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Presently, users usually register accounts on online social networks (OSNs). Identifying the same user in diferent networks is also
known as interlayer link prediction. Most existing interlayer link prediction studies use embedding methods, which represent nodes in
a common representation space by learning mapping functions. However, these studies often directly model links within the pre-
embedding layer as equal weights, fail to efectively distinguish the strength of edge relationships, and do not fully utilize network
topology information. In this paper, we propose an interlayer link prediction model based on weighted embedding of connected edges
within the network layer, which models the links within the network layer as weighted graphs to better represent the network and then
uses appropriate embedding methods to represent the network in a low-dimensional space. After embedding, vector similarity and
distance similarity are used as comprehensive evaluation scores.Tis paper has conducted a large number of simulation experiments on
actual networks.Te results show that our proposed model has higher prediction accuracy in all aspects than current advanced models
and can achieve the highest accuracy when the training frequency is low, which proves the validity of the proposed model.

1. Introduction

Te ubiquity of the Internet has ushered in a new era of
online social interaction, with platforms such as Twitter,
Facebook, and Instagram becoming integral to our daily
lives. In reality, due to the diferent functions of diferent
OSNs, people tend to join multiple diferent OSNs and
register their own accounts on each network. A user may be
active on diferent OSNs using diferent accounts. Since
diferent OSNs are usually maintained by diferent pro-
viders, we cannot know whether accounts across diferent
OSNs belong to the same person, which means there are
many potential users on diferent social networks.
Matching user accounts across diferent OSNs is also
known as interlayer link prediction[1]. With the enrich-
ment of people’s online lives, there are more and more
users on diferent OSNs, which create more opportunities
for network mining and learning and also bring more

signifcance and economic benefts to the research of in-
terlayer link prediction [2]. Interlayer link prediction can
link the identity of a single user on multiple OSNs, getting
rid of the limitation that analyzing the identity of a single
social media user may not be able to fully understand the
user’s personality and interests. It can fully understand the
user’s interests, enabling service providers to provide ac-
curate and efective services to users. In addition, interlayer
link prediction can also help combat some illegal and
criminal activities [3]. For example, some criminals may
register a large number of diferent accounts on OSNs and
carry out illegal activities such as spreading viruses or
committing fraud on these applications. If there is an ef-
fective method to determine the corresponding relation-
ship between accounts of the same user on diferent OSNs,
we can model their illegal network behavior, lock their
geographical location, and even determine their true
identity, thus efectively cracking down on them.
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With the development of network embedding technology
[4], researchers are considering using network embedding
methods for interlayer link prediction [5–10]. Most of them
frst unify all nodes into a common latent space and then use
prior interlayer links to train the approximate mapping
function after obtaining the latent representation. However,
such a method is difcult to train a mapping function with
perfect performance, because each layer of the latent space is
an independent individual, and they are unknown. Especially,
when the amount of training is small, the performance of this
method will be worse. In addition, existing methods often
consider the connections within the embedded multiplex
network as equal weights or fail to efectively distinguish the
strength of the connection relationship, which ignores the
information within the network layer and fails to fully utilize
the network structure information. However, node pairs in
diferent layers may have diferent relationship strengths. Te
higher the relationship strength between nodes, the closer the
embedding vectors in the latent space.

In this paper, the interlayer link prediction model we
proposed is divided into two stages: embedding and
matching. Unlike other methods that treat connections
within the network as equal weights, in the embedding
phase, our model can well measure the weight of connecting
edges in the network layer by combining the edge be-
tweenness and degree centrality and weight the strength of
connecting edges between diferent node pairs. In this way,
the vector of the latent space will makemore in-depth uses of
the known information of the network, which can improve
the prediction accuracy of interlayer links. Tang et al. [11]
use the frst-order proximity of the line [12] embedding
algorithm to embed the network, while our model uses the
frst-order and second-order proximities of the line [12]
embedding algorithm to embed the network.Tis can obtain
a more efective representation of nodes in a low-
dimensional space, capture network topology information
again, and flter out irrelevant factors. Te frst-order and
second-order proximity degrees trained by the embedding
algorithm are connected to obtain the vector representation
of each layer of the network node in a low-dimensional
space. In the matching phase, since the two networks are
embedded in diferent vector spaces, the approximate
mapping function is trained using the prior interlayer links
so as to learn a stable cross-network mapping and unify the
nodes of the two layers into the common latent space. Fi-
nally, by comparing the vector similarity and distance
similarity of the embedding vectors of unmatched nodes in
the common latent space, we can determine the nodes most
likely to correspond to the current network in the other layer
network, thus predicting the unobserved interlayer links.

In this study, we developed a model for interlayer link
prediction in the multiplex network. Te major contribu-
tions of this paper can be summarized as follows:

(i) We will model each layer of the multiplex network as
a weighted graph using a combination of edge be-
tweenness and degree centrality to obtain a repre-
sentation based solely on the network structure. In
this way, the vector of the latent space will further

utilize the structural information of the network,
which can improve the accuracy of interlayer link
prediction.

(ii) We have innovatively incorporated the second-
order proximity of the line [12] embedding algo-
rithm into the representation of embedding vectors,
which can obtain more efective node representa-
tions in a low-dimensional space, capture network
topology information again, and flter out irrelevant
factors

(iii) To reduce time complexity, we have employed
matrix multiplication to optimize the computation
process of vector consistency and distance consis-
tency for all nonmatching node pairs. Tis means
that by cleverly utilizing matrix operations, we can
more efciently handle the calculation of distance
and vector similarities for all nonmatching node
pairs, thus improving the algorithm’s efciency.

Te rest of this paper is organized as follows. Section 2
summarizes the related works. Section 3 formalizes the
problem of interlayer link prediction and elaborates on the
details of our proposed algorithm. Section 4 carries out the
experimental evaluation, and fnally, Section 5 concludes
the paper.

2. Related Works

As more and more people study network embedding
technology, the technology has become more accurate and
efcient. Liu et al. [13] proposed a representation learning
model aimed at learning alignment network embedding of
multiple networks, explicitly modeling each user’s fol-
lower and followee as input and output contexts. In this
model, both given and potential anchor links can be used
as hard and soft constraints in the unifed learning
framework.Tey further improved their proposed method
by incorporating structural diversity in [14]. Structural
diversity mainly focuses on the infuence of prior
matching nodes from diferent communities. Man et al.
[15] proposed an anchor link prediction model based on
embedding and matching. Tis model adopts a network
embedding method to maintain the main structural laws
of the network while being aware of supervised anchor
chains and then learns stable cross-network mapping for
anchor chain prediction. Zhou et al. [16] proposed
a semisupervised method based on deep reinforcement
learning to study the UIL problem by utilizing the duality
of mappings between any two networks, thereby im-
proving prediction accuracy.

Tere are two methods to solve the problem of in-
terlayer link prediction: (i) based on feature extraction
[17–21] and (ii) based on network structure [14, 22–32]. In
recent years, research has mainly focused on network
structure-based methods. For example, COSNET [22]
proposed an energy-based model that links user identities
by considering local and global consistency, frst
extracting distance-based contour features and neighbor-
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based network features, and then using aggregation al-
gorithms to obtain local consistency. MAH [23] used
hypergraphs to model embedded network features and
proposed an embedding method that mapped user
identity to a low-dimensional space. Distance-based
profle features (such as usernames) were also utilized
in the MAH model to achieve better performance. PCT
[24] aimed to infer potential corresponding connections
that connected multiple shared entities simultaneously
across networks by combining contour and network
features. Te authors in [31] proposed a new link pre-
diction method, namely, weighted common neighbors
(WCNs), which predicts the formation of new links in
multiplex networks based on common neighbors and
various types of centrality measures. Terefore, in this
model, each public neighbor has a diferent impact on the
likelihood of node connectivity. Our model inherits the
ideas of this paper and makes improvements based on it.
Collective random walk (CRW) [25] predicted the for-
mation of social links between users in the target network
and the alignment of anchor links between the target
network and other external social networks, which in-
cluded two stages: (1) collective link prediction of anchor
points and social links; (2) propagate predicted links
through collective random walks in partially aligned
probability networks. Te authors in [32] proposed an
extended version of local random walk based on pure
random walking for solving link prediction in the mul-
tiplex network, referred to as the multiplex local random
walk (MLRW). It explored approaches for leveraging
information mined from interlayer and intralayer in
a multiplex network to defne a biased random walk for
fnding the probability of the appearance of a new link in
one target layer.

Te methods mentioned above mostly focus on opti-
mizing the learning framework, enhancing algorithm ef-
ciency, and using multiple attributes for embedding.
However, it is difcult to train mapping functions with high
accuracy. In addition, before embedding, the connections
within the network are often directly considered equal
weight, or the strength of the connection relationship is not
efectively distinguished, which ignores the information
within the network layer and fails to fully utilize the network
structure information. According to [33, 34], in this paper,
we propose a model that can measure the weight of the
connected edges in the network layer by combining edge
betweenness and degree centrality. By weighting the edge
strength between the diferent node pairs, we can get the
vector of the latent space which will make more in-depth use
of the known information of the network and improve the
prediction accuracy of the interlayer link. After that, the
frst-order proximity and second-order proximity of the line
[12] embedding algorithm are used to embed the network,
obtain the efective representation of nodes in the low-
dimensional space, capture the network topology in-
formation again, and flter out the insignifcant factors. In
conclusion, we propose an interlayer link prediction method
based on edge-weighted embedding for interlayer link
prediction.

3. Preliminaries and Problem Statement

3.1. Defnitions. In general, we use G(V, E) to represent
a layer of the network, where V represents the point set and
E represents the edge set. E refects the connections between
nodes. A two-layer network can form a multiplex network.
In such a scenario, we refer to one network as the source
network Gs(Vs, Es) and the other network as the target
network Gt(Vt, Et). In the model of this section, the paper
overlooks the situation where the same user registers
multiple accounts within a social network, meaning that
individuals within a layer of the network are diferent. Te
relevant concepts involved in the study are as follows.

3.1.1. Intralayer Link and Interlayer Link (Anchor Links).
For a multiplex network consisting of two-layer networks
Gs(Vs, Es) and Gt(Vt, Et), Es and Et are the sets of intralayer
links of the source network and the target network, re-
spectively. If there is an edge set Est ⊆ Vs × Vt, where one
endpoint of an edge in the set belongs to Vs and another
endpoint belongs to Vt, then the edge is called an interlayer
link. Te interlayer links provided in advance are called
a priori interlayer link or a priori interlayer node pair, while
the other interlayer links are called unobserved interlayer
links. Meanwhile, the node pairs in the interlayer link are
called matched nodes, and the other nodes in the network
are called unmatched nodes.

3.1.2. Network Embedding Model. For a layer of network in
a multiplex network, such as Gs(Vs, Es), the network em-
bedding model learns low-dimensional network node rep-
resentations while maintaining the network structure,
representing nodes from diferent layers into latent spaces.
After network embedding, a node vs

i ⊆ Vs is represented as
a d-dimensional vector vs

i ∈ Rd, where d represents the
chosen dimension for the embedding method. Te source
network Gs is embedded into the vector space Zs, and the
target network Gt is embedded into the vector space Zt.

3.1.3. Common Matched Neighbor (CMN). For a prior in-
terlayer node pair (vs

i , vt
j), if there is a node vs

a connected to
a node vs

i in the source network Gs and a node vt
b connected

to vt
j in the target network Gt, then the prior interlayer node

pair (vs
i , vt

j) is called a commonmatched neighbor (CMN) of
the node vt

b and the node vt
j.

3.1.4. Mapping Function. After performing network em-
bedding, the two-layer network is represented as two low-
dimensional vector spaces. In order to match later, it is
necessary to use prior interlayer links in the training set for
obtaining the mapping relationship between the two net-
works. If we defne ϕ as a mapping function, then for the
prior interlayer node pairs (vs

i , vt
j), there is ϕ(vs

i ) � vt
j. After

training the mapping function, the two-layer low-
dimensional vector spaces Zs,Zt can be unifed into
a common latent space.
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Te interlayer link prediction of double-layer networks
aims to identify whether each node in the source network
has a corresponding node in the target network, that is,
selecting any unmatched interlayer node pair to determine
whether there is an interlayer link given Gs(Vs, Es),
Gt(Vt, Et), and a known interlayer link Est � (vs

i , vt
j) | vs

i􏽮

∈ Vs, vt
j ∈ Vt}.

Supervised learning is used in both the embedding and
matching stages. During the embedding stage, nodes are
represented in a low-dimensional vector space, namely,
Gs⟶ Zs and Gt⟶ Zt. In the matching stage, a prior
interlayer link is used to train the mapping function and
obtain the mapping relationship between two vector spaces,
namely, ϕ(vs

i ) � vt
j. To make the fnal unifed common space

more realistic in refecting network information, it is nec-
essary to minimize the loss function in these two stages,
which means that the objective function is

min L1 G
s
, G

t
,Zs

,Zt
􏼐 􏼑 + L2 ϕ,Zs

,Zt
, E

st
􏼐 􏼑􏽮 􏽯, (1)

where L1(Gs, Gt,Zs,Zt) is the loss function represented by
the source network Gs and the target network Gt in the low-
dimensional space Zs and Zt processes, respectively.
L2(ϕ,Zs,Zt, Est) is the loss function in the matching process,
refecting the accuracy of the precise prediction of the prior
interlayer links in the training set. However, due to the
interdependence of Zs, Zt, and φ, it is difcult to jointly
optimize the abovementioned objective functions. Tere-
fore, a two-step optimization method was adopted in the
subsequent model. Table 1 lists the main symbols and their
respective meanings used in the models proposed in this
section.We set it according to common symbol conventions.
Among them, bold uppercase letters represent matrices,
bold lowercase letters represent vectors, and lowercase let-
ters represent scalars.

3.2. Problem Statement. We propose the similarities of
weighted line embedded vector (SWLEV) model for in-
terlayer link prediction based on intralayer edge weighting.
Te model includes the following parts: intralayer edge
weighting, network embedding, vector space matching and
similarity calculation, distance similarity calculation, and
comprehensive evaluation prediction. Figure 1 shows the
schematic diagram of the frame. Te individuals connected
by vertical brown solid lines between layers belong to the
same user in real life, and the corresponding relationship
between individuals is known, while the dotted lines be-
tween layers indicate that the corresponding relationship
between individuals is unknown. Te purpose of interlayer
link prediction is to determine the corresponding re-
lationship of other individuals. Figure 1(b) shows the cor-
responding low-dimensional vector space obtained after the
two networks are embedded. Before embedding, it is nec-
essary to weigh the links within the network layer.
Figure 1(c1) performs neural network training to uniformly
represent two low-dimensional vector spaces into a common
latent space. Figure 1(c2) performs vector similarity cal-
culation, i.e., calculates the score s1 mentioned later in this
section. Figure 1(d) calculates the distance similarity score,

i.e., the s2 score, of two low-dimensional vectors. We do not
need to carry out the unity of the vector space and only need
to calculate the corresponding Euclidean distance relations.
Finally, the vector similarity score and the distance similarity
score are combined with certain control parameters to
represent the prediction score. Te details of each part are
described as follows.

3.2.1. Intralayer Edge Weighting. Most existing embedded
methods ignore the relationship strength of intralayer edges
before embedding, treating the intralayer edges of single-
layer networks as equal weights, or failing to provide a good
representation of the intralayer edge strength. In fact,
connections within diferent layers may have diferent re-
lationship strengths. Te higher the strength of edges be-
tween nodes, the higher the similarity of the embedding
vectors represented in the latent space after embedding and
the more fully utilized the network structure information.
Terefore, this paper weights the edges between nodes based
on the network structure.

Te edge betweenness represents the proportion of the
shortest path between nodes connected by this edge to all
shortest paths, which can refect the importance of the edge
well. Te larger the edge betweenness, the more important
and stronger the edge. However, the degree of an edge
endpoint also afects the edge betweenness. Considering this
factor, we propose a network layer edge-weighted model as
follows:

wij �
CB eij􏼐 􏼑
��������

C
i
D × C

j
D

􏽱 . eij, (2)

where CB(eij) is the normalized edge betweenness and Ci
D

and C
j
D are the degree centrality of the two endpoints vi and

vj of the edge, respectively, represented as follows:

CB(e) � 􏽘
s,t∈V

σ(s, t | e)

σ(s, t)
,

C
i
D �

ki

N − 1
,

(3)

where V is the set of nodes, σ(s, t) represents the number of
shortest paths between nodes s and t, the number of edges e

passing through these shortest paths is represented as
σ(s, t | e), ki is the degree of the node vi, and N � |V| is the
total number of nodes. After representing the two-layer
network with intralayer edge weighting, we embed the
network in the form of a weighted graph.

3.2.2. Network Embedding. Network embedding is a com-
monly used method in network research. Due to the com-
plexity and sparse network in reality, directly processing them
can result in high computational complexity. Network em-
bedding learns the low-dimensional representation of network
nodes while maintaining the network structure, representing
nodes from diferent layers into diferent low-dimensional
spaces, thereby extracting low-dimensional and compact
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features from high-dimensional spaces. Tis helps us to per-
form high-level analysis tasks more efciently in time and
space, greatly improving computational efciency. Te idea of
embedding is to minimize the distance between vectors cor-
responding to adjacent nodes, while maximizing the distance
between vectors corresponding to nonadjacent nodes.

After each layer of the network is represented with
weighted intralayer edges, we use the line [12] embedding
model for node representation. Here, we use the joint frst-
order and second-order proximity of the line embedding
algorithm Te meaning of frst-order proximity is that if
there are two nodes directly connected to an edge with
a higher degree, the distance between the embedded vectors
will be relatively close. Te idea of the second-order prox-
imity is that vertices that share many neighbors with other
nodes are similar to each other. For two-layer networks, we
embedded the frst-order proximity and the second-order
proximity, respectively:

(a) First-order proximity embedding
For the connection of two points within a layer, such
as es

ij � (vs
i , vs

j), the joint probability distribution of
nodes vi and vj is defned as follows:

p1 v
s
i , v

s
j􏼐 􏼑 �

1
1 + exp − Vs

i( 􏼁
TVs

i􏼐 􏼑
, (4)

where the vectors vs
i , v

s
j ∈ Rd in the denominator are

the vector representations of nodes vs
i , vs

j in a low-
dimensional space and (.)T represents the

transposition of the matrix. Te empirical proba-
bility distribution is as follows:

􏽢p1 v
s
i , v

s
j􏼐 􏼑 �

w
s
ij

W
, (5)

where ws
ij is the weight of the intralayer edge es

ij,
which can be calculated from intralayer edge
weighting. W is the sum of the intralayer edge
weights in the network layer, expressed as
W � 􏽐(i,j)∈Es wij

s. To maintain frst-order proximity,
the direct method is to minimize the distance be-
tween these two distributions, namely,

O1 � d 􏽢p1(., .), p1(., .)( 􏼁. (6)

KL-divergence is a method of representing the
similarity between two distributions. We use KL-
divergence instead of the above distance to fnd the
KL-divergence of the joint probability distribution
p1(vs

i , vs
j) and empirical probability distribution

􏽢p1(vs
i , vs

j) for all connected edges in a layer of the
network, which is

O1 � − 􏽘

∀ vs
i
,vs

j􏼐 􏼑∈Es

KL p1 v
s
i , v

s
j􏼐 􏼑, 􏽢p1 v

s
i , v

s
j􏼐 􏼑􏼐 􏼑.

(7)

After omitting some constants, the objective func-
tion in (7) can be expressed as follows:

0

0
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0
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(d) (c2)
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Figure 1: Schematic diagram of SWLEV framework. (a) Double-layer network structure diagram. (b) Network embedding. (c1) Neural
network training. (c2) Vector similarity calculation. (d) Distance similarity calculation.
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O1 � − 􏽘

∀ vs
i
,vs

j􏼐 􏼑∈Es

w
s
ijlogp1 v

s
i , v

s
j􏼐 􏼑.

(8)

Te goal of frst order-proximity embedding is to
fnd the vector representation vs

i􏼈 􏼉i�1..|V| of each node
with the smallest (8) and learn the low-dimensional
vectors of each node through the random gradient
descent method.Te nodes in the target network’s Gt

layer are also embedded with the frst-order prox-
imity according to the same steps.

(b) Second-order proximity embedding
Te frst-order proximity embedding only utilizes
the observed edges in the network for representation,
and the larger the weight of the edges between nodes,
the tighter the vector representation in the embed-
ding space. However, using only frst-order prox-
imity cannot refect the global network structure
because the information is not enough. Te second-
order proximity embedding considers the shared
neighborhood structure between nodes, thus sup-
plementing the network information.Te idea is that
if two nodes are not directly connected but share
a large number of neighboring nodes, then these two
nodes have a high second-order proximity and
should also be tightly represented in the embedding
space. Te specifc defnition of the second-order
proximity is as follows.
Te second-order proximity of the line embedding
algorithm refers to the proximity between two text
units that are important for semantic similarity in
a text corpus. Te basic principle is to express text
based on embedded vectors, normalize the root mean
square of the text vector, and then calculate the cosine
similarity of the two vectors as their similarity index.

Due to the study of undirected networks in this paper, in
the processing of the second-order proximity, undirected
edges are set as two directed edges with opposite directions
and equal weights, and each node is represented as two
vectors: its own ui and the specifc “context” ui

′ of other
nodes. If two nodes are distributed similarly in the “context,”
then they are similar to each other.

In directed edge eij � (vi, vj), the probability distribution
of context vj generated by the node vi is expressed as follows:

p2 vj vi

􏼌􏼌􏼌􏼌􏼐 􏼑 �
exp −u′Tj .ui􏼒 􏼓

􏽐
|V|
k�1 exp −u′Tk .ui􏼒 􏼓

. (9)

Due to the assumption of the second-order proximity,
the more common neighbors two nodes have, the more
similar they are. Tat is, nodes with similar distributions in
the context have tighter vectors in the embedding space, and
the empirical distribution is expressed as follows:

p2
∧

vj vi

􏼌􏼌􏼌􏼌􏼐 􏼑 �
wij

Wi

, (10)

wij is the weight of the intralayer edge eij, calculated from the
intralayer edge weighting. Wi � 􏽐k∈Γ(vi)

wik. Γ(vi) is the set of
all neighbors of the node vi. Te undirected network is
represented as two directed edges with opposite directions
and equal weights, but when calculating Wi, the weight of
the connecting edges between the same node pair is only
calculated once. Similarly, we need to minimize the distance
between the conditional probability distribution mentioned
above and the empirical distribution. Using KL-divergence
to represent the approximation of two distributions, the
objective function is obtained as follows:

O2 � − 􏽘

∀ vi,vj( 􏼁∈E

wijlogp2 vj vi

􏼌􏼌􏼌􏼌􏼐 􏼑.
(11)

By learning ui􏼈 􏼉i�1..|V| and ui
′􏼈 􏼉i�1..|V| to minimize the

objective function O2 in (11), we can obtain the second-
order proximity vector representing ui for each vertex.

Afterwards, we concatenate the vectors obtained by
performing frst-order and second-order adjacency em-
bedding on each node in the two-layer network and reweight
the dimensions to balance the two vectors obtained by frst-
order and second-order embedding.Te obtained results are
represented as vectors for that node. After this step, the
nodes of the two-layer network can be correspondingly
embedded into two low-dimensional vector spaces.

3.2.3. Vector Space Matching and Similarity Calculation.
After embedding the two-layer network, the source network
and the target network are represented in two diferent latent
spaces. In order to obtain the corresponding relationship
between two spaces, the paper constructed a neural network
with three hidden layers and trained the mapping function
using prior interlayer links (vs

i , vt
j) ∈ Est. In order to test the

fnal prediction performance of the algorithm, we divided
the observed interlayer links into a training set ET and
a testing set EP, and the edges in the training set are also
known as prior interlayer links.

Te constructed neural network layer is a fully connected
network, consisting of an input layer, an output layer, and
three hidden layers between these two layers. Tis eliminates
the requirement for linear mapping and provides greater
fexibility in capturing latent relationships between two
vector spaces, making the mapping function more realistic.
Among them, the number of neurons in the input and
output layers is the dimension of the node in the latent space,
and 1200 neurons are placed in each hidden layer.Te neural
network diagram is shown in Figure 2.

Based on the prior interlayer linkage, this neural network
is used to learn the mapping function from the vector space
Zs of the source network to the vector space Zt of the target
network. Te input of this network is the embedding vector
of the prior interlayer link in the training set at the source
network node, and the output is the vector representation of
the corresponding node of the link in the target network.
Tat is, for each prior interlayer node pair (vs

i , vt
j) ∈ ET, vs

i is
used as the input and vt

j is used as the target output. Te
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neural network is trained to obtain the mapping function ϕ,
in which the loss function is defned as follows:

L2 ϕ, Z
s
, Z

t
, E

T
􏼐 􏼑 � 􏽘

∀ vs
i
,vt

j􏼐 􏼑∈ET

1 − cos ϕ vs
i( 􏼁, vt

j􏼐 􏼑.
(12)

Among them, cos(.) is cosine similarity, and the larger
the value is, the closer the vectors are to each other; ϕ(vs

i ) is
the representation of nodes in the source networkmapped to
the target network. By minimizing the loss function, we
obtain the function ϕ that maps from the source network
vector space to the target network vector space. Afterwards,
two low-dimensional vector spaces can be unifed into the
same space.

For each unmatched pair of nodes (vs
a, vt

b), their rep-
resentations in their respective vector spaces are vs

a, vt
b. Based

on the mapping function ϕ obtained above, the node vs
a can

be represented in the vector space of the target network. Te
cosine similarity of vectors ϕ(vs

a) and vt
b is used to represent

their similarity, with s1 being the similarity score of the
vector, represented as follows:

s1 v
s
a, v

t
b􏼐 􏼑 �

ϕ vs
a( 􏼁

T
.vt

b

ϕ vs
a( 􏼁

����
����. vt

b

����
����

�
􏽐

d
i�1 ϕ vs

a( 􏼁i vt
b􏼐 􏼑

i������������

􏽐
d
i�1 ϕ vs

a( 􏼁( 􏼁i

2
􏽱

.

���������

􏽐
d
i�1 vt

b􏼐 􏼑
2
i

􏽱 ,

(13)

where ‖.‖ represents the modulus of a vector. For each node
in the source network, we can provide a list of nodes in the
target network and output the vector similarity matrixHV in
the form of a matrix. Each row of this matrix represents the
vector similarity score between an unmatched node in the
source network and all unmatched nodes in the target
network.

3.2.4. Distance Similarity Calculation. Since the mapping
function is obtained through training, it may not perfectly
represent the spatial mapping relationship. In order to avoid
the one-sidedness of single vector similarity score evalua-
tion, when two-layer nodes are embedded into the corre-
sponding two vector spaces, we use the positional
relationship between unmatched nodes and their neigh-
boring nodes that have already been matched as interlayer

links as a supplement to set the distance similarity score.Tis
can more fully utilize the known network structure in-
formation, and the distance similarity score is represented as
follows:

s2 v
s
a, v

t
b􏼐 􏼑 � 􏽘

∀ vs
i
,vt

j􏼐 􏼑∈ET

vs
i
∈Γ vs

a( )
vt

j
∈Γ vt

b( )

exp −d
s
ai. d

s
ai − d

t
bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 .d
t
bj􏼒 􏼓,

(14)

where ET is the interlayer link in the training set, that is,
a prior interlayer link, Γ(.) represents the neighbor set of
nodes, and ds

ai represents the Euclidean distance between the
unmatched node vs

a and the node that has already matched
vs

i in the latent space after embedding. Te Euclidean dis-
tance between the vectors vs

a and vs
i in the latent space after

embedding is represented as follows:

d
s
ai �

����������������

􏽘

d

k�1
vs

a( 􏼁k − vs
i( 􏼁k( 􏼁

2

􏽶
􏽴

. (15)

For all nodes in the network, we output the distance
similarity score matrixHD,HDmn � s2(vs

m, vt
n). Each row of

this matrix represents the distance similarity score between
an unmatched node in the source network and all un-
matched nodes in the target network. In the related concept
elaboration above, a prior interlayer node pair (vs

i , vt
j) is

a common matching neighbor of unmatched nodes vs
a and

vt
b. Te proposal of the distance similarity formula takes into
account the Euclidean distances ds

ai and dt
bj between un-

matched nodes and their common matching neighbors
(CMNs). Te smaller the Euclidean distance, the greater the
impact of the CMNs on these two unmatched nodes and the
more likely the nodes to be similar. |ds

ai − dt
bj| represents the

diference in the Euclidean distance between unmatched
nodes in a two-layer network and their CMNs. Te smaller
the diference is, the more similar the two are. In addition, by
summing, if there are more CMNs between two unmatched
nodes, the greater the distance similarity and the more
similar the nodes. Te higher the distance similarity score s2,
the greater the likelihood of connections between nodes.

3.2.5. Comprehensive Evaluation and Prediction. In the frst
two steps, we can obtain the vector similarity score and the
distance similarity score between unmatched node pairs in
the two-layer network. We efectively combine these two
scores through control factors and propose a comprehensive
evaluation score, represented as follows:

s v
s
a, v

t
b􏼐 􏼑 � εs1 v

s
a, v

t
b􏼐 􏼑 +(1 − ε)s2 v

s
a, v

t
b􏼐 􏼑, (16)

where ε is the factor that controls the weights of the two
scores, with 0< ε≤ 1. By controlling the factors, distance
similarity and vector similarity are combined as the fnal
comprehensive evaluation score for interlayer link pre-
diction, represented by a matrix as follows:

1

2

1
2
0
0

1

2

1
2
0
0

1

2

1
2
0
0

d1

d2

dn

d1

d2

dn

input layer hidden layer output layer

Figure 2: Schematic diagram of the neural network.
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S � εHV +(1 − ε)HD. (17)

For any unmatched node vs
a in the source network Gs,

the comprehensive evaluation score s is used to calculate the
matching degree between all nodes in the target network Gt

and that node. Ten, a sorted list with scores from high to
low can be obtained, and the node with the highest score is
fnally selected from the list. In this way, for each vs

a, a node
with the highest matching score in the target network will be
obtained as a possible interlayer link, which means that the
node in the target network corresponding to max s will be
taken as the most likely matching node in the source net-
work, and then, accuracy calculation will be carried out. Te
SWLEV design fowchart is shown in Figure 3.

Finally, the paper conducts a complexity analysis of the
model. When embedding a network, the computational
complexity is O(k1d |E| ), k1 is the number of iterations, d is
the embedding dimension, and |E| is the number of edges in
the network. In the stage of executing spatial mapping after
embedding, due to the use of neural networks for training, the
time complexity is O(k2d |ET| ), k2 is the number of iterations
when training themapping function, and |ET| is the number of
interlayer links in the training set. Te time complexity for
vector similarity calculation is O(|V|2), and the time com-
plexity for distance similarity calculation is also O( |V| 2),
where |V| represents the total number of nodes in the network.

4. Experiments

4.1. Dataset Introduction. In order to verify the superiority
of the proposed model in the paper, a large number of
comparative experiments were conducted on real datasets
with current advanced prediction models. Te dataset used
in the experiment is Foursquare-Twitter (FT). It uses two
real cross-network datasets collected from users’ online
social networks Foursquare and Twitter, which were col-
lected by literature [25]. Because some users provide their
Twitter accounts in their Foursquare profles, a real-world
representation of the users in the two-layer network is
obtained, and some nodes in the two-layer network are
aligned. We preprocess the obtained dataset to remove self-
loops and multiple edges. Due to the requirement of link
prediction connectivity, we extract the most connected
subset in each layer of the network as the target dataset for
experiments. In addition, tools were used to analyze the
characteristic parameters of each dataset, such as network
average degree, average distance, clustering coefcient, de-
gree correlation coefcient, heterogeneity, and the number
of known interlayer links. Te statistical characteristics of
the dataset are shown in Table 2.

4.2. Comparison Model. We used advanced interlayer link
prediction models as a comparison, listed as follows:

(1) DeepLink [16] proposes a new algorithm based on
deep reinforcement learning to study the UIL
problem by utilizing the duality of mappings be-
tween any two networks. It is an end-to-end network
alignment method and semisupervised user identity

link learning algorithm that does not require ex-
tensive feature engineering and can easily combine
features based on confguration fles.

(2) MulCEV [11] proposes a framework based on the
consistency of multiple types of embedded vectors.
After the network is represented as a low-
dimensional vector space, the distance consistency
of node positions is additionally used for prediction
supplementation, fully utilizing the efective in-
formation of the latent space after embedding.

(3) IONE [13] proposes a representation learning model
to learn alignment network embedding for multiple
networks. Tis model models each user’s followers
and follower models as input and output contexts,
and given and potential anchor links can be used as
hard and soft constraints in the unifed learning
framework in this model, thereby promoting in-
formation transmission. In this model, all factors are
described by a single objective function, and network
embedding and user alignment can be achieved si-
multaneously when the objective function value is
the smallest. In addition, random gradient descent
and negative sampling are used to achieve efcient
learning of the model. Concerning IONE and its two
variant INE [13], INE does not consider the in-
formation of the input context of the node.

(4) IONE-d [14] proposes a representation learning
model to learn an aligned network embedding for
multiple networks. It explicitly models the follow-
ership and followeeship of each user as the input and
output context. Both given and potential anchor
links can be used in this model as hard and soft
constraints in a unifed framework for learning.

(5) CRW [25] proposes a unifed link prediction
framework to solve the collective link identifcation
problem, which consists of two phases: step (1)
collective link prediction of anchor and social links
and step (2) propagation of predicted links across the
partially aligned “probabilistic networks” with col-
lective random walk.

4.3. Evaluation Indicators. We use indicators to evaluate the
accuracy of link prediction algorithms, which are defned as
follows:

Precision@N �
|CorrUsers@N|

S/T

|UnAlignedAnchors|

� 􏽘
m

i�1
1i success@N{ }/m,

(18)

where |UnAlignedAnchors| is the number of all unmapped
users and |CorrUsers@N|S/T is the number of users pre-
viously aligned with the source network users found in the
top-N list of the target network. m is the number of all
unobserved interlayer links, and 1i success@N{ } indicates
whether the unobserved links in the top-N list are real
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interlayer links. If so, it is 1; otherwise, it is 0. Obviously, the
larger the value of Precision@N, the better the prediction
performance of the algorithm.

4.4. SimulationResults andPerformanceAnalysis. Te task of
the paper is to discover interlayer links in the test set based
on the information in each layer of the training set and the
multiplex network. In order to test the accuracy of the
model, we randomly divided the known interlayer link sets
into a training set ET and a testing set EP. Te number of
edges in the training set to the number of prior interlayer
links is called the training ratio. According to [14, 16], we set
the training ratio to 0.9. Te training set ET contains 90% of
the edges in the set, which are considered as prior interlayer
links.Te edges in ET are used to train the model and predict
unknown interlayer links in the network. Te test set EP

contains the remaining 10% of edges, which are waiting for
matching to test the model’s predictive ability. To ensure the
universality of the results, we repeated all the experiments 10
times, taking the average accuracy as the experimental result.
After preprocessing the dataset, we conduct the experiments
in the following aspects and use Precision@N as an index to
measure the predictive ability of the algorithm model.

(1) Explore the performance of the SWLEVmodel in the
FT dataset under diferent control factors ε:
According to [11], we set the embedding dimension
d � 256, iteration times� 100,000, and training
ratio� 0.9. Since the prediction results are more
convincing when N is larger due to that there are less
accidental factors, we record the change in pre-
diction accuracy when N is 30 and 100. We record
the changes in Precision@30 and Precision@100

when the control factor ε changes from 0.1 to 1.0.Te
results are shown in Table 3.
From Table 3, it can be seen that the FT network
usually achieves the highest accuracy when the
control factor ε is 0.9. Terefore, in all subsequent
experiments, the control factor ε of the compre-
hensive evaluation score will be set to 0.9.

(2) We explore the variation of the prediction accuracy
of the proposed model with N and compare it with
DeepLink [16], MulCEV [11], IONE [13], INE [13],
IONE-d [14], and CRW [25] models. Same as the
frst part of the experiment, the experimental con-
ditions are set as embedding dimension d � 256,
with a training ratio of 0.9. According to multiple
testing experiments, diferent models require dif-
ferent iterations to present the optimal results. We
set 100,000 iterations for SWLEV, DeepLink, and
MulCEV models, 10 million iterations for IONE and
INE models, and 100 million iterations for IONE-
d models during mapping. Te experimental results
are shown in Figure 4.
Te results show that our proposed model achieves
the highest accuracy in all settings. Due to the ac-
cidental factors having a small infuence when N is
large, the prediction results are more convincing
when N is large. Terefore, we explain the improved
accuracy when N is 30 and 100. When N � 30, the
accuracy is improved by 41.8% compared to the
DeepLink model, 3.5% compared to the MulCEV
model, 6.3% compared to the IONE model, 30.0%
compared to the INE model, 5.0% compared to the
IONE-d model, and 60.5% compared to the CRW
model. When N� 100, the accuracy is improved by
49.6% compared to the DeepLink model, 3.1%
compared to the MulCEV model, 6.5% compared to
the IONEmodel, 25.0% compared to the INE model,
3.7% compared to the IONE-d model, and 20.9%
compared to the CRW model. Tis confrms the

Table 2: Network topological properties of datasets.

Network |V| |E| <k> <d> C r H Est

Foursquare 5311 54232 20.42 3.34 0.23 −0.19 3.45 3148Twitter 5120 130576 51.01 2.55 0.30 −0.21 4.49

Start

Network Weighting

Network Embedding

Embedding vector

Calculate the difference
in Euclidean distance 

Calculate distance
similarity score

Calculate prediction
accuracy 

Calculate comprehensive
evaluation score 

Output
accuracy 

End

Input: source
network, target
network, prior
interlayer links

Training mapping
function

Map nodes to a unified
vector space

Calculate vector
similarity score

Calculate Euclidean
distance

Figure 3: Te design fowchart of SWLEV.
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efectiveness of the proposed network layer-weighted
embedding model, which fully utilizes network to-
pology information and improves the accuracy of
interlayer link prediction. From the trend graph of
the observation results, it can be seen that as the
number increases, the accuracy of the three methods
also increases. Tis is because the larger the value of
N, the greater the number of potential matches
recommended by diferent models for each un-
matched node, the larger the range of given candi-
date matches, and the higher the probability of
successfully predicting interlayer links.

(3) We also evaluated the performance of SWLEV and
DeepLink, MulCEV, IONE, INE, and IONE-
d models under diferent embedding dimensions.
We calculate the prediction accuracy of the six
models when the embedding dimensions are 32, 64,
128, and 256, respectively. Same as the frst part of
the experiment, the experimental conditions are set
to N � 100, with a training ratio of 0.9. SWLEV,
DeepLink, and MulCEV have 100,000 iterations
during mapping, 10 million iterations for IONE and
INE models, and 100 million iterations for IONE-
d models. Te experimental results are shown in
Figure 5.
Te results show that our proposed model has
achieved the highest accuracy in almost all di-
mensions, with an average improvement of 2.4%
compared to the better-performing IONE model,

1.5% compared to the better-performing IONE-
d model, and 6.7% compared to the better-
performing MulCEV model. Also, it can achieve
good predictive performance when the embedding
dimension is low. Te computational complexity of
the algorithm during the embedding process largely
depends on the embedding dimension. Te smaller
the dimension, the lower the complexity, which once
again confrms the superiority of the SWLEV model.

(4) Te number of iterations required for training
during the mapping process is also an important
reference factor, which refects the time complexity
and can verify whether our model can converge.
Terefore, the paper explores the performance of
model prediction accuracy with the number of it-
erations. Same as the second part of the experiment,
we set N � 100, training ratio� 0.9, and embedding
dimension� 256 and compare our proposed model
with DeepLink, MulCEV, IONE, INE, and IONE-
d models. Te simulation results are shown in
Figure 6.

Te results show that our method has signifcantly better
predictive performance than the comparison models, which
is consistent with the previous @N experiment. Te model
proposed in the paper achieved the highest accuracy in all
iterations and achieved good prediction performance at low
iterations, converging faster than MulCEV and greatly re-
ducing computational complexity. Even when the training

Table 3: Te variation of prediction accuracy Precision@30 and Precision@100 with control factor ε.

ε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision@30 0.634 0.634 0.634 0.641 0.644 0.654 0.651 0.654 0. 57 0.246
Precision@100 0.754 0.761 0.754 0.757 0.757 0.761 0.757 0.757 0.7 4 0.443
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Figure 4: Comparison between other models and our proposed
model for diferent @N settings.
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frequency is 0, there is still a certain degree of predictive
ability because a portion of the comprehensive evaluation
score is the distance similarity score, which does not require
training. After the nodes in the two-layer network are
represented in their respective low-dimensional vector
spaces, they can be obtained using their position relation-
ships, which add some information to link prediction.

5. Conclusions

In this article, we propose an interlayer link prediction model
SWLEV based on the weighted embedding of connected edges
within the network layer. Tis model does not use potentially
untrue node attribute information but is entirely based on the
network structure for prediction. Before embedding, wemodel
the intralayer links of the single-layer network as a weighted
graph. Te stronger the node edge relationship, the more
similar the vector representation in the low-dimensional space
after embedding, thus achieving better network representa-
tion. Afterwards, appropriate embeddingmethods are selected
to further capture the structural information of the network.
After embedding, vector similarity and distance similarity
were used as comprehensive evaluation scores. In addition to
introducing the algorithm framework of the paper, this section
also discusses simulation design. We have conducted a large
number of experiments on real datasets, including the number
of iterations, embedding dimensions, and other aspects. Te
results show that our proposed model has higher prediction
accuracy in all aspects than current advanced models and can
achieve the highest accuracy when the training frequency is
low, reducing computational complexity and verifying the
efectiveness and superiority of the model.

Although the performance of the SWLEV model is al-
ready excellent, there are still some areas for improvement.
First, it only utilizes network structure information for em-
bedding, without fully considering the diverse attributes of

nodes or links. Second, the networks studied by SWLEV are
fxed and unchanging, while in reality, social media networks
often change constantly. Terefore, our model still lacks the
ability to quickly predict unseen nodes or brand new subnets.
In the future, we plan to conduct research on more com-
prehensive embedding methods to simultaneously capture
network structures and diverse attribute information. At the
same time, we will strive to make efcient predictions while
the number of nodes continues to dynamically increase to
meet the constantly evolving application needs.
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