
Research Article
A Modified Horse Herd Optimization Algorithm and Its
Application in the Program Source Code Clustering

Bahman Arasteh ,1 Peri Gunes ,2 Asgarali Bouyer ,1,3

Farhad Soleimanian Gharehchopogh ,4 Hamed Alipour Banaei ,5

and Reza Ghanbarzadeh 6

1Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Türkiye
2Department of Computer Engineering, Istanbul Aydin University, Istanbul, Türkiye
3Department of Software Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
4Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
5Department of Electronics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
6Faculty of Science and Engineering, Southern Cross University, Gold Coast, Australia

Correspondence should be addressed to Farhad Soleimanian Gharehchopogh; farhad.soleimanian@gmail.com

Received 4 May 2023; Revised 20 July 2023; Accepted 27 November 2023; Published 27 December 2023

Academic Editor: Roberto Natella

Copyright © 2023 Bahman Arasteh et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Maintenance is one of the costliest phases in the software development process. If architectural design models are accessible, software
maintenance can be made more straightforward. When the software’s source code is the only available resource, comprehending the
program profoundly impacts the costs associated with software maintenance.Te primary objective of comprehending the source code
is extracting information used during the softwaremaintenance phase. Generating a structuralmodel based on the program source code
is an efective way of reducing overall software maintenance costs. Software module clustering is considered a tremendous reverse
engineering technique for constructing structural design models from the program source code. Te main objectives of clustering
modules are to reduce the quantity of connections between clusters, increase connections within clusters, and improve the quality of
clustering. Finding the perfect clustering model is considered an NP-complete problem, and many previous approaches had signifcant
issues in addressing this problem, such as low success rates, instability, and poor modularization quality. Tis paper applied the horse
herd optimization algorithm, a distinctive population-based and discrete metaheuristic technique, in clustering software modules. Te
proposed method’s efectiveness in addressing the module clustering problem was examined by ten real-world standard software test
benchmarks. Based on the experimental data, the quality of the clustered models produced is approximately 3.219, with a standard
deviation of 0.0718 across the ten benchmarks.Te proposedmethod surpasses formermethods in convergence, modularization quality,
and result stability. Furthermore, the experimental results demonstrate the versatility of this approach in efectively addressing various
real-world discrete optimization challenges.

1. Introduction

Software inevitably undergoes changes and upgrades to
align with evolving user requirements and system features.
Te average cost associated with software maintenance,
including changes and upgrades, is about 60% of total
software costs [1–3]. A deeper comprehension of the
software structure contributes to reducing software

maintenance costs. Utilising the source code to obtain the
structural model represents an efcient approach employed
prior to entering the maintenance stage. A reverse engi-
neering technique known as software source code clus-
tering organises software modules with similar
characteristics into groups. Te quantity of connections
within and across clusters, known as cohesion, is employed
to evaluate the modularization quality (MQ) [3, 4]. Te

Hindawi
Complexity
Volume 2023, Article ID 3988288, 16 pages
https://doi.org/10.1155/2023/3988288

https://orcid.org/0000-0001-5202-6315
https://orcid.org/0009-0001-8645-9888
https://orcid.org/0000-0002-4808-2856
https://orcid.org/0000-0003-1588-1659
https://orcid.org/0000-0003-0146-1450
https://orcid.org/0000-0001-9073-1576
mailto:farhad.soleimanian@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3988288


efciency of structural models generated by module clus-
tering algorithms is evaluated using the MQ criterion,
which posits improved clustering results from greater
cohesion (internal links within a cluster) and reduced
coupling.

Te general research problem of this study includes the
optimal partitioning of the software modules. Software
module clustering (SMC) methods partition a program’s
source code into m clusters, each referred to as components
or packages. In the formal specifcation of the SMC problem,
S, representing the source code, consists of n modules, M1,
M2, . . ., and Mn, where each one encompasses functions,
methods, and properties. Te set π indicates various po-
tential combinations to divide the nmodules intom clusters,
with each element of π representing a confguration of
clustering. Te quantity of potential solutions for clustering
the program source code that has n modules into m clusters
is denoted by Sn, m. For instance, a source code with fve
modules presents ffty-two distinct clustering confgura-
tions, while a source code with twenty-fve modules yields
1,382,958,545 possible clustering combinations. Notably, the
clusters do not intersect and the combination of these m
clusters encompasses the entire source code (S). Conse-
quently, the problem of SMC is technically categorised as
NP-complete [3–5]. Terefore, the application of meta-
heuristic methods to select the appropriate grouping is
required.

Te related studies have suggested numerous meta-
heuristic methods to address SMC, which is considered
a discrete optimisation problem [6–11]. However, earlier
approaches have shown notable drawbacks, including lower
MQ values, slower convergence rates, and reduced stability,
especially when dealing with larger-size programs. Some of
those methods also sufered from the local optima problem
and have had a lower success rate.Temain objectives of this
study are as follows:

(i) Enhancing modularisation quality
(ii) Enhancing the likelihood of attaining optimal

clusters
(iii) Enhancing the SMC method’s robustness across

multiple executions
(iv) Speeding up convergence for optimal cluster

generation

In this study, in order to address the SMC problem,
a novel discrete optimisation strategy using a robust met-
aheuristic algorithm, known as the horse herd optimisation
algorithm (HOA), is presented in the current study. Te
HOA population simulates the behaviour of a group of
horses at diferent ages and experiences. Six features de-
termine the social behaviour of a horse in its herd. Grazing,
hierarchy, sociability, imitation, defence, and roaming are
the most common horse behaviour patterns used in the
HOA. Te reaction of horses demonstrates that they have
been prey to predators; in such situations, horses attempt to
protect themselves by going into the fght-or-fight mode.
Horses compete for water and food to eliminate competitors.
Furthermore, these animals avoid dangerous locations

where dangers such as wolves exist instinctively. Each so-
lution obtained by the HOA indicates a clustered model of
software modules in the proposed method. A solution’s
ftness (the ftness of the generated structural model)
demonstrates its MQ value. Te discrete HOA may also be
applied to solve a wide range of real-world discrete opti-
misation problems. Te following are the main contribu-
tions of the current study:

(i) Te discrete version of HOA was developed to
address discrete optimization problems. Tis ver-
satile algorithm is introduced to tackle a variety of
discrete optimization challenges efectively.

(ii) Te proposed method demonstrates profciency in
addressing a wide spectrum of graph-based opti-
mization challenges.

(iii) Clustering software modules, which is considered
a problem of graph partitioning in nature, is
addressed.

Te remainder of this paper is organised as follows.
Section 2 reviews signifcant SMC-related research in the
literature. Section 3 discusses the proposed algorithm ap-
plied in addressing the SMC problem. Section 4 discusses the
tools and platforms used in executing the introduced
method and includes information about the evaluation
criteria and datasets relevant to SMC methods. Tis section
also presents and analyses the current study’s fndings.
Section 5 includes the conclusion of the paper, where rec-
ommendations for further research are also provided.

2. Related Works

Particle swarm optimisation (PSO) for selecting the best
clusters of program modules was introduced in [5]. In this
algorithm, every particle represents the software modules’
organisational structure and is characterised by the fol-
lowing two essential attributes: the location vector and the
speed vector. Te particle’s current locations in each di-
rection are infuenced by the speed vector. As the particles
accelerate, their positions change. Te initial population
comprises these particles. To address the challenges posed by
SMC, PSO was employed to manage particle locations and
speed. A modifed PSO approach was implemented to ad-
dress the SMC problem, incorporating a local search to
refne the position of particles. Test fndings demonstrate
that the proposed approach created higher-quality software
clusters.Tis approach was successfully examined on a range
of real-world software programs and outperformed the
previous state-of-the-art method with regards to MQ,
accomplishing this in remarkably swift computation com-
plexity. However, the primary limitation of this method is its
less optimal performance when applied to software products
with a substantial number of module connections.

Te frefy algorithm (FA) is founded on the principles of
swarm intelligence and has been used to solve SMC problem
[6]. Each frefy represents a clustering array with a specifc
brightness, signifying its quality of clustering. A ftness
function (MQ) can be utilised to compute the brightness

2 Complexity



level or ftness. To attain the optimal clustering confguration
and the most precise timings, frefies attempt to approach
superior frefies and adjust their positions. Although FA can
be employed to address general problem-solving tasks, it can
also be applied to specifc challenges, such as the SMC
problem. According to the experiment results, the FA
outperforms hill climbing (HC) and the genetic algorithm
(GA) on most benchmarks. Te primary limitation of this
approach, especially within extensive software systems, is the
possibility of local optima.

Te development of clustered models of the source code
using an HC-based methodology is presented in [7]. Te
module-dependency graph (MDG) can be divided into N
initial clusters due to its N module count. Each module is
allocated to a cluster on a random base before the start of the
HC iterations. Te MQ value of the generated clusters is
evaluated by the ftness function. Tis tactic aims to create
clusters with the least number of connections and the highest
degree of cohesiveness. Every hill climber aims at reaching
the subsequent adjacent cluster with a higher MQ value at
each level. Upon encountering a new neighbour within the
emerging cluster, the hill climber attempts to locate a high-
quality climber. Over time, the hills in the initial stage
progressively combine to create a hill sequence. However,
this approach carries the risk of converging towards local
optima, making the search for the global optimum, or the
optimal clustering, more challenging.

GA has efectively addressed the primary limitations of
the HC approach in solving the SMC problem [8]. When
employing direct search methods such as the HC algorithm,
it is impossible to obtain the optimal grouping. In addition,
these algorithms struggle with extensive search spaces.
Conversely, the GA executes the search process simulta-
neously with the initial population’s chromosomes. In the
GA, every chromosome represents a specifc clustering ar-
rangement, randomly selected to form the initial population.
During each iteration, the ftness function assesses the
chromosome’s quality, with those exhibiting high co-
hesiveness and low coupling considered high-quality enti-
ties. Te application of crossover and mutation operators to
update these relevant chromosomes expands the search
space [9]. Te results demonstrate that the GA efectively
addresses the problem of SMC in small to medium software
clusters.

In [10], a hybrid PSO-GA strategy was proposed to
select the optimal program clusters. Tis method ad-
dresses issues encountered in former methods, including
lower convergence, poor MQ, reduced stability, and
a lower rate of success. It combines the advantages of both
heuristic approaches into a single method. Tis hybrid
strategy achieves fast convergence and enhances clus-
tering quality in comparison with the standard PSO and
GA algorithms. Crossover and mutation were utilised to
enhance particle positions by updating all particles’ ve-
locity vectors. Experimental results conducted with ten
popular benchmark MDGs show that the PSO-GA
method performs better than the conventional approach
in 90% of cases. Moreover, each strategy achieved
a unique rate of success in 30% of the benchmarks, while

PSO-GA exhibited superior stability compared to PSO
and GA in 60% of the programs.

In [11], the software components were clustered using
the ant colony optimisation (ACO) technique, where the
modules within each cluster (subsystem) exhibit signifcant
interconnections. ACO leverages swarm intelligence to solve
a wide range of search-based optimisation problems. In this
approach, every ant is a result of clustering. Te strongest
coherence and the least coupling are found in high-quality
clustering. Several benchmark datasets have been used to
examine this method, and the results show that ACO per-
formed better in addressing the SMC problem. Furthermore,
the ACO typically outperforms PSO and GA regarding the
MQ value and the speed of convergence. ACO has the
potential to solve the SMC problem in stability; however, it
has lower performance for large software products.

In [12], a new method called “Bölen” was introduced for
software module clustering by integrating the shufed frog-
leaping algorithm (SFLA) with GA techniques. Tis ap-
proach ofers several advantages, including enhanced MQ,
improved stability, and a higher rate of success. It employs
MDG to show the interconnections between software
modules in conjunction with other methods. In the context
of the SMC problem, each frog represents a clustering array.
Te best frogs within each memeplex are created using the
crossover operator applied to the least successful ones.
Furthermore, each memeplex member undergoes the mu-
tation operator intending to maximise the member with the
lowest ftness. Te SFLA-GA outperforms previous algo-
rithms regarding average MQ in 80% of the benchmarks. In
90% of the cases, SFLA-GA converges to the optimal so-
lution more rapidly than PSO, GA, and HC.

A hybrid single-objective method for solving the SMC
problem was developed by combining the gray wolf opti-
mizer (GWO) with GA [13]. Tis approach blends elements
of evolutionary algorithms with swarm-based techniques.
Te traditional GWOwas adapted and discretised to address
the SMC problem. Experimental results conducted on
fourteen widely recognised benchmarks demonstrated the
superiority of this hybrid single-objective strategy over PSO,
GA, and PSO-GA methods in the context of SMC. Notably,
it exhibits advantages, including improved MQ and faster
convergence, especially in the case of larger software pro-
grams. Several chaos-inspired algorithms were developed in
[14] to address the SMC problem, including metaheuristic
algorithms such as the cuckoo optimization algorithm
(COA), bat algorithm (BA), black widow optimizer (BWO),
teaching-learning-based optimisation (TLBO), and grass-
hopper optimization algorithm (GOA) methods. Te efect
of the chaos theory on the efcacy of diferent algorithms
within this context has also been investigated. Real-world
application results show that PSO, BWO, and TLBO ap-
proaches outperform others when tackling the SMC prob-
lem. In addition, it was observed that when these algorithms
generated their initial populations employing the “logistic
chaos” method, their performance improved. In the pro-
vided benchmark dataset, the average MQ values for clusters
generated by PSO, BWO, and TLBO are 3.1200, 3.1550, and
2.7780, respectively.

Complexity 3



In [15], an independent approach known as “Savalan” was
introduced for addressing the SMC problem, employing
a multiobjective algorithm with a unique set of objective
functions. Te study’s main goal was to concurrently advance
various objectives, including coupling, cohesion, modularisation
quality, cluster size, and quantity.Te optimisation objectives in
this research were categorised into six distinct objective criteria.
Te algorithm employed in this method is the Pareto envelope-
based selection algorithm (PESA), which is a multiobjective
algorithm. Both small and large projects can beneft from the
utilisation of this approach. Te principal advantage of this
strategy, as evidenced by the results from the analysis of fourteen
benchmarks, is its ability to enhance all clustering objectives
simultaneously. Te fndings indicate that Savalan improves
each clustering requirement in a unifed manner. In large
software projects, Savalan outperforms comparable techniques
such as Bunch [8], CIA [16], and Chava [17], generating more
efcient clusters. Tis tool was developed using JavaScript.

Table 1 provides an overview of the contemporary research
on complex software systems.Te primary disadvantages of the
previous methods, which include slow convergence, getting
trapped in local optima, and inadequate stability, have been
addressed in the suggested method.

3. Proposed Method

Tecurrent study introduces amodifed and discretised variant
of the horse herd optimisation algorithm (HOA) to tackle the
SMC problem. Te modifed HOA can efectively address
problems of discrete NP-hard optimisation, including SMC.
SMC stands out as a particularly challenging optimisation
problem in the software engineering domain. Te ultimate
objective in this context is to create the most efcient structural
model from the program source code. Formally, the task of
clustering n modules into m clusters can be a combinatorial
problem, which involves the following two main stages: frst,
the construction of the MDG based on the source code and
then the utilisation of the modifed HOA for clustering the
program’s modules using the MDG. Te resulting structural
model helps reduce software maintenance costs.

3.1. Horse Herd Optimisation Algorithm

3.1.1.Te Structure of HOA. HOAdrew inspiration from the
behaviours of horses at diferent age groups, categorising
horse activities into six primary divisions with similar
patterns as follows: grazing, hierarchy, socialising, imitation,
defensive mechanisms, and roaming [22]. Figure 1 illustrates
the fowchart of the HOA.

HOA simulates horse movement according to equation (1)
in each iteration. In equation (1),XIter,AGE

m shows the position of

the mth horse, AGE and V
→Iter,AGE

m signify the range of age and
velocity of the current horse, and Iter indicates the current
iteration. Horses’ average life span is 25–30 years, and they
exhibit diverse behavioural tendencies as they age. Horses’ lives
are split into four age categories in the HOA as follows:

(i) δ: horses at ages 0–5
(ii) c: horses at ages 5–10
(iii) β: horses at ages 10–15
(iv) α: horses ages 15 and older

X
Iter,AGE
m � V

→Iter,AGE
m + X

(Iter−1),AGE
m ,AGE � α, β, c, δ. (1)

HOA ranks the horses based on their best replies, and as
a consequence, the 1st ten percent of horses from the top of
a sorted matrix are chosen as horses. Te remaining horses are
divided into the following horse groups: twenty, thirty, and
forty percent. Six behaviours of the horses in the herd are
implemented to identify the velocity vector, and the following
equation can be utilised to describe the velocity vector asso-
ciated with horses (of varying ages) in each cycle of themethod.

V
→Iter,α

m � G
→Iter,α

m + D
→Iter,α

m ,

V
→Iter,β

m � G
→Iter,β

m + H
→Iter,β

m + S
→Iter,β

m + D
→Iter,β

m ,

V
→Iter,c

m � G
→Iter,c

m + H
→Iter,c

m + S
→Iter,c

m + I
→Iter,c

m + D
→Iter,c

m + R
→Iter,c

m ,

V
→Iter,δ

m � G
→Iter,δ

m + I
→Iter,δ

m + R
→Iter,δ

m .

(2)

Horses are grazing animals that graze at any age throughout
their lives. As a consequence of the algorithm modeling the
grazing zone around each horse with a “g” coefcient, every
horse grazes in specifed areas. Te following equations show
how to execute this horse behaviour mathematically.

G
→Iter,AGE

m � gIter(�u + ρ�l) + X
(Iter−1)
m􏽨 􏽩,AGE � α, β, c, δ,

(3)

g
Iter,AGE
m � g

(Iter−1),AGE
m × ωg. (4)

In equations (3) and (4), G
→Iter,AGE

m signifes the motion
parameter of the ith horse, demonstrating the tendency of the
ith horse to graze. In each cycle, this component reduces
linearly with g. Upper and lower grazing space bounds are u
and l, which are advised to be 1.05 and 0.95, respectively. g,
the coefcient, is also advised to be 1.5 for all four age
groups. Horses live their lives intending to follow a leader,
who might be the most experienced and powerful horse in
their herd or even a human. HOA considers this propensity
to be a hierarchy, and it is represented by the coefcient h.
Horses have been seen to obey the rule of hierarchy during
the middle ages (aged 5–15 years). Te following equations
are used to represent this behaviour quantitatively.

H
→Iter,AGE

m � h
Iter,AGE
m X

(Iter−1)
∗ − X

(Iter−1)
m􏽨 􏽩,AGE � α, β and c,

(5)

h
Iter,AGE
m � h

(Iter−1),AGE
m × ωh. (6)

4 Complexity



In equations (5) and (6), H
→Iter,AGE

m and X(Iter−1)
∗ are the

impact of the best horse’s location on the velocity and the
best horse’s location, respectively. Horses naturally need
social contact and often coexist with other animals. Te
presence of a herd provides protection against predators,
increasing their chances of survival and making them less
vulnerable. Occasionally, horses may engage in conficts
with each other due to their social nature and their in-
dividuality contributes to occasional irritability. Observa-
tions have shown that horses tend to thrive when in the
company of other animals. Horses between the ages of 5 and
15 typically prefer staying with the herd. Tis behaviour is
characterised by a tendency to move towards the average
positions of other horses, and HOA simulates and refects
this tendency with the variable S, as described in the fol-
lowing equations:

% S
→Iter,AGE

m � s
Iter,AGE
m

1
N

􏽘

N

j�1
X

(Iter−1)
j

⎛⎝ ⎞⎠ − X
(Iter−1)
m

⎡⎢⎢⎣ ⎤⎥⎥⎦,AGE � β, c,

(7)

S
Iter,AGE
m � s

(Iter−1),AGE
m × ωs. (8)

In equations (7) and (8), S
→Iter,AGE

m and sIter,AGEm are social
motion vector of ith horse and its orientation towards the
herd in the Iterth iteration, respectively. With the ωs com-
ponent, the orientation towards the herd reduces in each
iteration. Te number N is the total quantity of horses in the
herd. Horses copy one another and pick up both positive and
bad behaviours and routines, such as looking for the greatest
grazing place. Juvenile horses copy others, and this be-
haviour persists until they reach maturity. Tis behaviour,
which is likewise motivated by HOA and shown by i, may be
modeled using the following equations:

Table 1: Prior methods and tools and their specifcation.

Reference Method Fitness function
[5] PSO Single objective
[6] Firefy Single objective
[7] Hill climbing Single objective
[8] GA Single objective
[9] Two-archive genetic Multiobjective
[10] PSO-GA Single objective
[11] ACO Single objective
[12] SFLA-GA Single objective
[13] Hybrid gray wolf Hybrid single objective
[14] Chaos-based metaheuristic method Chaos-based single objective
[15] PESA-GA Multiobjective
[17] Java reverse engineering tool Single objective
[18] Hyper-heuristic method Multiobjective
[19] Object-oriented method Multiobjective
[20] Two-archive ACO Multiobjective
[21] Sand Cat swarm Single objective

Start

Initialisation

Fitness Evaluation

Horses Classification Based on Age

Best Solution

Motion Calculation

End

No

Yes

Data Structures

Update Horse Positions

Is Stop Criteria
Reached 

Figure 1: Flowchart of HOA.

Complexity 5



I
→Iter,AGE

m � i
Iter,AGE
m

1
pN

􏽘

pN

j�1

􏽢X
(Iter−1)

j
⎛⎝ ⎞⎠ − X

(Iter− 1)⎡⎢⎢⎣ ⎤⎥⎥⎦,AGE � c,

(9)

i
Iter,AGE
m � i

(Iter−1),AGE
m × ωi. (10)

In equations (9) and (10), I
→Iter,AGE

m indicates the
movement vector of ith horse in the top horse’s direction
with 􏽢X locations. pN is the quantity of horses located in the
best locations. p is considered as ten percent of the total

quantity of horses, and ωi indicates a decreasing factor per
cycle for iIter. Horses display a fght-or-fight reaction in
response to danger. Teir primary instinct is to run. Tey
also buck when caught. Horses instinctively compete for
food and water to avoid competition and potentially dan-
gerous environments, such as wolves. According to equa-
tions (11) and (12), horses’ defence mechanism acts in the
HOA by feeing away from people who exhibit incorrect
behaviours and the d factor describes it. Tis behaviour is
presented as a negative coefcient to keep horses away from
inappropriate postures.

D
→Iter,AGE

m � −d
Iter,AGE
m

1
qN

􏽘

pN

j�1

�X
(Iter−1)

j
⎛⎝ ⎞⎠ − X

(Iter− 1)⎡⎢⎢⎣ ⎤⎥⎥⎦,AGE � α, β and c, (11)

d
Iter,AGE
m � d

(Iter−1),AGE
m × ωd. (12)

In equations (11) and (12), D
→Iter,AGE

m signifes the ith

horse’s escape factor from the average of horses with the
worst position presented by the X vector. qN is the total
quantity of horses that have the worst position. ωd is the
decrement factor per dIter, and q is recommended to be
considered twenty percent of the total quantity of horses.
Te sixth horse behaviour infuenced by HOA is their
wandering attitude. A horse may occasionally choose to
graze in a diferent spot. Horses are inquisitive creatures who
want to explore new pastures and get familiar with their
environment. Stable walls are often built so that horses can
see each other and satisfy their curiosity. Roaming occurs in
young horses, and this behaviour fades as they develop.
According to the following equations, the HOA simulated

this behaviour as a random movement, which is denoted by
factor r.

R
→Iter,AGE

m � r
Iter,AGE
m pX

(Iter− 1)
,AGE � c and δ, (13)

r
Iter,AGE
m � r

(Iter−1),AGE
m × ωr. (14)

In equations (13) and (14), R
→Iter,AGE

m is the ith horse’s
random velocity vector to local search. ωr is the decrement
factor of rIter,AGEm per iteration. Te velocity vector is de-
termined by applying equations (3)–(14) and (2), and the
velocities of the δ, c, β, and α horses are computed using
equations (15)–(18), respectively.

V
→Iter,δ

m � g
(Iter−1),δ
m ωg(�u + ρ�l) + X

(Iter−1)
m􏽨 􏽩􏽨 􏽩 + i

(Iter−1),δ
m ωi

1
pN

􏽘

pN

j�1

􏽢X
(Iter−1)

j
⎛⎝ ⎞⎠ − X

(Iter− 1)⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

+ r
(Iter−1),δ
m ωrpX

(Iter− 1)
􏽨 􏽩,

(15)

V
→Iter,c

m � g
(Iter−1),c
m ωg(�u + ρ�l) + X

(Iter−1)
m􏽨 􏽩􏽨 􏽩 + h

(Iter−1),c
m ωh X

(Iter−1)
∗ − X

(Iter−1)
m􏽨 􏽩􏽨 􏽩

+ s
(Iter−1),c
m ωs

1
N

􏽘

N

j�1
X

(Iter−1)
j

⎛⎝ ⎞⎠ − X
(Iter−1)
m

⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦ + i
(Iter−1),c
m ωi

1
pN

􏽘

pN

j�1

􏽢X
(Iter−1)

j
⎛⎝ ⎞⎠ − X

(Iter− 1)⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

− d
(Iter−1),c
m ωd

1
qN

􏽘

pN

j�1

�X
(Iter−1)

j
⎛⎝ ⎞⎠ − X

(Iter− 1)⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦ + r
(Iter−1),c
m ωrpX

(Iter− 1)
􏽨 􏽩,

(16)

6 Complexity



V
→Iter,β

m � g
(Iter−1),β
m ωg(�u + ρ�l) + X

(Iter−1)
m􏽨 􏽩􏽨 􏽩 + h

(Iter−1),β
m ωh X

(Iter−1)
∗ − X

(Iter−1)
m􏽨 􏽩􏽨 􏽩

+ s
(Iter−1),β
m ωs

1
N

􏽘

N

j�1
X

(Iter−1)
j

⎛⎝ ⎞⎠ − X
(Iter−1)
m

⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦ − d
(Iter−1),β
m ωd

1
qN

􏽘

pN

j�1

�X
(Iter−1)

j
⎛⎝ ⎞⎠ − X

(Iter− 1)⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦,
(17)

V
→Iter,α

m � g
(Iter−1),α
m ωg(�u + ρ�l) + X

(Iter−1)
m􏽨 􏽩􏽨 􏽩 − d

(Iter−1),α
m ωd

1
qN

􏽘

pN

j�1

�X
(Iter−1)

j
⎛⎝ ⎞⎠ − X

(Iter− 1)⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦. (18)

3.2. Adaptation of HOA to Address the Problem of SMC

3.2.1. Specifcation of the Problem. Te discrete HOA
generated in this study was employed in the second phase
to address the SMC problem. Te proposed method
organises related modules using the MDG derived from
the program source code of the benchmark application.
Terefore, the input for the HOA consists of MDGs
extracted from the program source code of the bench-
mark. Figure 2 illustrates the extracted MDG from the
program source code. Te nodes in Figure 2 signify the
software modules, and the edges represent their con-
nections, including calls, inheritance, and associations.
Te fgure also shows six software product components
along with the corresponding dependency matrix. Values
within the matrix entries indicate the module connec-
tions. Te dependency matrix is constructed based on the
information gathered from the MDG. Various integrated
development environments such as Visual Studio, VS
Code, and Eclipse can automatically generate the MDG
from source code. To transform the MDG text fle into
a visual graph model, the Graphviz library can be
employed.

Each array, referred to as a clustering array, corre-
sponds to a horse in HOA. Figure 3 illustrates the structure
of the horse’s involvement in the problem of SMC, along
with the associated clustering MDG. Each array’s length
matches the quantity of modules in the source code. Te
array’s indices represent module numbers, and each index’s
values indicate the SMC technique’s cluster assignment. As
depicted in Figure 3, the clustering array is designed for
clustering a source code with twenty-two modules con-
sisting of the same number of cells. Modules “M1,” “M14,”
“M18,” and “M22” are grouped together in cluster 1 due to
module dependencies within the source code. Cluster 2 of
the MDGs contains “M2,” “M13,” “M16,” and “M21.” Te
SMC techniques aim to group those modules that share
similarities and dependencies into the same cluster.
Consequently, any modifcations made to a module’s code
within a cluster will probably infuence other modules
within the same cluster. Tis can help program developers
manage the propagation of impact when modifying the
source code of a module.

3.2.2. Te Objective Function. Using the recommended
strategy, MQ was employed as a quality factor to guide the
population. Te HOA utilises this factor to direct its search

for optimal clusters. Te authors in reference [8] introduced
this factor as a metric for assessing the quality of clustering.
Te high-quality clusters show strong cohesion and mini-
mum coupling, which is an indication of a well-designed
cluster with module components that are tightly inter-
connected. Te technique of evaluating clustering quality
(MQ) for a specifc cluster, denoted as k, is presented in
equation (19), where i is the count of internal connections
within the cluster and j signifes the count of external
connections. Equation (20) is utilised to assess all created
clusters’ overall quality, with m indicating the number of
clusters. TeMQ function strives to strike a balance between
intracluster cohesion and intercluster coupling, thereby
assessing the quality of clustering. Enhancing the cohesion of
individual modules within a cluster is essential while
maintaining an optimal level of coupling. In an ideal sce-
nario, a single cluster encompassing all modules might be
preferred but a tradeof between coupling and cohesion is
necessary in practice.

MFk �

0, if i � 0,

i

i +(1/2)j
, if i> 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

MQ � 􏽘
m

k�1
MFk. (20)

4. Evaluation System

4.1. Experimental Platform. To assess the performance of
the new algorithm, a large quantity of tests was con-
ducted on the developed platform. Te suggested HOA-
based approach, along with the other compared ap-
proaches, PSO, GA, PSO-GA, COA, and SCSO, were
implemented in MATLAB to facilitate comparison, and
throughout the testing, the parameters of all of these
algorithms were adjusted. Table 2 outlines the optimal
values of these parameters concerning the problem of
SMC. All experiments were executed on the same plat-
form, encompassing both software and hardware, to
achieve reliable results. Te testing was carried out using
ten conventional and real-world benchmark MDGs. Te
benchmark programs’ parameters are detailed in Table 3.
Tese benchmarks were chosen to represent real-world
complexities regarding module nodes and their

Complexity 7



connections (edges). Figure 4 visually represents the
MDG for the cia benchmark used in this study. Tis
software consists of 38 modules interconnected by 636
connections, with closely related modules grouped to-
gether. Te ftness function, defned by equation (20),
assesses the degree of similarity among modules. Te
proposed technique aims to cluster modules with the
highest degree of similarity into the same cluster. Te
MQ, cohesion, and coupling are 2.6089, 49, and 119,
respectively, as depicted in Figure 4. It is worth noting
that a higher MQ factor indicates a better quality of
clustering.

Troughout the experiments, various criteria of per-
formance were assessed. Te primary performance measure
for SMC approaches is modularization quality (MQ), which

serves as the key indicator of cluster quality. All SMC al-
gorithms aim to achieve clusters that have the highest MQ
value. Equation (20) was applied to evaluate the MQ value of
a cluster created for an MDG. MQ tends to be higher in
clusters that have lower coupling and greater cohesion. Te
determination of the optimal number of clusters is typically
based on empirical evidence. Another critical performance
aspect examined is the convergence speed, which refers to
the length of time taken by an SMC technique to identify the
optimal grouping, directly infuencing the rate of conver-
gence. Te rate of success is the other signifcant perfor-
mance requirement for SMC methods, representing the
method’s ability to identify the best clusters. Tis is de-
termined by executing each SMC approach ten times for
each program and computing the rate of success by dividing

Module A

Module DModule B Module C

Module E
Module F

A
B
C
D
E
F

Dependency Matrix Created From MDG

A B C D E F

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
1
1
1
0
0

1
0
1
0
0
0

Figure 2: Te MDG and its dependency matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
4 2 3 1 5 1 1 3 5 1 5 5 3 4 1 2 3 4 3 5 2 4

cluster4 cluster2 cluster3 cluster5 cluster1

M1

M18 M22 M4 M14 M21 M16 M13

M2 M3

M8 M17 M19

M5 M6

M7

M10

M9

M12 M11 M20 M15

Figure 3: Te structure of a horse in HOA used to cluster a program with 22 modules into 5 clusters.

8 Complexity



Table 2: Various SMC algorithms’ parameters that are adjusted experimentally.

Algorithms Parameters Value

GA

Quantity of chromosomes 40

Chromosome length Depends on the quantity
of modules

Rate of crossover 0.80
Rate of mutation 0.05

Quantity of iterations 100

PSO

Quantity of particles 40
Inertia weight 0.80

Damping ratio of inertia weight 0.99
Particle.C1 and Particle.C2 [1.5, 1.7]

Number of iterations 100

SCSO

Quantity of cats 40
Range of sensitivity (rG) [0, 2]

Range of phases control (R) [−2rG, 2rG]
Pc 0.80
Pm 0.04

COA

Quantity of nests 40
Lavy distribution parameter 1.50

Length of step 0.01
Number of iterations 100

HOA

Quantity of horses 40
hβ 0.90
hy 0.50
Sβ 0.20
Sy 0.10
dβ 0.20

Sy, Rδ 0.10
Ry 0.05

Table 3: Programs’ specifcations as benchmarks.

Programs Number of modules Number of connection Size
“mtunis” 20.0 57.0 Small
“spdb” 22.0 16.0 Small
“ispell” 24.0 97.0 Small
“rcs” 29.0 155.0 Mid
“bison” 37.0 117.0 Mid
“cia” 38.0 216.0 Large
“dot” 42.0 248.0 Large
“php” 62.0 636.0 Large
“grappa” 86.0 252.0 Large
“incle” 174.0 360.0 Large

MQ: 2.60899
Cohesion: 49
Coupling: 119

Number of edges: 636
Number of modules: 38

Number of clusters: 9

Figure 4: Te clustered MDG of cia with 38 modules and 636 connections between the modules.

Complexity 9



the count of times the ideal solution is achieved by 10. In
addition, stability is considered a reliability factor in SMC
techniques. Given the utilisation of various metaheuristic
algorithms in SMC techniques, the standard deviation
among the results achieved from multiple executions of the
SMC algorithms is utilised to assess the method’s stability. A
lower standard deviation value indicates a more stable
system.

4.2. Results. Ten distinct benchmark applications were
employed to evaluate the proposed methodology. Te
quality of the clusters produced by the suggested strategy
was examined using the MQ criteria. Each of the techniques
was executed ten times for every program. Determining the
optimal quantity of clusters for each program is a crucial
parameter in the problem of SMC, and this necessitates
empirical investigation. Several factors, including the
number of modules and the intermodule communication,
infuence the determination of the appropriate number of
clusters. Terefore, empirical data are essential. Te HOA
was applied to each program with a variable number of
clusters, and the results were compared to those of the other
fve algorithms (PSO, GA, PSO-GA, SCSO, and COA). In
the context of the problem of SMC, the techniques were
assessed on the basis of criteria such as the best MQ value,
average MQ value, convergence speed, success rate, and
stability. Te MQ values of clusters generated by various
SMC algorithms for diferent datasets are depicted in
Figures 5–7. Each approach was executed twenty times on
each benchmark dataset.

Figure 5 displays the MQ values for themtunis, rcs, spdb,
and ispell benchmarks obtained through various SMC ap-
proaches.mtunis is a small MDG that has 30 modules and 57
connections, on which all of the SMC approaches perform
similarly. All approaches converge to optimal solutions
(clusters with the best MQ value) in the 1st iteration, except
for COA. Spdb, the other smaller MDG, consists of 21
modules with 16 connections. As shown in Figure 5, HOA
and SCSO excel in MQ and the rate of success, with the
success rate of HOA and SCSO in the spdb benchmark
reaching nearly 100%. Te other midsize benchmark fre-
quently used as a standard in SMC benchmarks is ispell,
composed of 24 modules and 97 connections. Te HOA
signifcantly outperforms other SMC algorithms, with the
lowest and highest MQ values obtained by it for ispell being
2.2675 and 2.2922, respectively. Notably, the best MQ values
achieved by other algorithms are lower than HOA’s worst
result. Te last benchmark MDG, rcs, includes 29 modules
and 155 connections (edges). According to Figure 5, the
HOA shows better performance than the other SMC ap-
proaches in the value of MQ in this benchmark.

Figure 6 presents SMC algorithms’ performance on the
bison, cia, dot, and php benchmarks. Bison, the second
millennium development goal benchmark, comprises 37
modules and 167 connections. HOA signifcantly out-
performs the other SMC methods, achieving an MQ of
2.6554 in this benchmark, surpassing the MQ of the other
techniques. GA proves to be the second efcient SMC

algorithm in this test. Another benchmark, cia, has 38
modules and 166 connections. Te best and worst MQs for
this benchmark obtained by HOA in ten executions are
approximately 2.5565 and 2.4171, respectively. dot is the
other benchmark with 42 modules and 248 connections. In
line with the previous benchmarks, HOA performs signif-
icantly better than the other methods on dot benchmark.Te
php benchmark, containing 62 modules and 163 connec-
tions, is one of the key benchmarks used in the study.
Figure 7 illustrates that HOA excels signifcantly in one of
major benchmarks (incle), with theMQ of clusters generated
by HOA reaching 4.093 in the best case, surpassing the MQ
of other techniques. Following HOA, PSO-GA and SCSO
also produce substantial MQ results. grappa, featuring 86
modules and 295 connections, serves as another benchmark
used to test the performance of HOA. In the grappa
benchmark, HOA performs impressively, in line with its
performance in other MDGs.

Figure 8 presents the best MQ value achieved by the fve
compared SMC algorithms and the MQ achieved by HOA.
Each method was executed 10 times on each dataset to
determine the average MQ for MDGs. For small software
packages (mtunis, ispell, and rcs), all SMC algorithms
generate clusters of comparable quality in terms of MQ. As
shown in Figure 8, all algorithms produce clusters with the
same quality in the mtunis and rcs benchmarks although
there may be slight diferences among the created clusters
with the same MQ, which presents a challenge in software
engineering when selecting the best-clustered model among
them. HOA surpasses other strategies in terms of the average
MQ values obtained from 10 executions, with a signifcant
diference in large benchmarks. Te discrete HOA dem-
onstrates its potential in creating structural models for real-
world software that has a substantial amount of code.
According to experimental results, HOA consistently out-
performs the other fve algorithms in all benchmarks. Fig-
ure 9 illustrates the worst MQ achieved by HOA and the best
MQ obtained by the other SMC methods. Each method was
executed 10 times on each MDG dataset. For small software
packages (such as mtunis, ispell, and rcs), nearly all SMC
algorithms produce clusters of equivalent quality in terms of
MQ. However, HOA’s worst-case MQ surpasses the other
SMC algorithms in the ispell, bison, cia, php, grappa, and
incle benchmarks. Terefore, HOA outperforms the other
techniques based on the worst MQ values obtained from ten
executions.

Figure 10 depicts the MQ value of HOA, along with the
best MQ among the six SMC methods on average. For small
software packages (mtunis, spell, and rcs), all SMC algo-
rithms generate clusters of comparable quality in terms of
MQ, and all SMC algorithms perform similarly in the small
benchmarks. In bison, cia, dot, php, grappa, and incle,
clusters created by HOA exhibit signifcantly higher MQ
values compared to those generated by the other algorithms.
On average, HOA showed a better performance than the
other algorithm based on the average values of MQ obtained
from ten executions. Te diference in the average MQ
values between HOA and the other algorithms is particularly
notable in large benchmarks.

10 Complexity



Another important performance consideration is the
reliability of results obtained frommetaheuristic algorithms,
which are inherently indeterministic. In many cases,
a metaheuristic method with a higherMQmay generate low-
quality clusters. Terefore, it is essential to take into account
the standard deviation between values obtained during
successive executions. Figure 11 illustrates the standard
deviation of MQs derived from 10 iterations of each method.

In most benchmarks (excluding php), the standard deviation
among the results produced byHOA is lower than that of the
other fve methods. A smaller standard deviation indicates
a more reliable algorithm. Te average standard deviation
values for GA, PSO, PSO-GA, SCSO, COA, and HOA are,
0.07839, 0.07678, 0.11536, 0.09159, 0.08013, and 0.07183,
respectively. As demonstrated, HOA exhibits a lower
standard deviation compared to the other methods. Te key

2.3400

2.3200

2.3000

2.2800

2.2600

2.2400

2.2200

2.2000

MUTUNIS BENCHMARK

2.4000
2.3500
2.3000
2.2500
2.2000
2.1500
2.1000
2.0500
2.0000
1.9500
1.9000

ISPELL BENCHMARK

5.5000
5.3000
5.1000
4.9000
4.7000
4.5000
4.3000
4.1000
3.9000
3.7000

2.2000

2.1500

2.1000

2.0500

2.0000

1.9500

SPDB BENCHMARK

RCS BENCHMARK

GA
PSO
PSO-GA

SCSO
COA
HOA

GA
PSO
PSO-GA

SCSO
COA
HOA

GA
PSO
PSO-GA

SCSO
COA
HOA

GA
PSO
PSO-GA

SCSO
COA
HOA

Figure 5: MQ values of various SMC methods for mtunis, spdb, ispell, and rcs.

2.7000
2.6500
2.6000
2.5500
2.5000
2.4500
2.4000
2.3500
2.3000
2.2500
2.2000

2.6500
2.6000
2.5500
2.5000
2.4500
2.4000
2.3500
2.3000
2.2500
2.2000
2.1500
2.1000

BISON BENCHMARK

DOT BENCHMARK

2.6000

2.5500

2.5000

2.4500

2.4000

2.3500

2.3000

2.2500

4.3000

4.1000

3.9000

3.7000

3.5000

3.3000

3.1000

2.9000

CIA BENCHMARK

PHP BENCHMARK

GA
PSO
PSO-GA

SCSO
COA
HOA

GA
PSO
PSO-GA

SCSO
COA
HOA

GA
PSO
PSO-GA

SCSO
COA
HOA

GA
PSO
PSO-GA

SCSO
COA
HOA

Figure 6: MQ values of various SMC methods for bison, cia, dot, and php.

Complexity 11



advantage of HOA in addressing the SMC problem is its
ability to produce higher-quality clustered models as well as
improved reliability (lower standard deviation).

Figure 12 displays the average MQ values achieved by
diferent SMC algorithms for all clusters. Te average MQ
values for PSO, GA, PSO-GA, SCSO, COA, and HOA are

5.5000

5.0000

4.5000

4.0000

3.5000

3.0000

GRAPPA BENCHMARK
5.0000

4.5000

4.0000

3.5000

3.0000

2.5000

2.0000

INCLE BENCHMARK

GA
PSO
PSO-GA

SCSO
COA
HOA

GA
PSO
PSO-GA

SCSO
COA
HOA

Figure 7: MQ values of various SMC methods for grappa and incle.

mtunis spdb ispell Rcs bison Cia Dot Php Grappa Incle

Best MQ

0

1

2

3

4

5

6

M
Q

GA
PSO
PSO-GA

SCSO
COA
HOA

Figure 8: Te best values of MQ obtained by 10 executions of various SMC algorithms.

mtunis spdb ispell Rcs bison Cia Dot Php Grappa Incle AVG

Worst MQ

GA
PSO
PSO-GA

SCSO
COA
HOA

0

1

2

3

4

5

6

M
Q

Figure 9: Te worst values of MQ obtained by 10 executions of various algorithms.

12 Complexity



2.993, 2.869, 3.042, 3.107, 3.002, and 3.219, respectively. As
depicted in Figure 12, HOA consistently generates the
highest MQ value across all benchmarks. HOA’s perfor-
mance in the problem of SMC remains independent of the
size of MDGs. In all benchmarks, the best, worst, and av-
erage MQ values obtained by HOA surpass those of other
approaches. As a discrete method, HOA outperforms other
discretised algorithms in the SMC problem, such as PSO,
SCSO, and COA. Te structural models generated by HOA
exhibit superior quality, characterised by lower coupling and
higher cohesion, compared to models generated by the other
SMC approaches. On average, in all benchmarks, HOA
outperforms competing algorithms with regards to average,
best, and worst performance.

Additional experiments were conducted to assess the
performance of HOA in comparison to existing SMC
tools. Bunch [8] was selected as the automated SMC tool
for a comparative analysis with HOA. Tis tool employs
HC and GA algorithms to cluster software modules,
taking the MDG matrix as an input and producing the
clustered model using those two algorithms. Te MQ
value of models created by both Bunch and HOA was
compared. As shown in Figure 13, HOA consistently
exhibits higher average MQ values across all benchmarks,
outperforming Bunch in each case. Te average MQ for
Bunch is 2.138, while HOA achieves an average MQ of
3.219. HOA’s ability to generate more efective and
comprehensible structural models ofers software de-
velopers valuable tools for the maintenance phase. It is
worth noting that Bunch employs both GA and HC as
SMC tools, with the GA outperforming HC in most
benchmarks. Researchers and developers have widely
used Bunch’s results for clustering software modules. In
a previous study [6], a modifed version of the frefy
algorithm was developed as an SMC algorithm and its
results were compared to Bunch. In those experiments,
the frefy algorithm demonstrated a higher MQ than
Bunch (HC and GA). Furthermore, the results obtained by

HOA were compared to those of Bunch (GA), and as
indicated in Figure 13, the proposed HOA exhibited
superior performance in terms of MQ compared to the
Bunch tool.

Table 4 presents theMQ values provided by various SMC
methods along with their associated standard deviations.
Te proposed HOA, which is a discrete optimisation al-
gorithm that leverages swarm intelligence, outperforms the
other algorithms, as indicated in Table 4. HOA achieves
a higher MQ while maintaining a lower standard deviation
compared to its counterparts. A lower standard deviation
across multiple executions signifes greater result stability.
Te reliability of results from a heuristic algorithm hinge on
its stability, and HOA’s lower standard deviation translates
into higher stability. Terefore, HOA demonstrates superior
reliability compared to the other algorithms across multiple
executions. In summary, in the context of the problem of
SMC, which is a graph-based discrete optimisation chal-
lenge, HOA consistently outperforms other efective algo-
rithms, including PSO, GA, PSO-GA, SCSO, and COA.

Te computational complexity of HOA is a measure of
how long it takes for this algorithm to solve the SMC
problem. It considers factors such as the quantity of
search agents and the maximum quantity of iterations to
evaluate the complexity cost of HOA. HOA strikes a fne
balance between exploration and exploitation, efectively
reducing the computational complexity of the problem of
SMC by utilising the six elements in the movement of the
horses. By implementing a sorting mechanism within
a global matrix, HOA employs an efective strategy to
prevent getting stuck in local optima. Tis global matrix is
constructed by combining the positions (X) of the horses
and their respective costs (C (X)), where X represents the
positions and C (X) signifes the associated costs for each
position. In addition, d and m denote the dimension
quantity of the problem and the quantity of horses, re-
spectively. In the subsequent step, the global matrix is
sorted on the basis of the last column, which contains the

mtunis spdb ispell Rcs bison Cia Dot Php Grappa Incle AVG

Average MQ

GA
PSO
PSO-GA

SCSO
COA
HOA

0

1

2

3

4

5

6

M
Q

Figure 10: Te average values of MQ obtained by 10 executions of various algorithms.

Complexity 13



costs. HOA takes advantage of a swift matrix sorting
system; as a result, the computational cost (O) during the
sorting step varies between O (m × log (m)) in the best-

case scenario and O (m2) in the worst-case scenario. Te
execution times of various SMC algorithms are provided
in Table 5.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

mtunis spdb ispell Rcs bison Cia Dot Php Grappa Incle AVG

Standard Deviation

GA
PSO
PSO-GA

SCSO
COA
HOA

Figure 11: Te standard deviation among the MQ values generated as a result of ten executions of various algorithms.

2.869

2.993
3.042

3.107

3.002

3.219

GA PSO PSO-GA SCSO COA HOA
Benchmarks

AVG MQ

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Av
er

ag
e M

Q

Figure 12: Te average MQ values of generated clusters for all benchmarks by various algorithms.

Benchmarks

bi
so

n ci
a

do
t

m
tu

ni
s

rc
s

stu
nn

el

ph
p

gr
ap

pa

ac
qC

IG
N

A

AV
G

isp
el

l0

1

2

3

4

5

6

Av
er

ag
e M

Q

Bunch Tool
HOA

Figure 13: Performance comparison of HOA with the Bunch SMC tool.

14 Complexity



5. Conclusion

Te source code of a complex program may not inherently
reveal its structure. Identifying the afected code segments
within a program’s source code during maintenance is
among the most difcult challenges in software engi-
neering. Clustering the program’s modules can reduce
maintenance costs by enhancing the code’s comprehen-
sibility. Tis research developed a discrete variant of the
HOA as a metaheuristic approach for creating a clustered
design model for source code programs. A selection of
real-world software applications served as benchmark
programs. Te proposed HOA-based method employs
local and global search operators to explore the solution
space. It is specifcally designed to avoid the local optima
and maintain a balance between cohesion and coupling.
Along with HOA, fve distinct clustering algorithms were
devised and assessed for their performance. Multiple tests
were conducted on ten diferent software source codes to
evaluate the proposed method’s efectiveness. HOA
showed better performance in comparison with other
algorithms, including PSO, GA, PSO-GA, SCSO, and
COA, in terms of MQ, cohesion, coupling, and stability,
particularly in the context of larger software projects. A
potential avenue for future research is the development of
algorithms that remain efective regardless of the software
product size. In addition, it might be worthwhile to ex-
plore the impact of chaotic equations on the efectiveness
of HOA further. Another promising direction for future

work is the integration of various swarm and
evolutionary-based methods into the problem of SMC,
which could yield improved results. Researchers are en-
couraged to explore enhancements to the ftness function
to accommodate novel software metrics. It is worth noting
that while recent studies have introduced global modules
as universal criteria, they are not currently incorporated
into the MQ metric. Global modules are modules that
receive calls from multiple independent modules but do
not initiate any calls. Furthermore, potential future re-
search could involve investigating optimisation methods
proposed in [23–25] within the context of SMC tech-
niques. Te development of novel data clustering algo-
rithms could be explored as approaches to module
clustering. Finally, creating a new experimental platform
for investigating additional evaluation criteria is sug-
gested as part of future studies.

Data Availability

Te data used to support the fndings of this study can be
accessed via the following link: https://drive.google.com/drive/
folders/1jRUhLXzlofWJaujB2_FRs06v73KtAKu-?usp=sharing.

Disclosure

Te data used in the current research do not belong to any
other individual or third party and have been prepared and
generated by the authors during the study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

Te horse herd optimization algorithm was developed and
discretised by Bahman Arasteh and Asgarali Bouyer. Te
designed algorithm was implemented and coded by Bah-
man Arasteh. Te implemented HOA code was adapted
and benchmarked by Bahman Arasteh and Farhad Sol-
eimanian Gharehchopogh. Te generation of the MDG
matrix from the source code of the benchmark programs
was performed by Bahman Arasteh and Asgarali Bouyer.

Table 4: Te average MQ values obtained by various methods and the standard deviation (STDV) among them.

PSO PSO-GA SCSO COA HOA
MQ STDV MQ STDV MQ STDV MQ STDV MQ STDV

mtunis 2.3140 0.0000 2.3140 0.0000 2.3140 0.1082 2.3140 0.0000 2.3140 0.0000
spdb 4.7744 0.0330 4.6180 0.3870 5.0000 0.0000 4.7844 0.0314 4.8142 0.0168
ispell 2.1690 0.0111 2.1660 0.0603 2.1520 0.0400 2.1800 0.0100 2.2790 0.0088
rcs 2.1170 0.0231 2.0900 0.0910 2.1260 0.0215 2.1380 0.0129 2.1434 0.0204
bison 2.3640 0.0500 2.3300 0.0546 2.39.5 0.0871 2.3213 0.0483 2.6169 0.0644
cia 2.4026 0.0682 2.4639 0.0294 2.4106 0.0669 2.4108 0.0661 2.5220 0.0454
dot 2.4009 0.0370 2.4461 0.1527 2.3949 0.0672 2.4158 0.0813 2.4994 0.0300
php 3.4232 0.1507 3.5141 0.1391 3.4743 0.1513 3.4013 0.1099 3.8761 0.1790
grappa 4.2498 0.2580 4.4001 0.2023 4.8431 0.1874 4.2284 0.3109 4.8721 0.2393
incle 3.7151 0.1367 4.0812 0.2023 3.9690 0.1863 3.8288 0.1305 4.2615 0.1142
AVG 2.9930 0.0767 3.0423 0.1153 3.1074 0.0915 3.0022 0.0801 3.2198 0.0718

Table 5: Average execution time of SMC algorithms in ten iter-
ations (in ms).

Programs PSO-GA PSO GA HOA
“rcs” 9.170 8.000 6.150 5.310
“incl” 16.000 14.500 9.000 9.140
“grappa” 16.040 11.080 7.150 6.400
“modulizer” 6.040 5.190 3.810 5.610
“Compiler” 3.830 3.100 2.000 3.000
“mtunis” 4.710 2.990 2.610 3.670
“bison” 5.900 5.430 3.990 3.170
“boxer” 3.520 3.000 1.790 2.950
“acqcigna” 13.230 10.970 8.150 7.620
“ispell” 4.700 4.190 3.520 3.910

Complexity 15

https://drive.google.com/drive/folders/1jRUhLXzlofWJaujB2_FRs06v73KtAKu-?usp=sharing
https://drive.google.com/drive/folders/1jRUhLXzlofWJaujB2_FRs06v73KtAKu-?usp=sharing


Te data and results analysis were performed by Reza
Ghanbarzadeh and Farhad Soleimanian Gharehchopogh.
Te manuscript of the paper was written by Bahman
Arasteh and Hamed Alipour Banaei and proofread by
Farhad Soleimanian Gharehchopogh.

References

[1] Amarjeet and J. K. Chhabra, “Harmony search based
remodularization for object-oriented software systems,”
Computer Languages, Systems and Structures, vol. 47,
pp. 153–169, 2017.

[2] J. Sun and B. Ling, “Software module clustering algorithm
using probability selection,” Wuhan University Journal of
Natural Sciences, vol. 23, no. 2, pp. 93–102, 2018.

[3] J. K. Chhabra, “Improving the modular structure of software
system using structural and lexical dependency,” Information
and Software Technology, vol. 82, pp. 96–120, 2017.

[4] J. Yuste, A. Duarte, and E. G. Pardo, “An efcient heuristic
algorithm for software module clustering optimization,”
Journal of Systems and Software, vol. 190, Article ID 111349,
2022.

[5] A. Prajapati and J. K. Chhabra, “A particle swarm
optimization-based heuristic for software module clustering
problem,” Arabian Journal for Science and Engineering,
vol. 43, no. 12, pp. 7083–7094, 2018.

[6] A. Mamaghani and M. Hajizadeh, “Software modularization
using the modifed frefy algorithm,” in Proceedings of the
8th.Malaysian Software Engineering Conference (MySEC),
Langkawi, Malaysia, September 2014.

[7] K. Mahdavi, M. Harman, and R. M. Hierons, “A multiple hill
climbing approach to software module clustering,” in Pro-
ceedings of the International Conference on Software Main-
tenance, ICSM, IEEE, Amsterdam, Te Netherlands,
September 2003.

[8] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. B. Gansner,
“A clustering tool for the recovery and maintenance of
software system structures,” in Proceedings IEEE International
Conference on SoftwareMaintenance 1999 (ICSM’99), Oxford,
UK, September 1999.

[9] K. Praditwong, M. Harman, and X. Yao, “Software module
clustering as a multi-objective search problem,” IEEE
Transactions on Software Engineering, vol. 37, no. 2,
pp. 264–282, 2011.

[10] B. Arasteh, S. Razieh, and A. A. Keyvan, “A software modules
clustering method using the combination of particle swarm
optimisation and genetic algorithms,” Intelligent Decision
Technologies, vol. 14, pp. 449–462, 2020.

[11] E. Hatami and B. Arasteh, “An efcient and stable method to
cluster software modules using ant colony optimization al-
gorithm,” Te Journal of Supercomputing, vol. 76, no. 9,
pp. 6786–6808, 2020.

[12] B. Arasteh, R. Sadegi, and K. B. Arasteh, “Bölen: software
module clustering method using the combination of shufed
frog leaping and genetic algorithm,” Data Technologies and
Applications, vol. 55, no. 2, pp. 251–279, 2021.

[13] B. Arasteh, M. Abdi, and A. Bouyer, “Program source code
comprehension by module clustering using combination of
discretized gray wolf and genetic algorithms,” Advances in
Engineering Software, vol. 173, Article ID 103252, 2022.

[14] B. Arasteh, “Clustered design-model generation from a pro-
gram source code using chaos-based metaheuristic algo-
rithms,” Neural Computing & Applications, vol. 35, no. 4,
pp. 3283–3305, 2022.

[15] B. Arasteh, A. Fatolahzadeh, and F. S. Kiani, “Savalan: multi
objective and homogeneous method for software modules
clustering,” Journal of Software: Evolution and Process, vol. 34,
no. 1, p. e2408, 2022.

[16] Y. Chen, “Reverse engineering,” in Practical Reusable Unix
Software, B. Krishnamurthy, Ed., pp. 177–208, John Wiley &
Sons, Hoboken, NJ, USA, 1995.

[17] J. Korn, Y. Chen, and E. Koutsofos, “Chava: reverse engi-
neering and tracking of java applets,” in Proceedings of the
Working Conference on Reverse Engineering, Atlanta, GA,
USA, October 1999.

[18] A. C. Kumari, K. Srinivas, and M. Gupta, “Software module
clustering using a hyper-heuristic based multi-objective ge-
netic algorithm,” in Proceedings of the 3rd IEEE International
Advance Computing Conference (IACC), IEEE, Ghaziabad,
India, February 2013.

[19] J. K. Chhabra, “Improving package structure of object-
oriented software using multi-objective optimisation and
weighted class connections,” Journal of King Saud University-
Computer science, vol. 29, pp. 349–364, 2017.

[20] A. J. K. Chhabra, “TA-ABC: two-archive artifcial bee colony
for multi-objective software module clustering problem,”
Journal of Intelligent Systems, vol. 27, pp. 619–641, 2018.

[21] B. Arasteh, A. Seyyedabbasi, J. Rasheed, and M. Abu-Mah-
fouz, “Program source-code Re-modularization using a dis-
cretized and modifed sand cat swarm optimisation
algorithm,” Symmetry, vol. 15, no. 2, 2023.

[22] F. MiarNaeimi, G. Azizyan, and M. Rashki, “Horse herd
optimisation algorithm: a nature-inspired algorithm for high-
dimensional optimisation problems,” Knowledge-Based Sys-
tems, vol. 213, Article ID 106711, 2021.

[23] M. S. Mahmud, J. Z. Huang, V. Ruby, A. Ngueilbaye, and
K. Wu, “Approximate clustering ensemble method for big
data,” IEEE Transactions on Big Data, vol. 9, no. 4,
pp. 1142–1155, 2023.

[24] M. S. Mahmud, J. Z. Huang, R. Ruby, and K. Wu, “An en-
semble method for estimating the number of clusters in a big
data set using multiple random samples,” Journal of Big Data,
vol. 10, no. 1, p. 40, 2023.

[25] M. Behera, A. Sarangi, D. Mishra et al., “Automatic data
clustering by hybrid enhanced frefy and particle swarm
optimization algorithms,” Mathematics, vol. 10, no. 19,
p. 3532, 2022.

16 Complexity




