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The topological structure of the world air transportation network has been the subject of much research. However, to better
understand the reality of air networks, one can consider the traffic, the number of passengers, or the distance between flights. This
paper studies the weighted world air transportation network through the component structure, recently introduced in the network
literature, by using the number of flights. The component structure is based on the community or multiple core-periphery
structures and splits the network into local and global components. The local components capture the regional flights of these two
mesoscopic structures (dense parts). The global components capture the inter-regional flights (links between the dense parts). We
perform a comparative analysis of the world air transportation network and its components with their weighted counterparts.
Moreover, we explore the strength and the s-core of these networks. Results display fewer local components well delimited and
more global components covering the world than the unweighted world air transportation network. Centrality analysis reveals the
difference between the top airports with high traffic and the top airports with high degrees. This difference is more pronounced in
the global air network and the largest global component. Core analysis shows similitude between the s-core and the k-core for the
local and global components, even though the latter includes more airports. For the world air network, the North and Central
America-Caribbean airports dominate the s-core, whereas the European airports dominate the k-core.

1. Introduction

The concept of a complex network paradigm provides
a more profound comprehension of diverse, interconnected
systems, including social networks, economics, epidemics,
and infrastructure [1]. Infrastructure networks such as
power grid networks [2], road networks [3-5], and airport
networks [6] receive a lot of attention. The air transport
system connects all countries in the world. This in-
frastructure has a direct impact on society and the global
economy. Indeed, millions of people and goods transit
through the air every day. The COVID-19 pandemic has
significantly impacted the global air transportation network.
The virus spread rapidly through air travel, and research has
shown the consequences of political shutdowns on national

and international economies. Reference [7] provides further
insights into these repercussions. Thus, understanding the
air transportation system can help policymakers make de-
cisions that can improve or affect this system. Network
science provides a simple way to represent and understand
this infrastructure. Thus, several studies are devoted to the
air transportation network, including structure, dynamics,
and robustness. In a previous study, we analyzed the world
air transportation network through a new mesoscopic
structure called the component structure [8]. A network
contains two types of components. The dense parts of the
network form the local components. The interactions be-
tween the local components are called the global compo-
nents. Therefore, one must extract the dense areas to build
the component structure. To do so, the community structure
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and the core-periphery structure are good candidates. In-
deed, the communities constitute cohesive groups of nodes
sparsely connected [9-11]. The core-periphery [12-14]
structure contains two groups of nodes (core and periphery)
with three types of connections. The core nodes are tightly
connected. The periphery nodes are almost not connected.
The links between the core and periphery nodes are relatively
dense. Networks can exhibit a multi-core-periphery struc-
ture [15]. One can extract the dense parts using any algo-
rithm to uncover the communities or the various cores to
form the local components. In the world air transportation
network, the local components capture the regional desti-
nations, while the global components represent the inter-
regional flights. In the previous study, we analyzed the
unweighted world transportation network. Therefore, the
results of our investigations are related to the network in-
frastructure. Indeed, it uses no information on the dynamics
of the infrastructure. This simplification can lead to cen-
trality anomalies [15, 16] and hide critical information about
the flow of flights and passengers in the infrastructure.
Indeed, the traffic in the various routes can be pretty dif-
ferent, and failing to integrate these differences can lead to
misleading conclusions.

This paper presents a comparative analysis of both
weighted and unweighted world transportation networks.
The unweighted network focuses on the infrastructure,
representing various routes connecting airports, while the
weighted network considers the passenger traffic on these
routes. The analysis is carried out at three levels: macro-
scopic, mesoscopic, and microscopic.

(1) Macroscopic Level. This level allows us to identify and
highlight the global characteristics that differentiate
the two types of networks.

(2) Mesoscopic Level. At this level, we adopt a compo-
nent structure representation to explore and dis-
tinguish the influences of geography and economy.
Five geographical areas (local components) of the
weighted world air transportation network are in-
vestigated. Furthermore, we also study the network
formed by inter-regional flights. To facilitate our
analysis, we examine and compare the k-core and s-
core of the network.

(3) Microscopic Level. In this level of analysis, we eval-
uate and contrast the degree and strength of airports,
aiming to compare highly connected airports to
those experiencing heavy traffic.

By conducting a comprehensive analysis across these
three levels, this paper aims to understand better the dif-
ferences and interactions between the weighted and un-
weighted world transportation networks.

The rest of the paper is organized as follows. Section 2
reports a review of related studies of the air transportation
network. Section 3 describes the data, and Section 4 ex-
amines the network community structure. Section 5 reports
the analysis of the component structure. Section 6 explores
the topological properties of the local and global compo-
nents. Section 7 presents the topological properties of the
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world air transportation network. Section 8 presents the
results of a comparative analysis of the strength centrality of
the components and the world air transportation network.
Section 9 discusses the results of the core structure analysis.
Finally, we conclude in Section 10.

2. Literature Review

The literature reports numerous studies of unweighted air
transportation networks [17-20]. They cover national, re-
gional, and worldwide networks and include investigations
at the macroscopic, mesoscopic, and microscopic scales. All
these networks share some common characteristics. They are
generally small-world and scale-free. Moreover, some ex-
hibit a community structure, and one can observe that the
most connected cities do mnot have the largest
betweenness [17].

In contrast, the weighted air transportation network is
not much studied. It is particularly true for the world air
transportation network. In the following, we briefly report
related studies of the national, regional, and worldwide
weighted air transportation networks.

In [20], the author studied the weighted airport network
of India. The weight indicates the number of weekly flights
between two airports. The distribution of strength reveals the
heterogeneity of this network. Moreover, the author showed
that the strength of a node correlates well with its degree.
Comparing nodes’ unweighted and weighted clustering
coefficients indicates that the hubs tend to form inter-
connected groups. However, the airport network in India is
disassortative. The weighted assortativity shows that the
hubs with many flights are more connected.

In [21], the authors investigated the air transportation
network of the United States from 2002 to 2005, by quarter.
They explored 16 networks in this period using topological
and weighted metrics. Cities are the nodes, and routes be-
tween two cities are the edges. They considered three types of
weight: the nonstop distance between cities, the average
passengers, and the average one-way fare. The degree and the
strength distribution of these three attributes exhibit a scale-
free behavior. Additionally, they are correlated. Then, high-
degree nodes tend to have high-strength links. The analysis
of the degree-degree correlation shows a rich-club phe-
nomenon. Indeed, there is large traffic among the hubs.
Moreover, the interconnected hubs make long distances at
an accessible price due to the multiplication of point-to-
point flights. Finally, the authors proposed a weighted
network model.

In [22], the authors studied the Australian airport
network’s structure and dynamic flow. The weights cor-
respond to the number of flights between two airports.
The authors found that the strengths of the nodes evolve in
the same direction as the degree. Sydney airport, the most
prominent hub, handles the highest fraction of traffic. The
weighted clustering coefficient is lower than the un-
weighted. Consequently, the edges with low weights form
the topological clustering. The weighted and unweighted
degree-degree correlation reveals a disassortative
behavior.
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In [19], the authors analyzed the characteristics of the
Asian international passenger aviation market in 2014 and
2018. The number of passengers weights the links between
two airports. To conduct their analysis, they considered 28
Asian top airlines, with 7 low-cost carriers and 21 full-service
carriers. The airports of the low-cost carriers increased, and
their degree distribution shows the evolution of the low-cost
carriers into a hub and spoke system. Developing countries
like China and Vietnam influence the air transport network
of this region. To characterize the airports’ influence, they
explored eight centrality measures: the degree, mean asso-
ciation (normalized strength), betweenness, weighted be-
tweenness, page rank, weighted page rank, reverse page rank,
and weighted reverse page rank. For most centrality mea-
sures, Changi Airport, Incheon Airport, Narita Airport, and
Hong Kong Airport are in the top position in 2014 and
2018 [19].

In [23], the authors proposed to extend the definitions of
the clustering coefficient and the assortativity to a weighted
network. They used the world air transportation network as
a typical example. The link weight is the number of seats
available on the flights between two airports. They showed
that the degree and strength distributions are heavy-tailed.
Moreover, there is a linear relationship between a node’s
degree and strength. The network exhibits the rich-club
phenomenon. Indeed, the interconnected neighbors of the
hubs handle the most significant proportion of the traffic.
The weighted degree-degree correlation is assortative.

In summary, previous studies on weighted networks
have focused on analyzing national, regional, and global air
transportation networks. Notably, when studying the
weighted world air network, the analysis has primarily
concentrated on macroscopic properties [23]. This paper
investigates the weighted world air transportation network
in light of its component structure. We perform an extensive
comparative analysis of the route (unweighted) and traffic
(weighted) networks at the macroscopic, mesoscopic, and
microscopic levels.

3. Data and Tools

This section describes the data used to conduct our ex-
periment. Then, two weighted community detection algo-
rithms are applied to the data. The purpose is to compare
their community structure. Finally, we also compare the
communities from the unweighted and weighted world air
transportation network.

3.1. Data. This network of 2734 nodes and 16665 links
originates from FlightAware [24]. It collects the flights
between May 17, 2018, and May 22, 2018 [25]. Nodes
represent airports, and links are direct flights between air-
ports. The link weight is the number of flights between two
airports. Table 1 reports basic properties (unweighted and
weighted). One needs at least 12 flights to reach the most
distant airports. On average, four flights are required to
reach any destination. The network is not very dense, and

globally, there are few triplets by airports with many flights
(C¥ = C). The unweighted assortativity reveals that the hubs
tend to connect to the airport with few connections. In
addition, the global weighted assortativity shows numerous
flights between these hubs and these types of airports
(K* 2 K).

3.2. Tools. Here, we briefly recall the algorithm to extract the
component structure. As it relies on the communities to
form the local components, we describe two community
detection algorithms that uncover these dense parts of the
network. Finally, we present the evaluation measures.

3.2.1. Extracting the Component Structure. The process of
extracting the component structure described in [8] consists
of three steps:

(1) Extracting the dense areas of the network by using
a community or multiple core-periphery detection
algorithms.

(2) Extracting the local components by removing all the
links between the dense areas.

(3) Extracting the global components by removing all
the links within the dense areas.

Note that a node can belong to the local and global
components. In this paper, weighted community detection
algorithms are used [26]. Indeed, they take into account the
dynamic flow in the network.

3.2.2. Extracting the Communities. We use two popular
community detection algorithms: Louvain [27] and Combo
[28]. They are weighted nonoverlapping community de-
tection algorithms based on modularity. Our purpose is to
evaluate the impact of the community structure variations
induced by the community detection algorithms on the
component structure.

(1) Louvain. Louvain constructs the communities in two
phases, repeated iteratively. At first, each node is a com-
munity. Then, one evaluates the modularity after grouping
neighboring nodes. The second step considers the group of
nodes (community), maximizing the modularity as new
nodes. The algorithm stops when there are no more mod-
ifications, and the modularity can no longer be maximized.
Note that the definition of modularity depends on the nature
of the network (unweighted or weighted).

(2) Combo. Combo combines three strategies to uncover the
community structure. Indeed, at the initial stage, all nodes
form a community. Then, for several iterations, one can
merge communities, split communities, or recombine nodes
between communities according to the optimization of the
objective functions until any gain is possible. One can use
two objective functions (modularity and code length). In this
paper, we use the algorithm based on modularity.
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TaBLE 1: Basic topological properties of the world air transportation network.
N |E| d L { 'S A AY i
Network 2734 16665 12 3.86 0.004 0.046 0.007 —0.046 0.048 0.09

N is the network size. |E| is the number of edges. d is the diameter. L is the average shortest path length. u is the density. { and (" are, respectively, the
unweighted and weighted average clustering coeflicients. A and A“ represent, respectively, the unweighted and weighted assortativity, also called the

degree-degree correlation coefficient. # is the hub dominance.

3.2.3. Quality Metrics. We use the classical metrics such as
the modularity and the mixing parameter [29-30] to
measure the quality of partitions. In addition, we use the
NMI to quantify the similarity of the partitions from the
Louvain and Combo weighted community structures.

3.2.4. Modularity. Modularity is the most popular one. It
compares the actual community structure with a null model
without community structure. Its values range between —1
and 1. Several community detection algorithms aim to
optimize modularity. The best partition is the one that is
nearer to 1. The modularity of weighted networks [27] is
defined as follows:

1 kik;
= [Aij— sz]é(ci,cj). (1)

Aj; is the weight of link between i and j; k; is the strength
of node i; ¢; is the community that i belongs to; the Kro-
necker delta § (a, b) is 1 if a=b and 0 otherwise.
m=1/2yA;;.

3.2.5. Mixing Parameter. For a weighted network, the
mixing parameter 4 of a node i is the proportion of
weight pointing outside its community. The mixing
parameter of the network is the average of the nodes’
mixing parameters. The communities are well separated
when the average mixing parameter is near 0. The smaller
the mixing parameter, the stronger the community
structure. The mixing parameter of a network is defined
as follows:

w_l w
W=y u (2)

where p¥¥ = w™w;, w™ is the sum of weight from node i to
the communities that do not contain i, and wj is the strength
of node i.

3.2.6. Normalized Mutual Information. The normalized
mutual information measures the similarity of two parti-
tions. The partitions are similar when the NMI is near one
and almost independent when close to 0. The NMI of two
partitions P; and P, is defined as follows:

I(Py, Py)

NMI(P,,P,) =2 % ————=>——
(PoP) = 2% b )+ 1 (Py)

(3)

where I (P, P,) is the mutual information between P; and
P,. H (P) is the entropy of P. Here, the sum of entropy
normalizes the mutual information.

3.2.7. Jaccard Index. The Jaccard index is used to compare
the similarity of two sets. It is defined as follows:
_|AnB|

" |AUB|’

J (A, B) (4)

When the two sets are identical, the Jaccard index equals
1. It is equal to zero if the two sets have no element in
common.

4. Community Structure Analysis

This section first compares the weighted community
structures uncovered by Louvain and Combo. Then, we
compare the communities of the weighted and unweighted
world air transportation network uncovered by Louvain. We
use the modularity and the mixing parameter as quality
measures of the community structures. We also perform
a comparative qualitative evaluation highlighting the si-
militudes and differences between weighted and unweighted
networks.

4.1. Comparing the Weighted Community Structure Un-
covered by Louvain and Combo. The number of commu-
nities extracted from the networks by the algorithms is quite
different. Louvain uncovers 17 communities. The largest
contains 725 airports, whereas the smallest includes two
airports. Combo identifies seven communities. The largest
includes 703 airports, and the smallest consists of 70 air-
ports. Table 2 displays the quality metrics of the two
community structures. Their modularity is identical. Its
value of 0.47 indicates that the communities are dense, with
a medium proportion of intercommunity links. The com-
munity structure of Louvain contains few connections be-
tween the communities with strong weights. In contrast,
Combo reveals more intercommunity links with smaller
weights. In both cases, the mixing parameter values dem-
onstrate that the communities are well separated.
Although the Louvain algorithm uncovers more than
two times more communities than the Combo algorithm,
their community structures have numerous similitudes.
Indeed, Combo groups some communities of Louvain. The
high value of the NMI (0.87) confirms their similarity. Five
communities are very similar at first glance. They cover the
same geographical areas. In Figure 1, these areas correspond
to the communities with the same color. They are in North
and Central America-Caribbean, Europe-Russia-Central
Asia, East and Southeast Asia-Oceania, Africa-Middle East-
Southern Asia, and South America. In addition, Table 3
shows their Jaccard Index. Its value for all similar com-
munities is greater than 0.85. For North and Central
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TaBLE 2: Modularity, mixing parameter, and NMI of the com-
munity structures discovered by the community detection algo-
rithms of Louvain and Combo.

Modularity Mixing parameter NMI
Louvain 0.47 0.043 0.87
Combo 0.47 0.046 )

America-Caribbean and Europe-Russia-Central Asia, it is
greater than 0.9, indicating a high similarity between the
communities uncovered by the two algorithms. The twelve
other communities from Louvain, mainly located in Canada
and Alaska, are grouped into Combo. To sum up, although
the community structures uncovered by Louvain and
Combo differ, the largest communities have a lot in com-
mon. Therefore, in the rest of the paper, we adopt the
communities of Louvain to build the structure of the
components used in subsequent analysis.

4.2. Comparing Weighted and Unweighted Community
Structures Uncovered by Louvain. Louvain uncovered fewer
communities in the weighted network (17 communities)
than in the unweighted one (27 communities). The weighted
network contains five large communities and 12 small
communities. In contrast, there are seven large and 20 small
communities in the unweighted network. Three correspond
to similar areas with the unweighted communities (North
America, Africa-Middle East-Southern Asia, and South
America). Moreover, their Jaccard index with their un-
weighted counterpart reported in Table 4 is very high. The
two other large communities in the weighted network
regroup into two communities four communities in the
unweighted network. The Europe-Russia-Central Asia
community breaks into Europe and Russia-Central Asia-
Transcaucasia communities. In the same way, the com-
munity covering the East-Southeast Asia-Oceania region
separates into the East-Southeast Asia community and
Oceania. Weighted Louvain tends to group nodes linked
by heavyweights in the same community. The Jaccard
index reported in Table 4 shows that the regrouped
weighted communities are very similar to the unweighted
communities. These results reveal several flights between
Europe and Russia and East-Southeast Asia and Oceania,
even if the number of connections between these regions
is limited. Apart from grouping communities of the
unweighted network, the communities of the weighted
network present some particular singularities. Indeed,
some airports belong to communities far from their
geographical area.

The airports in North and West Africa are in the Europe-
Russia-Central Asia community in the weighted network,
while they are in the Africa-Middle East-Southern Asia in
the unweighted network. Indeed, these airports have more
flights to Europe despite sharing more connections to the
other airports in Africa and the Middle East. John F Kennedy
Airport in the United States is in the Europe-Russia-Central
Asia community. Likewise, Frankfurt Airport in Germany
and London Heathrow in the United Kingdom are,

respectively, in the Africa-Middle East-India region and the
North and Central America-Caribbean area. These examples
confirm that the communities of the weighted network
correspond to areas of influence, while in the weighted
network, they correspond to geographical regions.

The large communities of the weighted network include
several small communities of the unweighted network.
Moreover, like large communities, a few small communities of
the unweighted network are grouped in the weighted network.

The modularity and the mixing parameter values re-
ported in Table 5 show a higher community structure
strength for the unweighted network. Nevertheless, in both
cases, the community structure strength is in a medium
range indicating a clear community structure. The mixing
parameter values corroborate these findings.

5. Component Structure

We categorize the uncovered components as large or small.
The large components include more than 100 airports and
cover large geographical areas. In this section, we describe
their features and compare them to the component structure
of the unweighted network [8].

5.1. Local Components. The local components are the dense
parts of the networks. They correspond to the 17 commu-
nities uncovered by Louvain in the weighted network. There
are five large and twelve small local components. The large
local components do not reflect strict geographical divisions.
They correspond more to political, cultural, historical, and
economic divides. For example, some African airports in
Morocco, Tunisia, and West Africa belong to the European
component. It is because of the solid economic and historical
ties these countries share with Europe. The small local
components are in a single country (the United States,
Canada, French Polynesia, Greenland, Israel, Australia, and
United Arab Emirates) or a few countries (Caribbean).

5.1.1. Large Local Components. The large local components
cover (1) North and Central America-Caribbean (725 air-
ports), (2) Europe-Russia-Central Asia (683 airports), (3)
East-Southeast Asia-Oceania (630 airports), (4) Africa-
Middle East-Southern Asia (313 airports), and (5) South
America (201 airports). Altogether, they regroup more than
93% of the world’s airports. One can distinguish two typical
behaviors when comparing the large local components of the
weighted and unweighted network illustrated in Figure 2. In
the first case, the components are very similar. In the second
case, separated components in the unweighted network
merge into a single component.

There are three similar components (North and Central
America-Caribbean, Africa-Middle East-Southern Asia, and
South America). We quantify their similarity using the
Jaccard index. The higher the similarity is, the closer the
Jaccard index is to 1.

The North and Central America-Caribbean weighted
component contains 10% more airports than the un-
weighted. Their Jaccard index is high (0.81). Note, however,
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FIGURre 1: (a) The communities the Louvain community detection algorithm identifies. It includes eighteen communities. (b) The
communities uncovered by the Combo community detection algorithm. It contains seven communities. For both, each color represents
a community. Similar communities have similar colors. One can observe that the Combo algorithm regroups the communities of the

Louvain algorithm located in Canada and Alaska.

TaBLE 3: The Jaccard index of the five similar communities un-
covered by Louvain and Combo.

Community Jaccard index
North and Central America-Caribbean 0.94
Europe-Russia-Central Asia 0.98
East and Southeast Asia-Oceania 0.85
Africa-Middle East-Southern Asia 0.88
South America 0.85

TaBLE 4: The Jaccard index of the communities uncovered by the
weighted and unweighted Louvain algorithm.

Community Jaccard index
North and Central America-Caribbean 0.81
Europe-Russia-Central Asia 0.87
East and Southeast Asia-Oceania 0.97
Africa-Middle East-Southern Asia 0.87
South America 0.78

Three are similar (North and Central America-Caribbean, Africa-Middle
East-Southern Asia, and South America), and two are regrouped by the
weighted algorithm. The East and Southeast Asia-Oceania regroups the East
and Southeast Asia component and the Oceania component. Europe-
Russia-Central Asia regroups the Europe component and the Russia-
Central Asia component.

that 39 airports of the unweighted component disappear in
the weighted component. They are mainly in French Antilles
and Venezuela. More surprisingly, John F Kennedy airport is
not in the weighted component. Additionally, some new
airports emerge in the weighted component (107). Most are
in Canada, Alaska, Peru, and Chile. London Heathrow, the
most important airport in the United Kingdom, also appears
in the weighted component. Indeed, it has several desti-
nations in the United States, and numerous flights from
North America land at this airport. The most unexpected
airports in this component are the Marshall Airport in the
Marshall Islands and the Osmani Airport in Bangladesh. The
first collaborates with United Airlines situated in the

TaBLE 5: Quality metrics of the community structures uncovered by
the unweighted and weighted Louvain community detection al-
gorithms: modularity, mixing parameter, and NML

Modularity Mixing parameter NMI
Weighted 0.47 0.14 078
Unweighted 0.63 0.13 )

United States. The second has flights to and from London
Heathrow.

The Jaccard index of the unweighted (336 airports) and
weighted (313 airports) Africa-Middle East-Southern Asia
component is also high (0.87). The 35 airports of the un-
weighted component that disappear in the weighted are in
the Middle East and West Africa. In contrast, eleven new
airports emerged (6 are in Kenya, 2 in West Africa, and 3 in
Europe) in the weighted component. The Frankfurt am Main
Airport, the largest airport in Germany, is unexpected in this
component. Indeed, it has high traffic with Saudi Arabia and
India. The Rzeszéw-Jasionka airport in Poland and Araxos
airport in Greece are also in this component. Both airports
have dense traffic with Frankfurt am Main.

The Jaccard index of the unweighted (215 airports) and
weighted (201 airports) South America components is 0.78.
Thirty-two airports in this unweighted disappeared in the
weighted. These airports are in Chile and Peru. As afore-
mentioned, the airports of these two countries are now in the
weighted North and Central America-Caribbean compo-
nent. The airports appearing in the weighted South America
component are in Venezuela, Colombia, and Cuba.

There are two merged components. The Europe-Russia-
Central Asia component regroups the European and Russia-
Central Asia-Transcaucasia components from the un-
weighted world air transportation network. Similarly, the
“East and Southeast Asia-Oceania” component includes the
unweighted network’s East and Southeast Asia and Oceania
components. We join the unweighted European (493 air-
ports) and Russia-Central Asia-Transcaucasia (112 airports)
components and the unweighted East and Southeast Asia
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FIGURE 2: (a) The airports in the large components of the weighted network. (b) The airports in the large components of the unweighted network.
Each color is associated with a component. The North and Central America-Caribbean component is red (1). The Africa-Middle East-India
component is green (2). The South American component is brown (3). The Europe-Russia-Central Asia component is black (4). The Europe-Russia-
Central Asia component is black (4). It is divided into Europe in black (4) and Russia in purple (7) in the unweighted network. The East and South-
East Asia-Oceania component (5) is divided into East and South-East Asia in blue (5) and Oceania in orange (6) in the unweighted network.

(416 airports) and Oceania (234 airports) components to
compare them with their counterparts in the weighted
network.

The Jaccard index of the European-Russia component is
0.87. Nine airports present in the unweighted disappear,
while 87 new airports appear in the weighted component.
They are mainly in Norway, West and North Africa, Iran, the
United Arab Emirates, and the French Antilles. Beyond their
geographical localization, the countries of this weighted
component have political, historical, and economic re-
lations. Indeed, from the airports in Moscow and St.
Petersburg, the Russian airports join the other world regions
throughout Europe. North Africa, West Africa, and the
French Antilles are associated with Europe politically and
historically. It translates into high traffic between these
regions.

The unweighted and weighted East and Southeast Asia-
Oceania components are very similar. Indeed, their Jaccard
index equals 0.97. These two regions, through the largest
airports, have significant traffic. In the weighted component,
twenty-three airports in French Polynesia disappeared, and
three airports from Russia and India emerged. Vladivostok
and Yuzhno-Sakhalinsk airports are near China and North
Korea. Their exchanges are with China, Japan, and South
Korea. The Trichy airport in India has heavy traffic with
Malaysia, Singapore, and Sri Lanka.

5.1.2. Small Local Components. Figure 3 presents the small
local components uncovered in the weighted (Figure 3(a))
and unweighted (Figure 3(b)) network for comparative
purposes They are either in a single country (the Uni-
ted States, Canada, French Polynesia, Greenland, Israel,
Australia, and United Arab Emirates) or cover a few
countries or subregions (Caribbean). The biggest small
component in Alaska contains 30 airports. The smallest
includes two airports. In the following, we concentrate on
small components with a size greater than five airports.
Alaska has three small components with comparable
sizes (around 27 airports). These components have a star
shape. Indeed, most of the traffic goes through a leading

airport. Fairbanks Airport, in Northeast Alaska, leads the
first component. The Nome Airport dominates the North-
west. The third component in the Southwest is centered
around the Bethel Airport. These components are also in the
unweighted world air transportation network. It reveals the
isolation of Alaska in terms of traffic and connections.

Canada possesses two small components. The largest
contains 25 airports, mainly on Nunavut and Quebec coasts.
It is dominated by Igaluit and Quujjuaq airports. The second
includes ten airports in the Northwest Territories. The
Inuvik airport serves several flights in this component. Note
that the unweighted network merges these two components.

The significant small component in Greenland contains
ten airports. The most frequent flights operate through
Godthaab/Nuuk, Kangerlussuaq, Ilulissat, and Sisimiut
airports. This component is in the unweighted network.
Indeed, in Greenland, air transport is a must.

Twenty-two airports in French Polynesia constitute
a small local component. This country is a set of islands.
Thus, air transportation is very developed. The major airport
of this country, Faa’a airport, reaches 18 airports with 547
flights. The Bora Bora airport is the second most important,
with 302 flights. This component is not in the unweighted
network. So, the flow of flights between the airports of
French Polynesia is essential, even though the connections
are not dense.

The last significant small component includes French
Antilles, Quebec, and Ontario airports. Indeed, there is
a strong community from French Antilles based in these two
cities of Canada. Therefore, there is high traffic between
these airports. The major airports in Trinidad and Tobago
(Piarco Airport and Tobago-Crown Point Airport) capture
most of the traffic. This component also exists in the un-
weighted network.

The 13 small unweighted components that disappear in
the weighted network are aggregated into the weighted large
components. Among them, four are located in North
America, five are located in Europe, and four in Africa.

Globally, the small weighted local components cover
6.6% of airports. They are in North and Central
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FIGUre 3: Small local components in the weighted (a) and unweighted (b) world air transportation network. The red circles are the
components disappearing in the weighted network. The blue circles are similar small components in both networks. The green circles are the
components that do not appear in the unweighted network. The orange circles are the components splitting in the weighted network.
Geographical areas outside the figure do not contain small components.

America-Caribbean (3 in Alaska and 2 in Canada and 1 in
the Caribbean), Europe (1 in Greenland and 1 in Israel), East
and Southeast Asia-Oceania (1 in French Polynesia and 1 in
Australia), and Africa-Middle East-Southern Asia (1 in the
United Arab Emirates). Among them, five components
include less than five airports.

5.2. Global Components. Figure 4 shows the global com-
ponents extracted from the weighted world air trans-
portation network. There are one large and 11 small global
components. The large global component contains 557
airports (20.44% of the world’s airports). It covers the world.
The small global components, which include 36 airports, are
principally in the North and Central America-Caribbean
region.

The Jaccard index between the weighted and un-
weighted large global components is not high (0.63). The
large global component of the weighted world air network
contains 14 more airports than the unweighted. However,
their content is very different. Indeed, 100 airports dis-
appear from the weighted largest global component, and
144 new airports integrate it. Airports disappear in the
largest weighted global component because Oceania and
Russia merged with their neighboring regions reducing
the intercomponent links. New airports appear because of
the singularities in the North and Central America-
Caribbean, Europe-Russia-Central Asia, and Africa-
Middle East-India components. Indeed, highly con-
nected airports not localized in their natural geographical
components, such as London Heathrow and John F
Kennedy, increase the links between the local components
attracting new airports in the global component. Moving
an airport from one local component to another modifies
the large connected component drastically.

The small global components include 36 North and
Central America-Caribbean airports and East and
Southeast Asia-Oceania. Their size ranges from 4 airports
to 2 airports. Canada contains most of them (11). Only
two components are shared with the unweighted world air
transportation network. In the following, we neglect these
components.

6. Topological Properties of the
Large Components

This section investigates the clustering coefficient and
degree-degree correlation. We recall the definitions of these
topological properties in weighted networks.

6.1. Clustering Coefficient. The clustering coefficient C; of
anode i reflects the cohesiveness of its neighbors. The closer
itis to 1, the more interconnected its neighbors are. Whether
C(k) =~ k™', the network has a hierarchical organization [32].
The weighted clustering coefficient C* of a node i is defined
as follows [23]:

G = k—1)Z

(w, +w)

azhaz]]h (5)

One can define C(k) and C¥ (k) as the average clustering
coefficient of nodes with degree k for, respectively, un-
weighted and weighted networks. The relation C* > C in-
dicates that the interconnected triplets tend to be formed by
links with high weights. The opposite C* < C shows that
lower-weight edges produce interconnected triplets.

6.1.1. Large Local Components. Figure 5 represents the
average (weighted and unweighted) clustering coefficient
versus degree for the large local components.

The average unweighted clustering coefficient decreases
monotonically with the degree. Low-degree nodes have
a large clustering coeflicient. In contrast, hubs are less co-
hesive. This characteristic is shared with numerous networks
such as the India air transport network [20], the actor-
network, and the World Wide Web network. Fitting C(k)
by the law k™7, we observe that y = 0.3 for the Africa-Middle
East-Southern Asia and the South America components. For
the other components, y =0.2.

In contrast, the average weighted clustering coefficient is
independent of the degree. This result differs from previous
analysis with real-world networks [20, 23]. Moreover,
weighted average clustering coefficients are always lower
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formed by low-weight edges in the large local components.

than their unweighted equivalent. It shows that inter-
connected triplets tend to be formed by edges with low
weight in the large local components.

6.1.2. Large Global Component. Figure 5 reports the evo-
lution of the average clustering coeflicient versus the degree
of the large global components. Overall, its behavior is
similar to the local components. For the unweighted net-
work, the coefficient of the fitted power law function is

y=0.58. Consequently, there are fewer interconnected
triplets in the global component compared to the local ones.
Indeed, the global component includes long-distance traffic
airports. Among these airports, many are hubs in their
country in a hub and spoke configuration with poor
rerouting capacity. Like large local components, the un-
weighted average clustering coefficient of a degree node k is
greater than the weighted average clustering coefficient.
Thus, the connected triplets are mainly between nodes with
low-weight edges.
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6.2. Degree-Degree Correlation. The degree-degree correla-
tion k,,,(k) assess the relation between neighbor nodes. It
measures the probability that a node of degree k connects
with a node of degree k'. If high-degree nodes tend to
connect to high-degree nodes, the network is said assorta-
tive. It is disassortative if high-degree nodes tend to connect
to low-degree nodes. The weighted degree-degree correla-
tion is defined as follows [23]:

LN
Koni = s > a;jwjk;. (6)
i o1

One can compare weighted (k“) and unweighted (k,,,, ;)
degree-degree correlation. If k¥ >k,,; edges with high
weights tend to connect high-degree nodes. If k¥ < k,, ; the

edge weights connect the degree nodes with opposite
magnitudes (low or high).

6.2.1. Large Local Components. Figure 6 presents the average
degree-degree correlation evolution versus the degree for the
large local components. One can observe that the weighted
degree-degree correlation is greater than the unweighted
degree-degree correlation. It indicates a high fraction of
traffic transit between hubs in the local components.

However, the curve trend of the unweighted and
weighted degree-degree correlation as a function of k is
different for the large local components. Indeed, above
a threshold k, the weighted and unweighted degree-degree
correlation of the North-Central America-Caribbean
(k=70), and South America (k =25), decreases. The high-
degree nodes tend to connect to low-degree nodes. Thus, the
disassortative aspect of these unweighted and weighted
components appears clearly. The Europe-Russia-Central
Asia component’s degree-degree correlation decreases
slowly compared to the South America and North-Central
America-Caribbean components. Moreover, the degree-
degree correlation of the high-degree nodes is higher. It is
also less disassortative. In the East and Southeast Asia-
Oceania and the Africa-Middle East-Southern Asia com-
ponents, the unweighted degree-degree correlation shows
a characteristic that is slightly disassortative. The average
weighted degree-degree correlation of these components is
relatively constant.

6.2.2. Large Global Component. Figure 6 reports the average
degree-degree correlation as a function of degree for the
global component. The unweighted network curve de-
creases. Therefore, the global component is disassortative.
Indeed, the largest hubs (k> 100) connect with low-degree
nodes (k < 20). The weighted network curve exhibits a sim-
ilar evolution. However, K¥ (k) > K (k) for most of degree
node k. Therefore, even though the hubs connect with small-
degree nodes, they accumulate more flights.

6.3. Strength Distribution

6.3.1. Large Local Components. Figure 7 represents the
strength distributions of the large local components. We

Complexity

perform a goodness-of-fit evaluation with the Kolmogor-
ov-Smirnov test (KS) using the power law, truncated power
law, log-normal, and stretched exponential distributions.
Results reported in Table 6 reveal that the log-normal dis-
tribution better fits the large local components.

Moreover, they are heavy-tailed, like the degree distri-
bution of the unweighted large local components of the
world air transportation network. One can expect this result.
Indeed, the higher the node degree, the higher its weight.
Figure 8 shows this behavior. One can see the relation
between the strength and the degree for each large local
component. Indeed, the average strength and the degree are
linked by the relation (s(k) =kP). Even though for all the
large local components, f3 ranges between 2.1 and 2.3, this
organization is similar to results reported in [20] where
p=143.

One can differentiate three types of large local compo-
nents if we focus on the exponent of the strength versus
degree curve (f8). The Europe-Russia-Central Asia compo-
nent forms the first category. It includes several hubs with
almost the same traffic. Indeed, the traffic increases slowly as
a function of degree. The second category consists of the
North-Central America-Caribbean and the East-Southeast
Asia-Oceania components. These components also contain
several hubs. However, the traffic concentrates in a few hubs.
The Africa-Middle East-Southern Asia and the South
America components are in the last category. There are fewer
hubs and less traffic compared to the other types. The
strength as a function of degree increases faster. Conse-
quently, few hubs accumulate most of the traffic.

6.3.2. Large Global Component. Figures 7 and 8 show the
strength distribution and the strength as a function of k of
the large global component. Like the large local components,
the log-normal law better approximates its strength distri-
bution according to the KS test. One can also see that the
strength distribution is heavy-tailed. In addition, the dis-
tribution parameters are similar to those of the East-
Southeast Asia-Oceania component. As found with the
degree-degree correlation, the degree’s strength shows that
the higher the node degree is, the more traffic it accumulates.
Airports with fewer connections have at least more than 100
flights. It is not the case in the large local components. The f8
exponent is comparable to those of North and Central
America-Caribbean and the East-Southeast Asia-Oceania
components.

7. Topological Properties of the World
Air Transportation

This section investigates the topological properties of the
world air transportation network. We also perform a com-
parative analysis with the large components.

7.1. Clustering Coefficient. Figure 9(a) presents the average
clustering coefficient as a function of degree k for the
weighted and unweighted world air transportation network.
Similar to the large components, the unweighted clustering
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FIGURE 6: Average degree-degree correlation versus degree of the large components. The blue dots represent the average degree-degree
correlation for the unweighted network. The red dots represent the average degree-degree correlation for the weighted network. The
weighted degree-degree correlation is more significant than the unweighted degree-degree correlation. A high fraction of traffic is
concentrated between major hubs in the local components. This concentration of traffic at these hubs is essential for optimizing the overall

efficiency and connectivity of the air transportation network.

coefficient decreases monotonically as the degree increases.
The function k™ (with y = 0.27) gives a good approximation
of their relation. The exponent value estimated is identical to
the Europe-Russia-Central Asia component. The weighted
average clustering is very low and almost independent of the
degree. As it is always below the unweighted average clus-
tering coefficient, one can conclude that edges with low
degrees tend to constitute the triplets.

7.2. Degree-Degree Correlation. Figure 9(b) illustrates the
evolution of the degree-degree correlation as a function of
degree k for the weighted world transportation network. For
both weighted and unweighted networks, one can see that
the distribution of the points is not monotone. Thus, one
cannot conclude about the degree-degree correlation of
nodes. This result differs from previous results showing an
assortative behavior for the weighted world air trans-
portation network [23]. The Africa-Middle East-Southern
Asia component is the only component with similar be-
havior. Indeed, all the others exhibit disassortative behavior.

7.3. Strength Distribution. Like the components, the log-
normal distribution best fits the strength distribution rep-
resented in Figure 10. In addition, the strength as a function
of degree exponent (s(k) = kP with B =2.177)is in the range of
the local components.

8. Centrality Analysis

Centrality analysis investigates the most influential nodes in
a network. There are multiple definitions of centrality that
exploit either local or global characteristics of the networks
[33, 34]. Here, we perform a comparative analysis of the
strength (number of flights in an airport) and degree
(number of routes in an airport) centralities of the various
components. This analysis is in line with recent works
considering the community structure to define new cen-
trality measures [35].

8.1. Top Five Strength Analysis

8.1.1. Regional Analysis. Table 7 reports the top five airports
in descending order of the number of flights with airports in
their local component (internal strength centrality).

The top five airports in the North and Central America-
Caribbean component are in the United States. They are in
densely populated states such as Georgia, Illinois, Texas,
California, and Washington D.C. Hartsfield ] Atlanta Air-
port captures the higher number of flights. It is also the most
connected. It is one of the densest in terms of passengers.
Located in the second most populous city in the
United States, the Los Angeles Airport is the second busiest
in terms of flights, although it has a low ranking in terms of
the number of routes. Chicago O’Hare Airport ranks third in
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have heavy-tailed characteristics.

TaBLE 6: KS test for the strength distribution.

Power law Truncated power law Log-normal Stretched exponential
North and Central America-Caribbean 0.31 0.136 0.044 0.06
Europe-Russia-Central Asia 0.31 0.27 0.041 0.06
East and Southeast Asia 0.32 0.15 0.032 0.05
Africa-Middle East-Southern Asia 0.32 0.15 0.045 0.065
South America 0.33 0.15 0.043 0.18

Distributions under test are power law, truncated power law, log-normal, and stretched exponential. The smallest value (bold) corresponds to the best fit.

the number of flights and destinations. Dallas Fort Worth
Airport, the second most connected airport, ranks fourth
according to the number of flights. All the airports men-
tioned above have more than 100 connections and 100000
flights within this component.

This is not the case for the fifth important airport, the
Ronald Reagan Washington Airport. It is a national airport
in the capital city of the United States. It is a hub for
American Airlines and receives several million passengers.
Altogether, these airports handle almost 15% of the regional
flights. London Heathrow ranks ninth. It operates around

74000 flights. Denver and Houston airports which are in the
top five hubs in terms of connections rank, respectively,
eleventh and sixteenth [8] when considering the number of
flights.

In the Europe-Russia-Central Asia component, four out
of five top airports are in Europe and one in the
United States. Dublin Airport in Ireland is the first with
more than 4500 flights. It is the central hub of the important
low-cost carrier, Aer Lingus Airlines. Very connected, the
Barcelona Airport is the second with numerous flights.
Indeed, it is a tourist city receiving several million passengers
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per year. The largest hub, Charles de Gaulle Airport in the
capital city of France, ranks third with considerable traffic.
Unexpectedly, John F Kennedy Airport in the United States

ranks fourth with 40 links within this component. This
airport has more flights to Europe than several local airports.
Indeed, it is the main gate between the United States and
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Europe. Even though it has a higher number of links in this
component, Amsterdam Schiphol Airport ranks fifth. It is
the principal airport of the Netherlands. The Munich Air-
port and the London Stansted Airport, which are in the five
highest hubs in terms of routes [8], rank, respectively, sixth
and sixty-fifth in terms of flights. The Frankfurt Airport, in
the same group as the two mentioned above, is now in
Africa-Middle East-Southern Asia. The most vital airport in
Russia, the Pulkovo Airport, is the fourteenth. The Dubai
Airport, which belongs to this component, ranks twenty-
fifth, although it is the biggest airport in the Middle East.

In the East and Southeast Asia-Oceania component,
three out of five most busy airports are in China. The
others are in Singapore and Hong Kong. The top airport is
Beijing Capital Airport, China’s capital city. It is the only
one to have more than 40000 flights. Singapore Changi
Airport ranks second, even if it is not one of the five most
connected airports in this component. It is the primary
hub of Singapore Airlines. The third airport is the
Shanghai Pudong Airport in Shanghai, a populated city in
China. Guangzhou Baiyun Airport is another central hub
in China, ranking fourth. Indeed, this airport has the
second-largest number of connections and carries mil-
lions of passengers. The Hong Kong Airport, with less
than 30000 flights, ranks fifth. Chengdu Shuangliu Airport
and Taiwan Taoyuan Airport, in the top five destinations,
rank, respectively, eleventh and ninth [8]. The Sydney K
Smith Airport, the most significant Oceania airport, ranks
eighth.

The Indian airports dominate the Africa-Middle East-
Southern Asia component. Indeed, they are in the top
three busiest airports. The two others are in Saudi Arabia
and Germany. With its numerous links, the Indira
Gandhi Airport handles the highest traffic with more
than 20000 flights. The second airport with almost 17000
flights is the Chhatrapati Shivaji Airport, located in
Bombay, a metropolis of India. One of the primary
airports in India, the Kempegowda Airport serving
Bangalore, ranks third. It is a hub of Air Asia. The most
connected airport, King Abdulaziz, ranks fourth. The
Frankfurt am Main Airport is fifth with 30 internal
connections and more than 11000 flights in this com-
ponent. The most connected airport in the region, the
Dubai Airport, is in the Europe-Russia-Central Asia
component, and the fifth in terms of destinations, the
Addis Ababa Bole Airport, ranks nineteenth in terms of
flights.

In the South America component, among the top five,
four airports are in Brazil and one in Colombia. They
have less than 8000 flights. Tancredo Neves Airport is the
first. Situated in Belo Horizonte metropolitan area, it is
a hub of Azul Brazilian Airlines. It does not have a high
number of connections, but its traffic is very dense. The
second, Guarulhos G A F Montoro Airport, is the most
crucial airport in Brazil. It serves the largest economic
and tourist city, Sdo Paulo. El Dorado Airport, located in
the capital of Colombia, ranks third. Rio G-T Jobim
Airport in Rio de Janeiro, one of the most populated
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cities in Brazil, is fourth. It is less connected among the
top five. The fifth airport, the Presidente ] Kubitschek
Airport, is located in the capital of Brazil.

8.1.2. Inter-Regional Analysis. Table 8 lists the top five
airports participating in the inter-regional traffic in each
large local component. These airports also belong to the large
global component.

Four of the five most essential airports for inter-
regional traffic in the North and Central American-
Caribbean region are in the USA. The other one is in
Canada. The first two airports in this ranking are the John
F Kennedy Airport and the Newark Liberty Airport.
With more connections (120), John F Kennedy airport’s
(nearly 100000) flight flow is much denser than Newark
Liberty airport’s flight flow (39 flights and almost 70000
flights). These airports are located in New York state.
Indeed, this state, located in the Northeastern
United States, is one of the most important ones, with the
largest number of residents. Moreover, it is near other
regions and includes numerous international institutions
and multinational corporations. The Chicago O’Hare
Airport and the Los Angeles Airport rank third and
fourth. They are in other populated cities, Chicago and
Los Angeles, in the United States. These two airports have
comparable degrees and traffic. In Canada, the busiest
airport, Lester B. Pearson Airport, ranks fifth. It is
a gateway to this country and the USA. The top three in
this region are in the top 10 of the large global
component.

The Frankfurt am Main Airport dominates the inter-
regional flow of flights in the Europe-Russia-Central Asia
region. Being the most important airport in Germany, it
has around 100000 flights with 211 connections. The
Charles de Gaulle Airport ranks first with almost 70000
flights. Located in the capital of France, it is the busiest
airport in this country. Very connected, the London
Heathrow Airport is a third of the list. It serves several
flights to different regions of the world. The busiest
airport in the Netherlands, the Amsterdam Schiphol
Airport ranks fourth. The Munich Airport is the fifth
airport with the largest inter-regional traffic. It is the
second busiest airport in Germany. All these airports
mentioned above are in the top 10 of the global com-
ponent. One can say that the European airport leads the
inter-regional flights.

The top five busiest inter-regional airports in the East
and Southeast Asia-Oceania region do not include any
airport in Oceania. Indeed, the Narita Airport in Japan’s
capital city is the busiest inter-regional airport with about
40000 flights. The Beijing Airport ranks second. It is the most
connected, with traffic comparable to the Narita Airport. The
Suvarnabhumi Airport, the most critical airport in Thailand,
is the third, with almost 30000 flights. The Incheon Airport,
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the most significant hub in South Korea, is the fourth. Its
traffic is around 30000. The fifth airport with the largest
international traffic is the Hong Kong airport, with almost
26000 flights. Only Narita and Beijing airports figure in the
top 10 airports in the large global component.

While the Indian airports dominate the regional traffic,
the busiest inter-regional airports of the Africa-Middle East-
Southern Asia region are scattered in the Middle East. The
Dubai Airport is by far the most dynamic in this region. Its
position and big area promote it. Located in the capital of
Qatar, the Hamad airport ranks third. The second-largest
airport in the United Arab Emirates ranks fourth. Cairo
Airport in Egypt is fifth in this ranking. It has a comparable
number of flights to the third and fourth airports (between
12000 and 14000). The first inter-regional airport in this
region is not in the top 10 of the large global component. It
ranks nineteenth.

The inter-regional airports handling the highest traffic
in the South America region are in different countries. The
Guarulhos Airport in Brazil is the busiest. E1 Dorado
Airport in Colombia follows. These two airports are also
regional hubs. The Ministro Pistarini Airport, located in
the capital of Argentina, ranks third. The regional hub and
the second most important in Brazil, the Rio G-T Jobim
Airport, is the fourth inter-regional airport in this area.
No airport in this component is in the top 20 of the large
global component. Indeed, the Guarulhos Airport ranks
twenty-fourth.

8.2. Comparison with the World Transportation Network.
Table 9 lists the 25 busiest airports in the world regarding
the number of flights. It also includes their local and global
strength rank and their degree rank. It shows that the
North and Central America-Caribbean region controls
a big part of the world’s traffic. Indeed, 19 are in this area.
Five are in the Europe-Russia-Central Asia region, and one
is in the East and Southeast Asia-Oceania region. If we
compare the airports’ strengths with their degree, one
detects that European airports usually deserve more
destinations worldwide while North American airports
have more flights.

Although 19 airports in the North and Central America-
Caribbean area are in the top 25 worldwide airports for their
traffic, only six are in the top 25 inter-regional airports. In
contrast, they are all in the top 25 regional airports. These
results demonstrate that the North and Central America-
Caribbean region focuses more on regional traffic. The
airports of New York (John F Kennedy and Newark airports)
rank, respectively, 3 and 6 for inter-regional traffic. There-
fore, New York City is the US gateway. Los Angeles is the
busiest airport in the world, but the traffic is well distributed
between local and global destinations. Chicago O’Hare and
Hartsfield ] Atlanta are in the top 5 airports in the world, but
it is mainly due to their regional position. Note that the rank
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of the regional airports in the world air transportation
network can be misleading because they are not the most
active in inter-regional traffic.

London Heathrow Airport ranks third worldwide. It
is mainly due to its position in the inter-regional traffic.
In contrast, Charles de Gaulle Airport, Frankfurt am
Main Airport, Amsterdam Schiphol Airport, and Munich
Airport rank 6, 7, 12, and 21 in the top 25 airports of the
world. They are all in the top 25 regional and inter-
regional airports. However, they generally exert
a stronger influence at the regional level. Note that
London Heathrow belongs to the American-Caribbean
component. Its traffic is very dense compared with the
airport in this component. One can make a similar re-
mark about the Frankfurt am Main Airport, which be-
longs to the Africa-Middle East-Southern Asia
component.

The Beijing Airport is the only one from the East and
Southeast Asia region in the top 25 crucial airports. It is the
eighteenth worldwide according to the number of flights. In
addition, it is the first regional airport and the most con-
nected to the world.

Dubai Airport is the forty-fifth in the world, the first
from Africa-Middle East-Southern Asia, even though it
deserves many routes. Unexpectedly, it is the twenty-fifth
influential regional airport of the Europe-Russia-Central
Asia component and the nineteenth inter-regional airport.
The most influential airport in South America, the
Guarulhos-Governador André F M Airport in Sdo Paulo,
Brazil, is the seventy-fifth airport in the world in terms of
traffic. In comparison, it is the first in the South America
component and the twenty-fourth important inter-regional
airport.

To summarize, North America leads the traffic in the
world air transportation network. The component
structure shows that most of this traffic is regional. In-
deed, the large global component, which captures the
inter-regional flights, exhibits numerous airports from
different world areas essential to the inter-regional
traffic. In addition, the large local components display
the influential regional airports hidden in the world air
network.

8.3. RBO Analysis. The ranked-biased overlap (RBO) [36]
quantifies the similarity of two ranking lists. A parameter
enables the prioritization of higher ranks over lower ones
and the extension of the evaluation’s depth. Its value
ranges between 0 and 1. The higher its value, the more
identical the lists. We compare strength with degree
centrality of the airports of the large components [8]. We
tune the RBO to give equal importance to all ranks.
Figure 11 shows the evolution of the RBO of the top-
ranked airports for the large components and the world
air transportation network. The curves cover the range
from top 5 to top 45 sampled with a step of 5.

One can distinguish two types of curves. In the first
category, the RBO increases monotonically as the
number of airports increases. It includes the
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Europe-Russia-Central  Asia, Africa-Middle East-
Southern Asia, East-Southeast Asia-Oceania, and
South America components. Flights in these components
do not concentrate on the main hubs. Indeed, the top 5
degree and strength airports are different. In the second
category, the RBO decreases to a minimum, and then it
increases monotonically. North and Central America-
Caribbean, East-Southeast Asia-Oceania, and the global
component belong to this category. Their top 5 airports’
ranking according to degree or strength is highly similar.
There are more differences between the top 10 and 15
airports, so the RBO decreases. Beyond this value, the
strength and degree rankings become more homoge-
neous, so the RBO increases. Looking at the top 45
airports, one can rank the components according to the
similarity of strength and degree rankings. East-
Southeast Asia-Oceania is the component where traffic
(strength) and hub size (degree) are more similar. The
Europe-Russia-Central Asia component exhibits the
most different ranking. So, in the former, traffic is
generated by hubs, while in the latter, airports with few
connections can handle a high share of traffic.

The RBO between top strength and degree airports
increases monotonically in the world air transportation
network. Differences are more pronounced compared to
the components. Indeed, the top 5 airports based on
degree are concentrated in Europe, while the top 5 based
on strength are in the United States. This difference il-
lustrates the different focus in the two regions. Indeed, in
the USA, airlines focus on regional traffic, while in
Europe, serving many international destinations is a must
for companies.

9. S-Core Analysis

The s-core [37, 38] analysis is the generalization of the k-
core [39] analysis to weighted graphs. The k-core [40] of
a graph is the subgraph obtained by recursively removing
all the vertices of degree smaller than k until the degree of
all remaining vertices is larger than or equal to k. By
extension, the s-core of a graph is a subnetwork in which
a node has at least a strength s. One can extract the
maximum s-core by removing nodes iteratively from the
network. Indeed, the s,,i,(si)-core, where each node has at
least a strength 1, is the whole network. One forms the
next level, by removing all the nodes with the minimum
strength sinesis1)- The remaining nodes form syin(siv1)-
core, and so on until one reaches the core number max
sy-core for which it is impossible to obtain the syin(sn+1)-
core.

This section reports the max s-core analysis of the large
weighted components and a comparative investigation with
their corresponding max k-core. Additionally, it presents
a similar analysis of the world transportation network.

9.1. Regional Analysis. Figure 12 reports the maximum s-
core values of the five weighted large local components. It
also shows the airports it includes.
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FiGure 11: The RBO of the large components (a) and the world air transportation network (b). The top 50 hubs of the unweighted (degree)
and weighted (strength) are compared by step of 5. Flights in the Europe-Russia Central Asia, Africa-Middle East-Southern Asia, East-
Southeast Asia-Oceania, and South America components do not concentrate on the main hubs. In the other large components, the hubs
accumulate the traffic.
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F1GURE 12: The core of the weighted large local components. S is the maximum s-core value, and K is the maximum k-core value. Blue points
represent the airports belonging to the maximum s-core and the maximum k-core, the red points are the airports exclusively in the
maximum s-core, and the yellow points are the airports belonging only to the maximum k-core. The maximum s-core of the North and
Central America-Caribbean component contains 26 airports. The maximum s-core of Europe-Russia-Central Asia contains 27 airports. The
maximum s-core of East and Southeast Asia-Oceania includes 18 airports. The maximum s-core of Africa-Middle East-Southern Asia
contains 9 airports. The maximum s-core of South America contains 10 airports.



Complexity

The max s-core of the North and Central America-
Caribbean component contains 26 airports. Fort Lau-
derdale Airport, with 19801 flights, has the lowest traffic.
Table 10 lists these airports. Only three are outside the
United States: (1) Montreal/P E Trudeau Airport in Mon-
treal, the busiest airport in Canada; (2) Cancun Airport, the
second busiest in Mexico; and (3) London Heathrow Airport
in the United Kingdom. Their traffic is so high with the US
that they can be considered part of the country. Most of the
airports are on the coast of the United States. None deserves
New York. Indeed, its airports’ main traffic is with other
world regions. Four airports (Raleigh-Durham, Pittsburgh,
Windsor Locks, and Cancun) in the max s-core are not
among the top 26 airports in terms of traffic. These airports
primarily serve other airports in the max s-core.

The max s-core contains almost half as many airports as
the max k-core. However, they share 22 airports (84.6% of
the max s-core airports). The traffic and destinations of these
airports are therefore closely related. London Heathrow in
the United Kingdom, Portland and Windsor Locks in the
United States, and Montreal/Pierre Elliott Trudeau have
more traffic than destinations with the other airports of the
max s-core.

The max s-core of the Europe-Russia-Central Asia
component has 27 airports, listed in Table 11. Covering
several countries in Europe, they are generally in the capital
cities. Pulkovo Airport is the only one in the Russian
subregion. Ben Gurion Airport has the lowest traffic with
10747 flights. John F Kennedy in the USA has the highest
number of flights. Indeed, it is the main connection between
Europe and the USA. Charles de Gaulle in France, Munich in
Germany, Amsterdam in the Netherlands, and Zurich
Airport in Switzerland are not in the max s-core. Indeed, the
traffic of these airports is more directed towards inter-
regional destinations. Five airports in this max s-core are
not in the 27 top strength airports. These airports are Venice,
Marco Polo in Italy, Eleftherios Venizelos in Greece,
Budapest Ferenc Liszt in Hungary, Ben Gurion in Israel, and
Helsinki Vantaa Airport in Finland.

The max s-core contains three times fewer airports than
the max k-core. All airports in the max s-core are in the max
k-core. John F Kennedy Airport in the USA has a lot of traffic
and connections to airports in Europe. Otherwise, no
country dominates the max s-core, while the max k-core
airports are mainly in Germany, the United Kingdom,
France, Italy, and Spain.

Table 12 contains the 18 airports of the max s-core of the
East and Southeast Asia-Oceania component. These airports
are in different countries, mainly in capitals and megacities.
Only four are in Oceania. Kansai Airport in Japan, with its
7687 flights, has the lowest traffic. Note that the airport of
Beijing, with the most significant traffic of this component, is
the third airport with the weakest traffic in this max s-core.
Indeed, it has many flights with low-strength airports. There
are five airports (Brisbane Airport in Australia, Auckland
Airport in New Zealand, Tan Son Nhat Airport in Vietnam,
Ngurah Rai Airport in Indonesia, and Kansai Airport in
Japan) in the max s-core that are absent from the 18 top
strength airports. The max s-core contains half as many
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airports as the k-core. Nevertheless, China dominates the
max k-core, and it is not the case for the max s-core, which
includes airports from Oceania.

Table 13 lists the nine airports in max s-core of the
Africa-Middle East-Southern Asia component. They are in
three countries (5 in India, 2 in Saudi Arabia, and 1 in
Germany). Indeed, there is a lot of traffic between Saudi
Arabia and India because these many Indians work in Saudi
Arabia. With 4609 flights, Rajiv Gandhi International Air-
port is the airport with the lowest traffic in the max s-core.
These airports form a complete graph. They concentrate
a large part of the traffic of the component. Indeed, except
for Rajiv Gandhi Airport, they are all in the top 9 strength
airports. The max k-core is twice larger, and it includes the
airports of the max s-core. Thus, Frankfurt Airport is very
connected in terms of traffic and destination with the hubs of
this component. Nevertheless, India dominates the max s-
core and the max k-core.

Table 14 gives the ten airports in the max s-core of the
South America component. They are all in Brazil and
mainly on the east coast. Rio Galedo Tom Jobim Airport
has the fewest number of flights. Only two airports, Santa
Genoveva Airport in Goiania and the Deputado L E
Magalhées Airport, are not present in the top 10 strength
airports. All the airports in the max s-core are in the max
k-core, which contains almost twice as many airports.
Furthermore, Brazil dominates the max s-core as it does
with the max k-core.

To summarize, we observe two typical behaviors for the
max s-core. In the first one, the airports forming the max s-
core are mainly in a single country. Indeed, the Uni-
ted States, India, and Brazil dominate the max s-core of their
component. In the second case, the airports in the max s-
core are more evenly distributed in the component. It is the
case for the East and Southeast Asia-Oceania and Europe-
Russia-Central Asia components.

The max s-core always contains far fewer airports than
the max k-core, typically one-half to one-third. In addition,
most airports in the max s-core are in the max k-core. Thus,
airports with high traffic tend to have also many
connections.

9.2. Inter-Regional Analysis. Figure 13(a) shows the max s-
core of the large global component, and Table 15 lists its 22
airports. These airports are in North America, Europe, and
East and Southeast Asia. They are located in capital cities and
are the main airports of their country. Suvarnabhumi Air-
port in Thailand has the lowest traffic with 13196 flights
among the max s-core airports. Three US airports in the max
s-core are not in the top 22 strength airports (General
Edward Lawrence Logan Airport, Dallas Fort Worth Air-
port, and Seattle Tacoma Airport). Thus, the airports that
concentrate the majority of inter-regional traffic share many
flights. The max s-core and the max k-core have comparable
sizes. However, the max k-core includes more countries.
Three airports (General E L Logan Airport, Dallas Fort
Worth Airport, and Seattle Tacoma Airport) are in the max
s-core and not in the max k-core. These airports have many
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TABLE 10: 26 max s-core airports of the North and Central America-Caribbean component.
Airport City Country Core strength Local rank  National rank
Seattle Tacoma Seattle United States 50753 6 7
London Heathrow London United Kingdom 50191 9 1
Ronald Reagan Washington Washington United States 45250 5 10
Los Angeles Los Angeles United States 45250 2 1
Montreal/Pierre E Trudeau Montreal Canada 41570 18 1
San Francisco San Francisco United States 37141 10 10
San Diego San Diego United States 37061 17 22
McCarran Las Vegas United States 35950 8 11
Phoenix Sky Harbor Phoenix United States 35437 12 16
Charlotte Douglas Charlotte United States 33968 7 9
Philadelphia Philadelphia United States 31443 15 14
Orlando Orlando United States 25965 21 21
Hartsfield J Atlanta Atlanta United States 25885 1 1
Portland Portland United States 25872 24 24
Denver Denver United States 25779 11 15
General E L Logan Boston United States 24331 19 13
Dallas Fort Worth Dallas-Fort Worth United States 23317 4 4
Salt Lake City Salt Lake City United States 23296 22 24
Chicago O’Hare Chicago United States 22433 3 2
Minneapolis-St P/Wold-Chamberlain Minneapolis United States 21173 13 17
Fort Lauderdale Hollywood Fort Lauderdale United States 19801 26 26
Raleigh-Durham Raleigh-Durham United States 24106 34 32
Miami Miami United States 22423 28 19
Bradley Windsor Locks United States 20296 40 38
Pittsburgh Pittsburgh United States 20125 36 33
Cancun Cancun Mexico 20119 27 2

Airports not in the top 26 regional airports with the highest strength airports are in bold. The core degree of a node is its number of flights in the maximum
s-core. Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports are ranked from largest to smallest

strength.
TaBLE 11: 27 max s-core airports of the Europe-Russia-Central Asia component.

Airport City Country Core strength Local rank National rank
John F Kennedy New York United States 23129 4 21
Dublin Dublin Ireland 20467 1 1
Manchester Manchester United Kingdom 19058 8 2
Amsterdam Schiphol Amsterdam Netherlands 62 5 1
Dubai Dubai United Arab Emirates 16916 26 1
Geneva Cointrin Geneva Switzerland 16810 16 2
Adolfo S Madrid-Barajas Madrid Spain 16789 7 1
Humberto Delgado Airport Lisbon Portugal 16308 23 1
Nice-Cote d’Azur Nice France 16063 21 3
Oslo Lufthavn Oslo Norway 16026 27 2
Barcelona Barcelona Spain 15153 2 2
Stockholm-Arlanda Stockholm Sweden 15002 17 1
Hamburg Hamburg Germany 14642 18 5
Edinburgh Edinburgh United Kingdom 14029 22 3
Ataturk Istanbul Turkey 13352 10 1
Vienna Vienna Austria 12872 20 1
Leonardo da V-F Rome Italy 11601 11 1
Malpensa Milano Italy 11457 25 2
Copenhagen Kastrup Copenhagen Denmark 11350 19 1
Pulkovo St. Petersburg Russia 11334 15 1
Berlin-Tegel Berlin Germany 11312 9 4
Vaclav Havel Prague Prague Czech Republic 11219 24 1
Duesseldorf Duesseldorf Germany 10881 12 3
Eleftherios Venizelos Athens Greece 13591 28 1
Venice Marco Polo Venice Italy 15029 29 3
Helsinki Vantaa Helsinki Finland 15523 32 1
Ben Gurion Tel Aviv Israel 10747 35 1
Budapest Ferenc Liszt Budapest Hungary 10840 37 1

Airports not in the top 27 regional airports with highest strength are in bold. The core strength of a node is its number of flights in the maximum s-core. Local
rank is the rank in the large local component. National rank is the airport rank in its country. Airports are ranked from largest to smallest strength.
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Airport City Country Core strength Local rank National rank
Sydney K Smith Sydney Australia 14412 8 1
Shanghai Pudong Shanghai China 12981 3 2
Melbourne Melbourne Australia 12384 14 2
Hong Kong Hong Kong Hong Kong 12202 5 1
Soekarno-Hatta Jakarta Indonesia 11662 15 1
Singapore Changi Singapore Singapore 10839 2 1
Taiwan Taoyuan Taipei Taiwan 9474 9 1
Suvarnabhumi Bangkok Thailand 9436 7 1
Incheon Seoul South Korea 9410 6 1
Guangzhou Baiyun Guangzhou China 8962 4 3
Suvarnabhumi Kuala Lumpur Malaysia 8467 10 1
Beijing Capital Beijing China 7837 1 1
Brisbane Brisbane Australia 9241 20 3
Tan Son Nhat Ho Chi Minh City Vietnam 7959 21 1
Narita Tokyo Japan 8313 22 1
Auckland Auckland Australia 8338 26 1
Ngurah Rai (Bali) Denpasar Indonesia 7826 36 2
Kansai Osaka Japan 7687 25 3

Airports not in the top 18 regional airports with the highest strength are in bold. Core strength of a node is its number of flights in the maximum s-core. Local
rank is the airport rank in the large local component. National rank is the airport rank in its country. Airports are ranked from largest to smallest strength.

TABLE 13: 9 max s-core airports of the Africa-Middle East-Southern Asia component.

Airport City Country Core strength Local rank National rank
Indira Gandhi Delhi India 8699 1 1
Chhatrapati Shivaji Mumbai India 7414 2 2
Kempegowda Bangalore India 6455 3 3
Frankfurt am Main Frankfurt Germany 5907 6 1
King Abdulaziz Jeddah Saudi Arabia 5539 5 1
Chennai Madras India 4882 8 4
King Fahd Dammam Saudi Arabia 4757 4 2
King Khaled Riyadh Saudi Arabia 4658 7 1
Rajiv Gandhi Hyderabad India 4609 10 5

Airports not in the top 9 regional airports with the highest strength are in bold. The core strength of a node is its number of flights in the maximum s-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports are ranked from largest to smallest strength.

TABLE 14: 10 max s-core airports of the South America component.

Airport City Country Core strength Local rank National rank
Tancredo Neves Belo Horizonte Brazil 4305 2 3
Santos Dumont Rio de Janeiro Brazil 3564 6 7
Afonso Pena Curitiba Brazil 3500 7 8
Congonhas Sao Paulo Brazil 3030 8 9
Guarulhos-Governador A F Montoro Sao Paulo Brazil 2887 1 1
Deputado Luis E Magalhaes Salvador Brazil 2504 10 8
Presidente ] Kubitschek Brasilia Brazil 1927 4 4
Rio Galedo-Tom Jobim Rio de Janeiro Brazil 1914 3 2
Salgado Filho Porto Alegre Brazil 2962 11 10
Santa Genoveva Goiania Brazil 2095 13 12

Airports not in the top 10 regional airports with the highest strength are in bold. The core strength of a node is its number of flights in the maximum s-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports are ranked from largest to smallest strength.
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FIGURE 13: (a) The 33 airports in the maximum s-core of the weighted world air transportation network. (b) The 22 airports in the maximum
s-core of the weighted large global component. § is the maximum s-core value, and K is the maximum k-core value. Blue points represent the
airports belonging to the maximum s-core and the maximum k-core, the red points are the airports exclusively in the maximum s-core, and
the yellow points are the airports belonging only to the maximum k-core.

TaBLE 15: 22 max s-core airports of the global component.

Airport City Country Core strength Global rank
Frankfurt am Main Frankfurt Germany 27927 1
Amsterdam Schiphol Amsterdam Netherlands 22890 4
San Francisco San Francisco United States 22449 15
Munich Munich Germany 22103 7
Chicago O’Hare Chicago United States 21893 10
Los Angeles Los Angeles United States 21427 11
Charles de Gaulle Paris France 20908 2
Newark Liberty Newark United States 19757 6
Zurich Zurich Switzerland 19578 13
John F Kennedy New York United States 18260 3
Narita Tokyo Japan 18844 8
Hong Kong Hong Kong Hong Kong 17970 20
Beijing Capital Beijing China 17445 9
Leonardo da Vinci-Fiumicino Rome Ttaly 15071 14
Shanghai Pudong Shanghai China 14494 21
Incheon Seoul South Korea 14068 17
Adolfo S Madrid-Barajas Madrid Spain 13680 18
Lester B. Pearson Toronto Canada 13532 12
Suvarnabhumi Bangkok Thailand 13196 16
General E L Logan Boston United States 17800 25
Dallas Fort Worth Dallas-Fort Worth United States 13588 30
Seattle Tacoma Seattle United States 13522 35

Airports not in the top 22 inter-regional airports with the highest strength are in bold. The core strength of a node is its number of links in the maximum
s-core. Global rank is the rank in the largest global component. Airports are ranked from largest to smallest strength.

flights and a moderate number of destinations compared
with the other airports in the max s-core.

9.3. Comparison with the World Air Transportation Network.
Figure 13(b) represents the max s-core of the global air
transportation network. With 27 airports, North America
dominates. There are also five airports in Europe and one in
Japan. There are 11 airports listed in Table 16 in the max s-
core of the North and Central America-Caribbean region.
Minneapolis-St Paul Airport, with its 24088 flights, has the
lowest traffic. Seven airports of the max s-core of the world
air network are not in the top 33 strength airports. The max
s-core global air network has half as many airports as the
max k-core. Moreover, the airports in the max s-core are
mostly absent in the max k-core. Indeed, the max k-core is
more concentrated in Europe. These results confirm the
orientation for high traffic in the USA and high number of

destinations in Europe. Overall, with their high traffic, North
American airports lead the weighted world air trans-
portation network, while European airports dominate the
unweighted world air transportation network with their high
number of destinations. The component structure eliminates
this disparity and reveals other important airports
worldwide.

10. Discussion and Conclusion

This paper investigates the relationship between the
weighted and unweighted worldwide air transport network
and its impact on its component structure. Table 17 sum-
marizes the main findings. Overall, the weighted network
contains fewer components. In both cases, the large local
components cover distinct geographical areas. However,
their geographical repartition differs slightly. Indeed, the
weighted network has five large local components, while the
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TaBLE 16: 11 airports of the weighted world air transportation network which are not in the max s-core of the North and Central

America-Caribbean component.

Airport City Country Core strength Worldwide rank Local rank Global rank
Frankfurt am Main Frankfurt Germany 43819 7 5 1
Charles de Gaulle Paris France 38975 6 3 2
Newark Liberty Newark United States 33703 9 14 6
George Bush Houston Houston United States 29454 20 16 33
Detroit M Wayne County Houston United States 28779 26 20 46
Amsterdam Schiphol Amsterdam Netherlands 27762 12 5 5
Narita Tokyo Japan 25972 38 22 8
Vancouver Vancouver Canada 25092 49 33 31
Licenciado Benito Juarez Mexico City Mexico 25035 52 31 53
John F Kennedy New York United States 24839 8 4 3
Munich Munich Germany 24458 21 6 7

Airports not in the top 33 worldwide airports with the highest strength are in bold. The core Strength of a node is its number of flights in the maximum s-core.

Global rank is the rank in the large local component.

unweighted network contains 7. Three components are quite
similar (North and Central America-Caribbean, Africa-
Middle East-Southern Asia, and South America). The two
other components (Europe-Russia-Central Asia and East-
Southeast Asia-Oceania) group neighbor components of the
unweighted network. Russia-Central Asia is attached to
Europe, while Oceania joins East-Southeast Asia. This is due
to the substantial traffic between these regions linked to their
economic integration. One can observe the same type of
phenomenon more locally. Indeed, some major airports
integrate regions with which they share a high proportion of
their flights. For example, John F Kennedy Airport in the
United States belongs to the Europe-Russia-Central Asia
component, London Heathrow is in the North and Central
America-Caribbean component, and Frankfurt Airport in
Europe is in the Africa-Middle East-South Asia component.

Although the weighted network has more global com-
ponents than the unweighted, there is also a single large
global component in both cases. Although they are of
comparable size (around 20% of the world’s airports), their
content is quite different. Indeed, when components merge,
many airports that were linking them disappear from the
global component. Additionally, new airports emerge when
an airport does not belong to its natural geographical area.
For example, most of the airports linked to John F Kennedy
located outside the Europe-Russia-Central Asia component
integrate the global component.

Analysis of the average weighted clustering coefficient
reveals that it is independent of the degree for the large local
components. Furthermore, their values are always lower
than their unweighted equivalent. Low-traffic airports form
triplets in the components and the global air network. In
contrast, the average unweighted clustering coefficient de-
creases monotonically with the degree. Indeed, low-degree
nodes tend to have a higher clustering coefficient than hubs.
It reflects the lack of adequacy of the hub and spoke con-
figuration for rerouting passengers when necessary. The
Africa-Middle East-Southern Asia and the South America
components have fewer interconnected hubs than the other
local components. Consequently, their configuration is less
hub and spoke. The global component exhibits similar be-
havior. However, the hub and spoke effect is more

pronounced. Indeed, as it contains more hubs, it also has
fewer triplets accentuating the rerouting inefficiency of the
component.

According to the evolution of the average weighted
degree-degree correlation as a function of degree, one can
classify the components into two categories. The first cat-
egory includes the Africa-Middle East-Southern Asia
Component. In that case, the degree of the nodes does not
exert a significant influence. The second category contains
the four other local components and the global component.
The weighted degree-degree correlation tends to decrease in
these components as the degree increases. The high-degree
nodes link more and more with small-strength nodes. In
other words, as the degree increases, these components’ hub
and spoke configuration is more pronounced. Africa-Middle
East-Southern Asia component departs from this behavior
because air transportation is less mature in this region. The
world air transportation network exhibits similar behavior
to the Africa-Middle East-Southern Asia component. The
same observations are also valid for the unweighted network
suggesting that weights are not essential for this property.
Additionally, for all the local components and the global air
network, it appears that K, (i) > K (i). Consequently, air-
ports with high degrees manage a higher number of flights.

The strength of the components follows a log-normal
distribution with heavy-tailed characteristics. The strength
as a function of degree shows that numerous hubs in the
Europe-Russia-Central Asia component manage a compa-
rable number of flights. Some hubs have a lot of traffic in the
North-Central America-Caribbean and East-Southeast Asia-
Oceania components. Compared to the other components,
Africa-Middle East-Southern Asia and South America have
fewer hubs and less traffic. However, these hubs handle
a high fraction of flights. The strength distribution of the
global component and the world air transportation network
is also log-normal. Moreover, their hubs also manage most
of the traffic.

The centrality analysis shows that the top five high-
strength airports are usually in the leading countries of
their region (the USA in North and Central America-
Caribbean, China in East and Southeast Asia-Oceania, In-
dia in Africa-Middle East-Southern Asia, and Brazil in South
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America). It is more homogeneous in the Europe-Russia-
Central Asia component. Furthermore, airports included in
components far from their geographical areas are in the top
five high-strength airports. The top high-degree airports
serve higher number of flights in the North and Central
America-Caribbean and the East and Southeast Asia com-
ponents. It is not the case for the other local components.

The top high-strength inter-regional airports are in
several countries except for the USA, which dominates the
inter-regional traffic in the North and Central America-
Caribbean area. The top five strength inter-regional airports
differ from the leading regional airports. It shows that
airports are more or less specialized in regional or inter-
regional destinations. Furthermore, with a high fraction of
the top inter-regional airports, Europe leads the inter-
regional traffic. In addition, the top high-degree airports
and high-strength airports are similar. Centrality analysis of
the world air transportation network shows that North
American airports dominate the traffic while Europe-Russia-
Central Asia dominates the destinations.

Two categories appear in the max s-core analysis of
the local components. The first includes the Europe-
Russia-Central Asia and the East and Southeast Asia
components, with the maximum s-core covering several
countries. In the second category, a few countries (one to
three) concentrate on the high traffic of the component.
The max s-core of the local components contains far
fewer airports (half or one-third) than the max k-core.
Thus, few airports share numerous flights among the
airports in the local components with several routes. The
maximum s-core of the global component covers several
countries from the North and Central America-
Caribbean, Europe-Russia-Central Asia, and the East
and Southeast Asia-Oceania regions. These three regions
serve the most inter-regional flights. In contrast to the
local components, the maximum s-core and k-core of the
global component have comparable sizes. Consequently,
the inter-regional hubs of these components concentrate
several numbers of flights.

The max s-core of the global air network is mainly lo-
cated in the USA, while the max k-core airports are in
Europe. Then, the most important airports in the s-core and
the k-core are blurred when considering the global air
network instead of the component structure.

This comparative analysis illustrates the essential
contribution of the component structure representation
for uncovering the regional and inter-regional similarities
and differences of the world air transportation network.
Indeed, typical network properties have been designed for
networks with a homogeneous density. Because of their
local density variations, some characteristics can be
blurred, hence the importance of decoupling local from
global analysis. This representation opens multiple re-
search directions. In future work, we plan to exploit the
component structure to gain a better understanding of the
robustness of the air transportation network against
targeted attacks. Indeed, one can design tailored attacks
on the components and inspect their global, regional, or
inter-regional impact.
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