and risk to fnd the best combination. Te proposed
approach considers multiple periods without simplifying the
problem within a single period, as usually considered in
previously published works. Note that we solved a real problem
using mathematical models and found the optimal solution for
the considered subproblems (Initial and Rebalancing portfo-
lio). However, approximate methods are not necessarily due to
the prominent obtained results. Besides, we have considered
transaction costs, real, local market conditions, and other real
characteristics in solving a “Rich Multi-Period Portfolio Se-
lection Problem.” Finally, the application of the proposed
approach for an emerging market such as Chilean allows for
supporting the investment decision on quantitative methods.

Te paper is organized as follows. Section 2 describes the
portfolio problem’s literature review with the considered
problem’s main characteristics. Section 3 details the proposed
approach. Section 4 shows the computation results of the
proposed methodology on the ChileanMarket. Finally, Section
5 shows the concluding remarks and the future work section.

2. Literature Review

Te problem of the stock portfolio is based mainly on a
collection of fnancial assets, which are updated by selling the

current positions and buying new stocks. Tis situation
increases the portfolio’s total available budget or selling
securities to decrease the portfolio size [7].

Volatility is an inherent characteristic of the fnancial
time series. Generally, its behavior is not constant, and
traditional approaches consider time series models assuming
homoscedastic variance unsuitable for modeling fnancial
time series [8]. According to [9, 10], most authors have
focused on the computational aspects of the stock portfolio
problem. Tey have ignored the aspects and characteristics
of the fnancial problem, such as the time series modeling. In
this case, multiple fnancial assets, transaction costs for each
rebalanced period, and the search for the prediction of
returns are considered. However, this is very difcult to
solve, and only some papers consider this problem [11].

Adebiyi et al. [12] applied the modern portfolio model
[5], maximizing the Sharpe Ratio and considering stock lots,
investor budget, transaction costs, and minimum and
maximum amounts acquired per stock. Tis work consid-
ered a single period. Te authors proposed a Particle Swarm
Optimization to solve large instances within short com-
puting times. Markowitz [5] stated that the expected return
is calculated as the average of the historical returns, and their
respective variance explains the risk. An investor wishes to
obtain a return rp, investing in fnancial assets minimizing
the risk σ2p given a value of rp. Te other approach is to set a
risk parameter λ, which is the risk the investor is willing to
accept. Te objective function must seek to maximize return
rp given risk aversion λ. Te proposed model by [5] has
received various criticisms for its assumptions [13]. One is
that the risk is constant over time for a fnancial time series
(homoscedasticity). Tis assumption is unreal because the
volatility has systematical changes, called heteroskedasticity
(the variance of the returns has systematic changes over
time) [4, 14]. Te mean-variance model proposed by [5] is
described in Appendix Section. Tis model includes di-
versifcation by choosing the least correlated stocks, mini-
mizing the risk of the portfolio by choosing stocks with a
lower variance, and fnally maximizing proftability by
looking for stocks with higher average historical returns [15].

However, several authors proposed other diferent risk
metrics (diferent from the work proposed by [5]), such as
Value at Risk (VaR) [16], Conditional Value at Risk (CVaR)
[17], semi-variance [18], Generalized Autoregressive Con-
ditional Heteroskedasticity (GARCH) and Dynamic Con-
ditional Correlation Generalized Autoregressive
Conditional Heteroskedasticity (DCC-GARCH) [19], and
fuzzy-logic adjusted risk [20]. Besides, several authors
proposed metrics for measuring returns, such as based on
expert opinions [18], Autoregressive Integrated Moving
Average (ARIMA) [12], RNN-LSTM [17], and Fuzzy Logic
Adjusted Return [20].

Tere are two metrics to fnd the optimal combination of
risk and return. Te frst metric is the Sharpe Ratio (SR), a
measure to analyze an investment’s excess return, consid-
ering the involved risk. SR is calculated by subtracting the
return of a risk-free asset from the expected return and
dividing this result by the risk [21]. Tis ratio incorporates
diversifcation as part of the risk. Another stock market ratio
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is called the Treynor Ratio (TR). Peiro [22] explained that TR
measures the excess return per unit of systematic risk. Te
calculation of these metrics is detailed in Appendix Section.

In the literature, all the current works generally focus on
single-period optimization (SPO) for index tracking port-
folio design [23]. However, in the fnancial markets, the
methods may lead to frequent portfolio rebalances, resulting
in high transaction costs. Huang et al. [23] proposed a novel
multi-period optimization (MPO) approach to index
tracking portfolio design, which can account for transaction
costs and holding costs. Moghadam et al. [24] proposed a
multi-period portfolio selection model considering inves-
tors’ dependence, risk aversion, and diminishing sensitivity.
A robust optimization approach was considered, and three
metaheuristic algorithms were developed for solving large-
size problems. Yang et al. [25] addressed the multi-period
portfolio problem with short selling under a fuzzy envi-
ronment. Tree types of short-selling constraints, i.e., total
short-selling proportion constraint, short-selling cardinality
constraint, and lower and upper bound constraint, were
considered. Li et al. [26] proposed a predictive control model
for a multi-period portfolio optimization problem. Addi-
tional to the mean-variance objective, the authors con-
structed a portfolio whose allocation is given by model
predictive control with a risk-parity objective. Finally, Jiang
and Wang [27] considered a multi-period multiobjective
portfolio selection problem with uncertainty. A weighted-
sum approach was introduced to obtain the Pareto front of
the problem.

A multi-period portfolio selection problem where the
future security return rates are given by experts’ estimations
instead of historical data was proposed by [28]. A new
mental account concept was introduced to refect the
conficting risk attitudes for diferent goals. Also, realistic
constraints such as background risk, liquidity risk, trans-
action cost, and cardinality constraint were considered.
Garćıa et al. [29] extend the stochastic mean-semivariance
model to a fuzzy multiobjective model to measure the
performance of a portfolio. Uncertainty of future return and
liquidity of each asset is modeled using LR-type fuzzy
numbers belonging to the power reference function family.
Te main novelty of the work is the consideration of realistic
constraints by investors.

Nokhandan et al. [30] proposed a Nash bargaining
model to solve a novel multi-period competitive portfolio
optimization problem for large investors in the stockmarket.
Te Competitive Portfolio Model (CPM) was developed
following the Cournot competition principle for a static,
non-cooperative, and non-zero-sum game with complete
information. Real-world conditions such as transaction
costs, risk-free assets, and cash were also included to match
real-world problems. Tree criteria control the model’s
investment risk: the average value at risk, the mean absolute
semi-deviation, and entropy. Dymova et al. [31] proposed an
approach to the bi-criteria multi-period fuzzy portfolio
selection based on observing the variance as a measure of
portfolio risk. Simple criteria of portfolio risk and return are
proposed. A fuzzy portfolio selection one-period model was
developed to solve the considered problem. Besides, a new

two-stage bi-criteria optimization approach to portfolio
selection was developed, tested, and used as the main
component of the proposed multi-period portfolio selection
model.

Generally, transaction costs are neglected in the deci-
sion-making process of the online stock portfolio problem.
However, some authors included this concept for making
decisions, such as [32, 33]. In [32], the authors proposed an
adaptive online portfolio selection problem with transaction
costs. An online moving average method (AOLMA) was
used to predict future returns by incorporating an adaptive
decaying factor into the moving average method. Moon and
Yoon [33] considered the portfolio selection (OLPS) con-
sidering transaction costs and proposed a hybrid genetic
reversion strategy evolving a population of portfolio vectors.

However, building efcient multi-period portfolios is a
challenging problem, including defning the risk and return
metrics and evaluating each share’s position for the period.
Early, Merton [34] proposed a policy in which an investor
must continually seek to balance the invested proportions
for each asset. However, continuously rebalancing the
portfolio implies high transaction costs. Dynamic pro-
gramming could solve a multi-period problem by choosing
the best consecutive decisions; these decisions are afected by
the number of stocks, market information, liquidity of assets,
and short sales [35].

Brandt and Santa-Clara [36] suggested that a linear function
could estimate the investment proportion. Bodnar et al. [37]
solved the multi-period problem by assuming a unique re-
peating period. He et al. [38] proposed a method where a high-
order model monthly estimates the risk and return. Tis ap-
proach has been tested in the US and Chinese markets. Skaf and
Boyd [39] addressed the multi-period problem with stochastic
considerations to increase wealth using dynamic programming
and reality constraints.Te authors found suboptimal policies to
get feasible solutions. Indeed, some policies that help stock
trading to handle transaction costs are the “No-Trade Region
Policy” and the “Rolling Optimize-and-Hold Policy” proposed
by [11]. Babazadeh and Esfahanipour [16] proposed a multi-
period optimization considering the Value at Risk (VaR) as a
measure of risk, generating an Average VaR model, which
includes transaction costs, budget, and maximum and mini-
mum purchases.

According to [40], Recurrent Neural Networks (RNN)
were considered a methodology for processing sequential
data, such as time series [41]. A neural network with long
and short-term memory is one of the most successful RNN
architectures [42]. LSTMs include memory cells, a com-
puting unit that replaces traditional artifcial neurons in the
hidden layer of a network. With these memory cells, the
networks can efciently associate remote memory and in-
puts over time; thus, they are suitable for capturing the
structure of data dynamically over time with high predict-
ability [41].

Peng et al. [43] analyzed the factor zoo from a machine
learning perspective, which has theoretical and empirical
implications for fnance. Te authors discussed feature se-
lection in the context of deep neural network models to
predict the stock price direction.Tis work considered a set of
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124 technical analysis indicators used as explanatory variables
in the recent literature. It specialized trading websites-various
classifcation metrics, accounting for proftability and trans-
action cost levels to analyze economic gains.

Muncharaz [44] showed the application of neural net-
works in creating predictive models.Te work considered an
RNNwith LSTM instead of classic time series models such as
the Exponential Smooth Time Series (ETS) and the Arima
model (ARIMA). Tese models were estimated for 284
stocks from the S&P 500 stock market index, comparing the
MAE obtained from their predictions. Rather [45] proposed
a new method of predicting time-series-based stock prices
considering the investment portfolio problem. A new re-
gression scheme was implemented on a long-short-term
memory-based deep neural network.

A novel portfolio construction approach using a hybrid
model based on machine learning for stock prediction and
the well-known mean-variance (MV) model for portfolio
selection was proposed by [46]. Two stages were involved in
the proposed model: stock prediction and portfolio selec-
tion. In the frst stage, a hybrid model combining eXtreme
Gradient Boosting (XGBoost) with an improved frefy al-
gorithm (IFA) was proposed to predict stock prices for the
next period. Zhao et al. [47] considered a multi-period
investment portfolio selection problem. First, the portfolio
selection model fts the extreme cases of 0% or 100% con-
fdence views. Te authors established a new programming
problem based on the optimization approach and identifed
explicit solutions. Second, the author extended the model to
multi-period form and discretized the results with a scenario
tree, which solves the multi-period problems.

In the literature review, it has been found that multi-
period optimization is widely studied, and the series pre-
diction is part of the success of this technique. Many authors
mention that the difculty of the multi-period optimization
problem is complex.Terefore, it is necessary to fnd ways to
simplify the problem away from the real conditions of the
stock market. Te complexity is given by the consecutive
decisions that must be performed, where the current deci-
sion afects the portfolio within the horizon time. Many
authors considered the multi-period problem as a single-
period problem repeated several times, helping reduce the
computational complexity.

We have proposed a methodology for the stock portfolio
problem by considering multiple periods without simplif-
cation (a single period repeated several times), seeking a
better estimate of the returns diferently from the average of
the historical values and the risk measures considered. We
have considered Sharpe’s and Treynor’s ratios’ objective
function values to fnd the best risk-return ratio. In this way,
it is achieved that the proposed methodology can be applied
adequately in fundamental emerging markets.

3. Materials and Methods

Te main scientifc concepts are explained in this section to
approach the portfolio selection problem with sophisticated
methods, allowing an investor to allocate money in the best
risk-return combination of assets.

3.1. Initial Optimization Model. Tis approach uses an
econometric method to estimate the volatility of a fnancial
time series. Tree diferent prediction metrics (Moving
Average-MA, Exponential Smoothing-ES, and Long Short-
TermMemory-LSTM) have been compared to estimate each
asset’s expected logarithmic returns and fnd the best one.
Te portfolio selection problem is solved by a mathematical
formulation using the above information, fnding the best
risk-return ratio of assets, testing two diferent fnancial
ratios, and comparing them with the index stock market.
Finally, a mathematical model for rebalancing the portfolio
is applied. We have considered the following main aspects:

(1) Short sell is not allowed
(2) Budget one-time fnanced at the beginning
(3) Money is not withdrawn
(4) Te close price is known

Te proposed methodology considers several steps:

3.1.1. Managing Returns Heteroskedasticity. Te frst step is
to measure the volatility inherent to the fnancial time series,
whose behavior is not constant. Consequently, homosce-
dastic variance methods, such as Markowitz, are unsuitable
for modeling fnancial time series for the proposed ap-
proach. We have considered GARCHmodels widely used in
fnance to solve this issue. GARCH models stand for the
General Autoregressive Conditional Heteroskedasticity
model, and its mission is to capture the changing values of
risk. In this case, the risk is expressed as a variance.

σ2t � ω + α 􏽘

p

p�1
ε2t−p + β 􏽘

q

q�1
σ2t−q, (1)

where, ε2t−p are the square of the perturbations of a time
period (t − p), σ2t−q is the historic variance corresponding to
the period (t − q). ω, α, β could be estimated by maximum
likelihood method. In Julia language [48] is available
GARCH by using the package ARCHModels.jl [49].

3.1.2. Return Prediction by LSTM. Te second step is ana-
lyzing the predictive data of logarithmic returns by the RNN.
Te input data must be considered from a previous ex-
ploration time step of the neuron as part of the incoming
information. LSTM networks pass more information across
the recurrent connection than the traditional RNN. Te
components of an LSTM unit are input, forget and output
gate, block input memory cell, output, activation function,
and peephole connections. Te input gate protects the unit
from irrelevant input events. Te forget gate helps the unit
forget previous memory contents. Te output gate exposes
the memory cell’s contents at the LSTM unit’s output. Te
output of the LSTM block is recurrently connected back to
the block input and the gates of the LSTM block. Te input,
forget, and output gates in an LSTM unit have sigmoid
activation functions for the [0, 1] constraint. Te LSTM
block input and output activation function (usually) is a
Tanh Activation Function [50].
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Forecasting with simple methods should be less efective
in portfolio selection than LSTM. Te moving average is
calibrated by choosing n, representing the number of periods
to look back, splitting the closing price data into 70% to fnd
which n ∈ 2, 3, 4{ } minimizes MAPE and the last 30% to
contrast with LSTM. Exponential Smoothing follows the
same procedure as MA, but instead of n, α is calibrated
α ∈ ]0, 1[.

3.1.3. Experimental Design. Te proposed algorithm is de-
scribed in the fowchart shown in Figure 1. It starts at t � 0
by inputting the Risk-Free Rate rf, the budget β. Te size of
the portfolio M, so is input to the model the covariance
matrix covariance(t) the expected logarithmic returns
E[r(t)] and prices(t) vectors, corresponding to the frst
optimization problem (please see Section 3.1.5). It is going to
output the transaction cost cTr(t), the stocks and their
quantity portfolio (t), the surplus Surplus(t), the total
Wealth (including the Surplus), Wealth(t), and the portfolio
return expected minus transaction costs Rmax(t). After the
above steps, it has inputted the same matrix and vectors
However, in t � 1, this time including the previous portfolio
and surplus, so are calculated yield(t), to evaluate the real
obtained returns and NoOptRp(t) that show the Portfolio
expected return if the portfolio is held. Afterward, in the Nth
optimization, it will come out the updated variables
cTr(t),Portfolio(t),Wealth(t), Surplus(t), and Rmax(t). It
is decided if the expected return by trading Rmax(t) is less
than the expected without doing it (NoOptRp(t)). If it is
true, then the previous portfolio is held.

3.1.4. Simplifed Problem. Te simplifed problem could fnd
an optimal solution due to the absence of complex con-
straints; moreover, the solution could be found within a
short computing time with the Ipopt® solver. Te objective
function (2) shows the best risk-return ratio. Terefore, any
constraint added to the problem would have suboptimal
performance.

MaxSRp, TRp. (2)

Subject to

􏽘

n

i�1
wi � 1. (3)

3.1.5. Initial Portfolio: Sharpe Ratio. Tis portfolio selection
is diferent from the next because there is only one decision
to make how many stocks to buy. Te objective is to
maximize the Sharpe Ratio, choosing a given number of
shares. Te sets and parameters and decision variables are
the following: (See Table1).

Te objective function is calculated by.

MaxSRp �
Rp − rf

σp

. (4)

Subject to

Rp � 􏽘
n

i�1
wi ∗E ri􏼂 􏼃, (5)

B

Min(p)
􏼠 􏼡∗ zi ≥ qi ∀i ∈ N, (6)

E ri􏼂 􏼃 � ln
pfi

pi

􏼠 􏼡 ∀i ∈ N, (7)

invest∗ (1 + cTr)≤B, (8)

σ2p � 􏽘
n

i�1
􏽘

n

j�1
σij ∗wi ∗wj + σ2i ∗w

2
i , (9)

invest≥minT, (10)

wi ∗ invest � qi ∗pi ∀i ∈ N, (11)

zi ≤ qi ∀i ∈ N, (12)

invest � 􏽘
n

i�1
qi ∗pi, (13)

wi ≤Wmax∗ zi ∀i ∈ N, (14)

􏽘

n

i�1
zi � M, (15)

wi ≥Wmin∗ zi ∀i ∈ N, (16)

􏽘

n

i�1
wi � 1, (17)

wi, qi ≥ 0 ∀i ∈ N. (18)

Te objective function (4) shows the maximization of
the Sharpe Ratio, which considers the excess return per
unit of portfolio risk. Equation (5) shows that the port-
folio’s return is given by the proportion invested in stock i

of the total invested multiplied by its expected return.
Equations (6) relate the number of stocks i with the
variable possibility of including a stock in the portfolio.
Tese equations limit the number of stocks i in the
portfolio. A maximum amount equal to the division be-
tween the budget and the stock with the lowest price could
be acquired. Constraints (7) show that the expected return
is equal to the percentage change of the previous price of
stock i concerning its current price. Equation (8) shows
that the total amount to be invested plus the transaction
cost of this investment must be less than or equal to the
initial available budget.

Te portfolio risk is measured through equation (9).
Te risk is calculated as its variance. Te variance is equal
to the sum of the return covariances weighted by the
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proportion of the stock, plus the sum of the variance of
the returns weighted by the square of the total invested
proportion. Equation (10) shows that the total investment

amount must be greater than the minimum transaction
amount accepted in some markets. Constraint (9) shows
that the total proportion of investment is equal to the

Start Rf, B, M t = 0
Covariance (t),

E [r (t)],  prices (t)

First
Optimization

SR

cTr (t), Portfolio (t),
Wealth (t), surplus (t),

Rmax (t)

t++

Covariance (t),
E [r (t)], prices (t),

portfolio (t-1),
Surplus (t-1)

Yield (t),
noOptRp (t)

Nth
optimization

SR

cTr (t), Portfolio (t),
Wealth (t), surplus (t),

Rmax (t)

Rmax (t)<noOptRp (t)?

Portfolio (t)=Portfolio (t-1)
Rp = noOptRp

Surplus (t) = Surplus (t-1)
cTr (t) = 0

t=121? t++ prices (t) Yield (t) End

YES

NO

YES

NO

Figure 1: Flowchart of the proposed approach for sharpe ratio.

Table 1: Sets, parameters, and variables for the frst proposed model.

Description
Set

N Available stocks to be included in portfolio. N � 1, . . . , n{ }

Parameter
n Number of companies
σi Standard deviation of the return’s stock i. ∀i ∈ N

σij Covariance between stock i and stock j.∀i ∈ N, j ∈ N

pfi Future predicted price of the stock for the next week. ∀i ∈ N

pi Current price of Stock i. ∀i ∈ N

E[ri] Expected return for stock i. ∀i ∈ N

M Number of stocks to be included
rf Risk free rate
B Available budget
βi Beta value of stock i. ∀i ∈ N

σiM Covariance between stock i and the market. ∀i ∈ N

σ2M Market return variance
minT Minimum trade amount
cTr Transaction cost of the trade amount
Wmini Minimum weight to invest on stock i

Wmaxi Maximum weight to invest on stock i

Variable
SRp Portfolio Sharpe ratio
TRp Portfolio Treynor ratio
qi Stock i to hold until the next week. ∀i ∈ N

wi Percentage to be invested in each stock i. ∀i ∈ N

zi

1, if stock i is included,

0, in other case,􏼨 􏼩,∀i ∈ N

Rp Portfolio expected return
σp Portfolio standard deviation
βp Systematic risk
Invest Total investment on the portfolio
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number of shares i on own multiplied by their respective
price i, which is divided by the total investment amount.

Equations (12) determine that if a stock i is purchased,
the minimum purchase amount corresponds to the entire
unit. Equation (13) shows that the total investment is the
sum of the number of stocks i multiplied by their respective
prices. Equations (14) and (16) determine the maximum and
minimum proportion of the portfolio to invest for each
stock, respectively. Equation (17) determines that the
number of stocks to be included must be equal to M, where
M is an arbitrary integer defned by the investor. Te sum of
the proportions must be equal to 1 to ensure that all capital
invested in the portfolio is distributed (equation (16)) Fi-
nally, (18) determine the nature and integrality of the
variables.

3.1.6. Initial Optimization: Treynor Ratio. Te objective
function is calculated by.

MaxTRp �
Rp − rf

βp

. (19)

Subject to.
Constraints (5)–(8) and (10)–(18) plus the following

constraints:

βp � 􏽘
N

i�1
wi ∗ βi, (20)

βi �
σiM

σ2M
∀i ∈ N. (21)

Te objective function (19) considers the excess return
per unit of systematic risk. Equation (20) calculates the
portfolio’s systematic risk, equivalent to the sum of the
systematic risk of stock i weighted by the proportion of the
total invested money. Finally, equations (21) calculate the
systematic risk of stock i equal to the covariance of the
returns of stock i concerning the market over the variance of
the market returns.

3.2. Rebalancing Optimization: Sharpe Ratio. Tis formu-
lation is repeated for all remaining periods. Te decisions
to make are which stocks buy, sell, or hold. Te set N and
some variables are shared with the frst optimization:
SRp, TRp, wi, zi, Rp, invest. Moreover, some parameters of
the initial model as considered: n, σi, σij, pi, E[ri],

M, rf, B, βi, σiM, σ2M, cTr,minT. Te additional parameters
and decision variables are the following. (See Table2).

Te objective function is calculated by.

MaxSRp �
Rmaxp − rf

σp

. (22)

Subject to.
Constraints (5), (7), (9), (14)–(17) with the following

additional constraints:

Rmaxp � Rp − Rctr, (23)

mTransac≥minT, (24)

wi �
fi ∗pi

invest
∀i ∈ N, (25)

patBef � 􏽘
n

i�1
si ∗pi, (26)

zi ≤fi ∀i ∈ N, (27)

yi ≤ si ∀i ∈ N, (28)

invest � 􏽘
n

i�1
fi ∗pi, (29)

mBuy ≤mSell + rest − Rctr∗ invest, (30)

mBuy � 􏽘
n

i�1
xi ∗pi, (31)

(patBef + rest)
Min(p)

􏼢 􏼣∗ zi ≥fi ∀i ∈ N, (32)

mSell � 􏽘
n

i�1
yi ∗pi, (33)

(patBef + rest)
Min(p)

􏼢 􏼣∗ LXi ≥ xi ∀i ∈ N, (34)

mTransac � mBuy + mSell, (35)

(patBef + rest)
Min(p)

􏼢 􏼣∗LYi ≥yi ∀i ∈ N, (36)

fi � si + xi − yi ∀i ∈ N, (37)

1≥ LYi + LXi ∀i ∈ N, (38)

cTr∗mTransac � Rctr∗ invest, (39)

wi, xi, yi, fi ≥ 0 ∀i ∈ N. (40)

Equation (22) maximizes the Sharpe Ratio. Equation
(23) calculates the portfolio’s proftability, which is dimin-
ished by the transaction cost. Equation (24) restricts that the
transaction amount must be more signifcant than that
required by the broker. Equations (25) show that the pro-
portion of the total investment is equal to the number of
shares i to ownmultiplied by their respective price i, which is
divided by the total investment amount.

Te portfolio’s value before optimizing equals the sum of
the previous stocks at their respective current prices
(equation (26)). Equations (27) and (28) restrict the

Complexity 7



minimum number of stocks and the number of shares to be
sold, respectively. Equation (29) considers the total amount,
equivalent to the sum of the number of shares to own with
their respective price. Equation (30) restricts that the total
amount to be purchased must be less than or equal to the
total sold amount, plus the money left over from the pre-
vious period, and less cost associated with the transaction.
Equation (31) determines that the total purchase amount
equals the sum of the number of stocks to be purchased
multiplied by their respective prices.

Equations (32) show the relationship between the
number of stocks with the maximum number to have. Tis
maximum number is equivalent to the division between the
initial value of the portfolio plus the rest and the cheapest
share. Equation (33) indicates that the total sale amount
equals the sum of the number of shares to be sold multiplied
by their respective price. Constrains (34) show the rela-
tionship between the number of stocks to buy with the
maximum amount equal to the division between the initial
value of the portfolio plus the rest and the cheapest share.

Equation (35) determines that the transaction amount
equals the total purchase and sale amount. Te relationship
between the number of stocks to be sold and included in the
portfolio is determined by (36). Equations (37) show that the
number of stocks to be held until the following week must be
equal to the number of stocks already owned plus the
number of bought stocks minus the number of sold stocks.
Equations (38) indicate that only the purchase or sale of
stocks could be performed, not both transactions simulta-
neously. Equation (39) indicates that it is possible to buy
neither nor sell stock. Finally, (40) determine the nature and
integrality of the variables.

3.3. Rebalancing Optimization: Treynor Ratio. Te objective
function is the following:

MaxTRp �
Rmaxp − rf

βp

. (41)

Subject to constrains (5), (7), (14), (16), (18), (20), (21),
and (23)–(40).

4. Results and Discussion

Te multi-period optimization problem is applied using the
Julia Mathematical Programming package (JuMP.jl), solving
it through Gurobi® solver v9.1.2. We have performed the
experimental computation on returns of the Chilean mar-
ket’s high andmedium liquidity stocks from June 16th, 2017,
to November 18th, 2019. First, the best prediction method
must be performed. Next, we found the most proftable
scenario: one must perform better than the IPSA index
(Chilean Index).

4.1. Data Source and Data Pre-Processing. Te experiment
begins by downloading, from the platform “Santiago Stock
Exchange,” the daily open, high, low, and close prices and
traded volume (OHLCV) of 100 Chilean stocks from 2012 to
2019. Tese are the most relevant traded stocks for that
period. Ten, for each stock, the number of days traded
between 2012 and 2019. Tus, the initial number of stocks is
reduced because only 30 stocks accomplish the minimum
trading days.

Te daily OHLCV data is transformed into a weekly
one, fnding the highest and lowest price, the open and
close price, and the summary of the traded volume within
a week. Tis transformation aims to have a longer time
horizon than a daily one and signifcant changes in stock
prices. Furthermore, it chose the data from January 6th,
2012, to October 19th, 2019, leaving the data set with
407 weeks of OHLCV data. In the same period, the
OHLCV data of the IPSA index is downloaded from
Santiago Stock Exchange, representing the most traded 30
stocks in the Chilean Stock Market. Te period after the
“social outburst” of 2019 and the SARS-CoV-2 pandemic
is excluded.

Table 2: Parameters and variables for the second proposed model.

Description
Parameters

si Held stock i since last week. ∀i ∈ N

rest Surplus, unused budget in the previous week
patBef Portfolio actual value

Variable
fi Stocks i to be held until the next period. ∀i ∈ N

xi Stocks i to buy. i ∈ N

yi Stocks i to sell. ∀i ∈ N

Rctr Portfolio portion for transaction cost
mTransac Trade amount
mBuy Total amount to buy
mSell Total amount to sell
Rmax Expected return minus the transaction cost

LXi

1, if at least one stock i is bought,
0, en otro caso,

􏼨 􏼩, ∀i ∈ N

LYi

1, if at least one stock i is sold,

0, en otro caso,
􏼨 􏼩, ∀i ∈ N
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4.2. Prediction Methods. A comparison is performed be-
tween the three methods where exponential smoothing
seems to reach a better MAPE, followed by LSTM and then
the moving average of the two periods. Table 3 shows the
prediction comparison. Te frst column of Table 3 shows
the used method: MA-2 (move average), ES (exponential
smoothing), and LSTM (Neural Net with Long-Short-Term
Memory). Te second column shows the average obtained
values of the MAPE from the forecast method. Finally,
Table 4 shows the Standard Deviation of the MAPE.

In addition, to test the quality of the prediction, a pilot test
has been performed with the three best methods (Figure 2),
choosing Sharpe Ratio as the objective function and using the
simplifed formulation to reach an optimal portfolio.

Te performance of Exponential Smoothing with an
alpha near 1 makes the prediction almost equal to the
current one. Te expected returns are near zero, making it
difcult to decide which risk-return ratio is the best because
all expected returns are nearly identical. Te moving average
has a similar issue. In this case, the prediction not only
depends on the current price, but the previous value does not
help to improve the prediction either. Consequently, LSTM
ofers the best quality prediction.

We need to fnd the values of p and q that minimize the
mean and variance of the error, in this case “Akaike (AIC).”
Using an exhaustive search for values of p and q from 1 to 3.
Table 5 shows the parameter calibration.

Hence, GARCH {2, 2} shows the best performance, with
the lowest Akaike, that GARCH to adjust the risk is looking
the perturbations (p) and volatility (q) from two-time steps
back. Ten, GARCH {2,2} is used in the predict function,
which is also provided by Archmodels.jl package and works
considering consecutive batches with the size of 52weeks of
the close price of a stock to adjust a volatility level for the
next period, more specifcally, the volatility is expressed as
variance and with a year of data is predicted the risk level for
the next week, using the described function. Te risk of
CHILE, the stock of “Banco de Chile,” is shown in Figure 3.
Tus, this method can adjust the heteroskedastic risk value
for each period.

Te input data are OHLCV of stock and IPSA to predict
the stock’s close price for the next week. Tis case represents
one of the 30 stocks considered in the study. Te data is split
into two sets; 70% goes to a training one to let the model
learn. Testing one (30%) to calibrate parameters like Number
of Neurons (NA), Iteration (EPCOH), and Batch Size (BS),
combinations are made following the current literature. A
command is included that picks chronologically random
data in the time series to avoid overftting, making a syn-
thetic database; thus, the calibration is not made over the
same data used for the optimization. MAPE is an error
parameter, then the mean of the 30 stock MAPES for each
parameter’s combination is calculated, choosing the mini-
mum value corresponding to N°18.

As an example, Figure 4 shows the LSTM based pre-
diction v/s, the actual price of “Banco de Chile (CHILE)”
Stock for the last 122 periods.

Table 3: Predict comparison.

Method Average (%) Standard deviation (%)
MA-2 2.73 0.88
ES (α � 0.96) 2.41 0.76
LSTM 2.52 0.78

Table 4: Parameter calibration for LSTM.

N° BS NA EPOCH Average MAPE
1 4 25 100 3.4247
2 4 25 500 3.1192
3 4 25 1000 3.0290
4 4 125 100 2.9559
5 4 125 500 3.1134
6 4 125 1000 2.9860
7 4 250 100 2.8270
8 4 250 500 2.7990
9 4 250 1000 2.7927
10 16 25 100 3.8156
11 16 25 500 2.9863
12 16 25 1000 2.8814
13 16 125 100 3.4495
14 16 125 500 2.8858
15 16 125 1000 2.8162
16 16 250 100 3.3553
17 16 250 500 2.8014
18 16 250 1000 2.7804
19 64 25 100 6.9081
20 64 25 500 3.5130
21 64 25 1000 2.9649
22 64 125 100 6.0745
23 64 125 500 3.1709
24 64 125 1000 2.9115
25 64 250 100 6.2232
26 64 250 500 3.1655
27 64 250 1000 2.9037

Comparison of Prediction Methods
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Figure 2: Pilot test for prediction methods.
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4.3. Portfolio Comparison of 5 and 10 Stocks. Each ratio is
selected between 5 and 10 shares, with a computing time of
1800 seconds, 1,000,000CLP budget, and the expected
returns are LSTM based. Figure 5 shows the portfolio in-
formation for the frst and last two periods for Sharpe Ratio,
E[Rp] stands for portfolio weekly expected return, “Return”
expresses the real yield of the week, “Real Rmax” is the
weekly return minus the transaction cost. Table 6 shows the
portfolio performance comparison.

Figure 5 shows the cumulative returns for diferent
confgurations. SR5 and SR10 show the performance by
considering 5 and 10 stocks using the Sharpe Ratio, re-
spectively. TR5 and TR10 show the returns’ performance by
considering 5 and 10 stocks using the Taylor Ratio. Finally,
IPSA describes the performance of the Index Chilean
Market. Note that the best portfolio selection performed is
Sharpe Ratio with ten stocks (SR10), and the worst one is
Treynor Ratio with ten stocks.

Table 5: Parameter calibration (p, q).

(p, q) q � 1 q � 2 q � 3
p � 1 −98614800 −96176000 −99884200
p � 2 −100737000 −101577000 −100090000
p � 3 −100234000 −100451000 −100433000

CHILE
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Figure 3: Adjusted standard deviation by period.

Forecast vs close price of CHILE stock

20
17

-0
9

20
17

-1
2

20
18

-0
3

20
18

-0
6

20
18

-0
9

20
18

-1
2

20
19

-0
3

20
19

-0
6

20
18

-0
9

20
17

-0
6

Close Price
Forecast

80

85

90

95

100

105

Cl
os

e C
H

IL
E

Figure 4: Stock close price prediction.
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4.4. SimplifedFormulation v/s, SR10andTR5. Te simplifed
formulation is applied using the Sharpe Ratio as the objective
function. Table 7 shows the cumulative returns for the sim-
plifed in the frst column without considering the transaction
cost; the remaining columns show SR10 and TR5 portfolio
returns reduced by the transaction cost. Te cumulative return
has been increasing at a quarterly average of 11.02%, 6.70%,
and 2.35% for simplifed problems, the cumulative return of
SR10 and TR5 with transaction cost, respectively.

Even if the simplifed portfolio does not consider the
transaction cost, this could be estimated assuming the same
budget. Table 8 shows the comparison of the diferent
methods for the considered problem. Te frst column of
Table 8 describes the cumulative return and the cumulative
return by considering transaction costs. We have compared
the simplifed portfolio, the SR10, and TR5.Te new value of
the cumulative return for the simplifed portfolio is reduced
by 24.57%, reaching 78.04% as Cumulative Rmax.

Figure 6 shows how the stock selection is close to the
border of the cluster; this resembles an efcient frontier,
validating the portfolio selection.

4.5. Discussion. Te research addresses the design of a
portfolio selection method and begins forecasting risk using
an econometric procedure and returns using artifcial

intelligence. Tese predictions feed an exact method that
optimizes the multi-period portfolio problem.

An RNN algorithm is compared to simple forecasting
methods for time series. Considering MAPE, a simple
method that performs better than LSTM, the MAPE criteria
are discarded. However, it showed the superior quality
prediction of LSTM by doing a pilot test. Indeed, Recurrent
Neural Network with Long Short-Term Memory performs
better in portfolio selection than simple forecasting
methods.

Markowitz’s method is the main concept for this ap-
proach, adjusting the best risk-return ratio, where Sharpe
Ratio performs better than Treynor Ratio in both 5 and 10
stock portfolios. Tis situation is a heteroskedastic risk
created by GARCH, considered for Sharpe Ratio, unlike
Treynor Ratio, which has a constant systematic risk for 122
periods. Furthermore, it is concluded that the ten-stock
Sharpe Ratio Portfolio (SR10) has the most signifcant cu-
mulative return due to the diversifcation expressed as the
correlation between the assets. Although the Sharpe sim-
plifed formulation overcomes every portfolio selection, it
does not deal with the realistic problem, so this optimal
solution could be used only as an upper bound to reach the
proposed method.

Tis approach is like a multiple of Markowitz’s for-
mulation, with a weekly horizon. Te expected returns are
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Figure 5: Portfolio yields comparison.

Table 6: Portfolio performance comparison.

t
Real Rmax Cumulative Rmax Real Rmax Cumulative Rmax

SR 5 (%) SR 10 (%) SR 5 (%) SR 10 (%) TR 5 (%) TR 10 (%) TR 5 (%) TR 10 (%)
0 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15
26 9.17 9.02 16.62 21.84 8.03 10.12 6.15 6.63
52 −0.03 −0.01 37.15 41.71 −0.70 −0.58 17.55 12.04
78 2.29 2.16 35.58 42.73 1.28 1.21 13.74 4.88
104 1.92 1.73 44.36 55.06 −0.11 1.32 18.96 8.82
121 1.16 1.15 50.92 60.61 1.96 1.30 22.12 11.09

μweek Final value μweek Final value
0.43 0.50 53.04 62.28 0.18 0.10 22.74 12.56
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predicted through LSTM instead of the mean of the
historical prices, and the variance for every week is es-
timated with GARCH, which is used in Sharpe Ratio.
Treynor Ratio uses constant risk; this makes Treynor Ratio
perform worse than Sharpe Ratio, but even the worst
portfolio selected (TR10) beats the IPSA index, this is to
say, the market.

5. Concluding Remarks

Te portfolio selection problem is widely studied in the
literature but always focuses on the computational dimen-
sion of the problem. Tis paper deals with the complexity of
a realistic problem, proposing a mathematical formulation
fed by an econometric and machine learning method.
Terefore, an investor guided by this method must not
consider any subjective variable, like opinion, news, or
sentiment. Tus, this approach to the portfolio selection
problem allows an investor to decide where to allocate the
money through a complex method that helps to fnd the best

combination of assets, considering transaction cost, the
stock integrality, and minimum trade amount, and ensuring
not to overcome the budget.

However, the model has some limitations; for instance,
the close price is known, and this price is used for prediction,
also is the bid and ask price, so, hypothetically, the pre-
diction and the trade are made at the same time, just when
the market closes, and this is virtually impossible. Finally, in
practice, the price is constantly changing; this proposes a
challenge to reduce the compute time, using heuristics and
metaheuristics to quickly get a good solution, thus de-
creasing the price change since it is input in the model until
it gets a solution.

In future work, we propose using extended multi-
objective methods for logistic problems such as those
proposed by [51–53]. Moreover, we could propose meta-
heuristic algorithms based on the granular tabu concept
[54–56] for a large number of stocks. Besides, multicriteria
techniques such as those proposed by [2] could solve real
problems.

Table 7: Cumulative yields of simplifed, SR10 and TR5 portfolios.

Date Cumulative ret (simplifed) (%) Cumulative Rmax (SR10) (%) Cumulative Rmax (TR5) (%)
16-06-2017 0.00 −0.15 −0.15
15-09-2017 10.05 11.11 7.25
15-12-2017 25.19 21.84 13.24
16-03-2018 41.45 34.21 23.28
15-06-2018 54.24 41.72 17.55
14-09-2018 57.59 40.75 7.61
14-12-2018 64.15 42.74 13.74
15-03-2019 79.55 56.11 23.34
14-06-2019 83.74 55.06 18.96
17-09-2019 99.17 60.13 21.04

Table 8: Transaction cost of simplifed v/s SR10 & TR5.

Value Simplifed portfolio w/cTr SR10 w/cTr TR5 w/cTr
Cumulative yield (%) 78.04 62.28 22.74
Cumulative cTr (CLP) 497.920 236.699 197.944

Risk-Return Rate 122° opt. (Simplified) Risk-Return Rate 122° opt. (SR10) Risk-Return Rate 122° opt. (TR5)
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Figure 6: Graphic simplifed v/s SR10 & TR5 portfolio selection comparison.
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Appendix

A. Markowitz Model

Te model of mean-variance proposed by [5] considers the
following risk (A.1) and return (A.2) functions:

Minσ2p � 􏽘
N

i,j�1
wiwjσij, (A.1)

Maxrp � 􏽘
N

i�1
wiμi. (A.2)

Subject to

􏽘 wi � 1, (A.3)

where wi and wj determine the percentage of the invested
budget in stocks i and j and σij is the covariance of returns
between stocks. Finally, the average of the historical returns
is μi. Te model is subject to the proportion to be invested
must be equal to the available budget of the investor, as
expressed in equation (A.3).

B. Sharpe Ratio

Te Sharpe Ratio[57] is defned as the relationship between
the additional beneft of an investment fund (diference
between the return of the fund on the asset without risk) and
its volatility, measured as its standard deviation. Te Sharpe
Ratio is calculated with.

SR �
rp − rf

σp

, (B.1)

where rp is the average return of the fnancial assets (nor-
mally a stock or fund), rf is the average return of the asset
with free risk, and σp is the deviation of the returns of the
asset [21].

C. Taylor Ratio

Te Taylor Ratio is calculated as the excess return per unit of
systematic risk, unlike the Sharpe Ratio, which considers
only the portfolio’s systematic risk [58].

TR �
rp − rf

βp

, (C.1)

βp is a systematic risk measure that considers the variation of
the portfolio concerning the market. βp is the weighted
average of the individual betas of the portfolio assets.

βp � 􏽘

N

i�1
βi ∗wi, (C.2)

βi corresponds to the relationship between the risk of the
asset concerning the market risk. Tis value measures the
sensitivity of a change in the average return of an individual
investment to the change in the market’s return. Te market
risk is equal to 1. If an investment shows a βi greater than 1,

this asset is riskier concerning the market risk. An invest-
ment with a βi less than 1 means the asset is less risky than
the market risk. An investment with βi equal to zero is risk-
free, such as treasury bonds [1].

βi �
cov Ri, Rm( 􏼁

var Rm( 􏼁
, (C.3)

where Ri is the return of the asset i and Rm is the market
return.
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