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cloud-based IoT services [12], cloud-fog computing [13] as
well as critical support for the 5G communication in-
frastructure [14] and the applications associated with it, such
as Ultra High Defnition videos, Telemedicine, and Smart
City/Industry/Factory/Home [15]. Similarly, MCF has been
identifed as a complement of elastic optical networks to
deliver the high capacity required by current and future
applications, as well as the driving force to provide cost-
efcient solutions for high-capacity submarine cables
[16, 17], a key infrastructure underpinning Internet. Cur-
rently, applications requiring the combination of MCF [18]
with the efcient use of the spectrum ofered by dynamic
elastic optical networks [19] have also been identifed in
scenarios such as intradata center networks [20, 21]. Going
beyond the current technological state, expectedMultimedia
3D Services for 6G networks such as Tactile/Haptic Internet,
Video Games/Streaming as a 3D Service, and Deep-Sea
Sightseeing [15] will certainly require a network capacity
that only will be provided by the combination of MCF and
dynamic EONs, termed as dynamic MCF-EON from
now on.

One of the main challenges of dynamic MCF-EONs is
the design of efcient routing, modulation, spectrum, and
core assignment (RMSCA) strategies for establishing optical
connections with as low blocking probability as possible.
Most RMSCA proposals use heuristic approaches that
consider the impact of intercore crosstalk (intercore XT) on
optical signal quality, as described in [19, 22–25]. Although
rule-based heuristics are computationally simple, their
performance depends on the ability of the designer to detect
the best set of rules defning the heuristic behavior [26]. In
recent years, it has been shown that in most cases, deep
reinforcement learning (DRL) techniques applied to solve
resource allocation problems in dynamic elastic optical
networks outperform rule-based systems [27, 28]. DRL has
the ability to explore solutions other than those detected by
the expert knowledge of the human designer. As a result, it
has the potential of generating new nonobvious policies
from the experience gained after training in a relevant
environment [29].

1.1. Related Work. In dynamic scenarios, DRL was applied
to solve the routing, modulation, and spectrum assignment
(RMSA) problem in single-domain EONs [27, 28, 30, 31],
multidomain EONs [32], multiband EONs [33, 34] ,and
survivable EONs operating under shared protection [35]; the
problem of energy-efcient trafc grooming in fog-cloud
EONs [36], the problem of establishing and reconfguring
multicast sessions in EONs [37], the fragmentation miti-
gation problem [38], and the resource allocation problem
with advanced reservation (AR) in EONs for cloud-edge
computing [39]. Only one previous work has studied the
application of DRL on MCF networks [40], but this work
focused on fxed-grid networks. In this paper, we extend the
work reported in [27, 30, 31] by applying DRL to dynamic
MCF-EONs for the frst time.

In the context of dynamic MCF or MCF-EON networks,
with the exception of [40], only supervisedmachine-learning

techniques have been applied so far. Tese consist of
techniques for making inferences based on expert-labeled
data. Tus, instead of taking actions, supervised learning
algorithms perform estimations or classifcations [41]. For
example, the authors of [42, 43] used supervised learning to
predict future connection requests in dynamic MCF-EONs
to perform a crosstalk-aware resource allocation in advance.
Instead, the authors in [44] used machine learning to es-
timate the intercore XT to then execute a crosstalk-aware
allocation algorithm. All these studies have used machine
learning as an auxiliary process to improve the heuristic
allocation, either by predicting future trafc or transmission
quality. In none of them, machine learning had direct
participation in the decision-making related to resource
allocation.

1.2. Paper Contribution. To the best of our knowledge, there
are no previous studies on applying DRL to solve the
RMSCA problem in dynamic MCF-EONs. In this paper, we
present, for the frst time, the implementation and testing of
a new dynamic MCF-EON environment where four dif-
ferent DRL agents are trained to solve the RMSCA problem.
Te results obtained by the best-performing agent are then
compared to 3 baseline heuristics.

Te rest of this article is organized as follows: Section 2
presents the DRL system developed, Section 3 describes the
performance evaluation experiments, and Section 4 con-
cludes the paper.

2. DRL for Dynamic MCF-EONs

A DRL system can be summarized as an agent (an entity
equipped with a learning algorithm) that—during its
training phase—learns to make good decisions by inter-
acting with an environment [45, 46].

In the context of RMSCA, the agent must learn to al-
locate optical resources to connection requests such that
they are not blocked. Blocking can happen due to physical
impairments or lack of spectral continuity or contiguity in
the chosen route. A good allocation decision makes the
environment give the agent a high-value reward.

Formally, a DRL system can be modeled as a Markov
Decision Process (MDP) described by the 6-tuple {S,A,T,
R, s0, c} [29], where the following takes place:

(i) S (States): Set of possible states describing the status
of the system. In this work, the state st is described
by the link spectrum utilization, at time step t, of
each candidate route per core between the source
and destination node of connection request crt. Te
latter is defned by the tuple o, d, h, b{ }, where o is the
source node, d is the destination node, h is the
holding time of the request, and b is the bitrate of
the demand.

(ii) A (Actions): Set of actions the agent can take. In this
work, an action at at time step t is a triplet (k, c, j),
where k is the selected route (out of K pre-computed
routes) c the identifer of the core (out of C cores),
and j the identifer of a block of contiguous slots that
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can accommodate the demand of crt (out of J

blocks).
(iii) T(st+1|st, at) (Transition probability): Probability

distribution that the system transits to state st+1,
given the system is in state st and the agent takes
action at when receiving connection request crt.

(iv) R(st, at, st+1) (Reward): Te reward function that
defnes the immediate reward (rt) received when
transiting to state st+1 due to action at while in state
st. In this work, the reward is designed to be equal to
1 if the request is accepted and − 1 if it is rejected.

(v) s0 (Initial state): Te state of the network at the start
of the decision process. In this work, this state
corresponds to all routes having all spectrum slots
available in all links and cores.

(vi) c (Discount factor): A parameter ∈ ⌈0, 1) that sets
the importance of current and future rewards. Tis
factor adjusts the process of exploration and ex-
ploitation of agents in the environment [29].

Te evolution of the DRL system defned above is as
follows: During a training episode—made of a fnite amount
of time steps—an agent learns to make good decisions by
interacting with the environment at each time step t [45, 46].
To do so, upon receiving a connection request crt with the
system in state st, the agent generates an action at. Such
action makes the environment transit to the state st+1 with
probability T(st+1|st, at) and the agent receives a reward
Rt(st, at, st+1). Te objective of the agent is maximizing the
expected future discounted reward. Tus, by repeating this
process during the training episode, the agent will learn
a policy π∗(a|s) that leads to maximizing the return func-
tion, Γt, defned as

Γt � 􏽘t∈[t,∞) c
t′− t

· Rt′ . (1)

Te details of the state modeling are as follows: We
extend the state defned in [27] by considering the diferent
cores.Tus, the state is represented as an array of 1 × (2|V| +

1 + (2J + 3) · K · C) elements, where |V| is the number of
nodes of the optical network. Te extended state is then
given by

st � o, d, h, b, z
1,j

k,c, z
2,j

k,c􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌j∈ 1,...,J{ }

􏼚 􏼛􏼚 ,

z
3
k,c, z

4
k,c, z

5
k,c􏽯k∈ 1,...,K{ }

|c∈ 1,...,C{ },

(2)

where a one-hot encoding is used to identify the origin and
destination nodes. Each subcomponent z in the vector
mentioned above is as follows: For each core c ∈ C and route
k ∈ K between o and d nodes, z

1,j

k,c is the size of j − th block
that can accommodate the connection request. z

2,j

k,c is the
index of the frst slot of each block j. Te third component,
z3

k,c, is the number of FSUs required to establish the con-
nection (given the modulation format used). Finally, z4

k,c, the
average number of FSUs available in all J blocks in route k

and core c is included, and z5
k,c is the total number of FSUs

available in the route k in core c.

In our resource allocation problem, the environment is
programmed to represent the operation and constraints of
a dynamic MCF-EON. When a connection request arrives
during the training phase, the agent decides what resources
to allocate. At the beginning of its training, the agent makes
random decisions (exploration process). Ten, the envi-
ronment determines whether the set of resources identifed
by the agent is feasible and gives the agent feedback about the
quality of its decision. Tis information, stored in the ex-
perience bufer of the agent, allows the agent to learn. As
a result, it starts to select better actions (exploitation process)
for future requests. Better actions result in the agent earning
a high cumulative reward. After an agent has fnished its
training stage, it can be evaluated (testing stage) by having it
to process a new set of connection requests.

Te implementation of any DRL system is done in two
stages as follows:

(i) Stage 1: Environment Design and Implementation.
Te environment is a program that receives the
agent’s action, processes it, and sends back feedback.
Te specifc feedback depends on the results of the
agent’s action on the environment.Te environment
must consider the characteristics and constraints of
the existing system to process the action. In the case
of an optical network, the environment must
manage information about the network topology
and status and model the network operation (in-
cluding physical phenomena related to the signal
transmission and spectrum allocation constraints).

(ii) Stage 2: Agent Training. Te agent must frst acquire
knowledge about the environment. Tis training is
done by exploration and exploitation. When ex-
ploring, the agent selects random actions to learn
how the environment reacts and stores such
knowledge. When exploiting stored knowledge, the
agent makes informed decisions to select the fol-
lowing action: During exploration and exploitation,
the agent receives feedback from the environment,
which the agent uses to update its knowledge
(policy). In this way, the agent’s training progresses.

In the following section, these two stages are described in
detail in the context of dynamic MCF-EONs.

2.1. Stage 1: EnvironmentDesign and Implementation. In this
work, the toolkit Optical RL-Gym, developed by Natalino
and Monti [31] to facilitate the implementation and repli-
cability of deep reinforcement learning environments for
optical networks was extended by creating a new environ-
ment: DeepRMSCAEnv. Such an environment encapsulates
all the necessary functions to simulate an MCF-EON.

Te right part of Figure 1 shows a schematic of the
implemented environment, including its main components
and interactions. Dashed and thick lines modules are
modules from the Optical RL-Gym toolkit that had to be
modifed and developed from scratch, respectively, to model
an MCF-EON environment correctly.

Complexity 3



Te environment can be considered made of an event-
driven dynamic MCF-EON simulator and a feature engi-
neering module.Te former is responsible for processing the
connection requests according to the agent’s action and
sending the relevant information to the feature engineering
module. Te latter is responsible for preparing and sending
feedback to the agent (reward and observation).

Te dynamic MCF-EON simulator consists of fve
components. Two of these store data about the network as
follows:

(i) Network Information. Tis component stores the
graph representation of the network and the link
capacity, considering the multicore nature of links. It
also stores the K alternatives routes for each source-
destination pair, the modulation format used as
a function of the route length distance, and the
network information, coded as in [27].

(ii) Network Utilization. Tis component stores the
utilization of each slot (available or used) for each
network link and core.

Te remaining 3 components perform specifc tasks

(i) Trafc Generator.Tis component is responsible for
the random generation of connection establishment
and release requests. At time step t, connection
request crt is sent to the agent and the request
processor component. Connection release requests
are sent only to the request processor.

(ii) Request Processor. Tis component receives several
inputs. Te frst two are the connection establish-
ment or release request and the action of the agent
(in the case of a connection request). When con-
nection requests crt are received at time step t, the
Request Processor module receives st from the
Route Utilization module and sends it to the agent,
then the Request Processor module waits for the
action of the agent. Once the action, at, is received,
the Request Processor frst determines the number

of slots the connection requires. To do so, the most
efcient modulation format that ensures a QoT [47]
is frst selected (QoT has been transformed into
a maximum reach, as shown in Table 1). Te cal-
culation of the number of slots is the same described
in Section 2 of [27]. Next, it checks the network
topology (input from the network information
module) and the network utilization (input from the
network utilization module) to evaluate the avail-
ability of the resources selected by the agent. It also
obtains information from the XT calculator com-
ponent regarding the feasibility of the allocation in
terms of crosstalk. If resources are available and
a positive answer is received from the XTcalculator,
then resources are allocated, and the corresponding
information is updated on the network utilization
module. Information about a successful establish-
ment is also sent to the Reward Generator module.
If resources cannot be allocated, information about
the failed establishment is sent to the Reward
Generator component only. When a connection
release is received, the Request Processor compo-
nent updates the network utilization module to
make the released resources available.

(iii) XT Calculator. Tis component calculates the
intercore crosstalk (XT), defned as the interference
between optical connections in neighboring cores
using the same frequency slots. It receives in-
formation about the resources selected by the
agent’s action at (length of the links composing the
route and core) and the route-level utilization in-
formation from the network utilization module and
evaluates the XT. For generic MCF systems, with
any number of cores in any geometric arrangement,
the steps to calculate the mean XT afecting a con-
nection established in core x are as follows:

(a) Calculate the mean XT per unit of length be-
tween core x and adjacent core y, wx,y as

Agent

Reward
Generator

Experience Data
Generator

Routes
Utilization

Connection Request

Action

1

2

3

DeepRMSCA Environment

Policy

Learning
algorithm

Policy
update

Establishment/
release request

Request
Processor

Network
Information

Network
Utilization

Traffic
Generator

State st

State

Reward

Experience
Buffer

Experience Data

Feature
Engineering

MCF-EON
Simulator

XT
Calculator

Figure 1: Interaction between a DRL agent and the MCF-EON environment developed: DeepRMSCAEnv.
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wx,y �
2g

2
q

βΛx,y

, (3)

where g, q, β, and Λ are the coupling coefcient,
radius of curvature (or bending), constant
propagation, and the distance between cores x

and y, respectively.
(b) Calculate the total mean XT afecting core x,

XTx, by adding the crosstalk contribution of all
its adjacent cores. Tat is,

XTx � 􏽘
n

y�1
wx,y · L, (4)

where n is the number of cores adjacent to core
x and L the length of the link.

For the specifc case where cores follow a triangular or
hexagonal geometric arrangement and diferent pairs of
cores are equidistant, equation (5) has been found to be
a better approximation to calculate XTx [19], as given as
follows:

XTx �
n − n · exp [− (n + 1) · wL]

1 + n · exp [− (n + 1) · wL]
, (5)

where, as in equation (4), n represents the number of cores
neighbouring x, and L is the length of the link.Te term w is
given by equation (3) (subindices have been dropped since
the distance between all core pairs is assumed to be the
same).

An XT threshold value for diferent modulation formats
is defned in [48, 49] such that the signal quality is ac-
ceptable. If XT exceeds this predefned threshold (summa-
rized in Tables 1 and 2), a negative answer is sent to the
request processor (− 1). Otherwise, a positive answer is
sent (1).

Te feature engineering module in Figure 1 is re-
sponsible for preparing the information to be sent back to
the agent. It is made of three components as follows:

(i) Reward Generator. Tis component calculates the
numerical reward to be sent to the agent depending
on the information received from the Request
Processor component. In this work, a successful
resource allocation returns a reward equal to 1 and
a failed allocation equal to − 1. Connections can be
rejected due to a lack of spectrum resources along
the route selected by the agent, because of crosstalk
among cores exceeding the predefned threshold, or
because the length of the route selected by the agent
is longer than the maximum optical reach of any
modulation format (such limit depends on the
modulation format and a bit-error-rate threshold,
as in Table 1 of [50].

(ii) Routes Utilization. Tis component receives the
routing information from the network information
component and the utilization state of the slots in
the K shortest routes between the origin and des-
tination nodes of connection request crt from the

network utilization module. Tis information is
then consolidated in a 1D vector made of (K · C · J)

elements, where K is the number of alternative
routes, C is the number of cores, and J is the number
of blocks with enough available slots to establish the
connection request being processed.

(iii) Experience Data Generator. Tis component builds
the information to be stored in the Experience
Bufer which is a collection of tuples (at, st, rt, st+1)

generated during the training process.

2.2. Stage 2: Agent Training. Te left side of Figure 1 shows
the interaction between the agent and the DeepRMSCAEnv
environment during the training stage.

Te agent aims to maximize its long-term reward. Tat
is, selecting actions leads to the highest number of con-
nection requests established. To achieve this goal, the agent is
built considering two main components.

2.2.1. Policy. Tis component is where the knowledge of the
behavior of the agent is embedded. At a given time, t receives
a connection establishment request, crt as input along with
state st, and action at is outputted. Te action is defned by 3
integer numbers, namely, a route identifer k (selected out of
K possible precomputed routes), a core identifer c (selected
out of C possible cores), and the identifer j of the block
selected. Tese values defne which route, core, and spec-
trum resources should be assigned to each request. As the
agent successfully allocates more connection requests, the
policy becomes better. At the end of the training, the policy
is expected to allow the agent to defne which action has the
highest probability of not being blocked. Figure 2 shows
a simplifed example of two possible actions that might be
taken by the agent, given a specifc st.

On the left part of the fgure, a 5-node network topology
and a connection establishment request of 2 slots between
nodes 5 and 3 are shown. Te demand is represented by the

Table 1: Maximum reach for each modulation format [50].

Modulation format Max. reach (km)
64QAM 250
32QAM 500
16QAM 1000
8QAM 2000
QPSK 4000
BPSK 8000

Table 2: XT threshold for each modulation format [49].

Modulation format XT threshold (dB)
64QAM − 34
32QAM − 27
16QAM − 25
8QAM − 21
QPSK − 18
BPSK − 14

Complexity 5



red boxes (2 slots in this case) plus the grey box (1 slot used as
a guard band). Te number of slots required to serve the
connection (red squares) is determined by the modulation
format, using the same method presented in [27]. One guard
band of 1 slot is considered for each connection request to
achieve a good trade-of between the quality of transmission
and the blocking probability [51].

Let us assume that the network is equipped with three
cores per link, and the agent can select either route 1 (k � 1),
represented by the red link in the topology, or route
2 (k � 2) by the green links. In addition to a route, the agent
must also select a core and a slot. On the right side of the
fgure, the spectrum utilization of both routes is shown. Red
and grey squares represent used FSUs. A row of squares
represents the slot utilization in a specifc core for a specifc
route. Tus, the three rows on the upper and lower part of
the fgure represent the slot utilization on the three cores of
the frst and second routes, respectively.

If the agent selects Action 1, depicted in the upper part of
the fgure, then action at � [1, 2, 1] is sent back to the en-
vironment, signaling that the agent selects slot 11 as the
initial slot on route 1 in core 2 to establish the connection.
Te thunderbolt symbol in route 1 represents the presence of
crosstalk exceeding the acceptable threshold. In this case, the
request will be rejected, and a reward of − 1 will be sent to the

agent. Instead, if the agent selects Action 2, depicted on the
lower part of the fgure, then action at � [2, 2, 1] is sent back
to the environment. Tis action leads to a successful con-
nection establishment, and the agent receives a reward equal
to 1. During the training stage, the policy component should
be updated to select Action 2 over Action 1 (for this state st),
leading to a higher reward.

2.2.2. Learning Algorithm. Tis component receives the
Experience Data from the environment and, based on that
information, updates the policy to produce actions that
maximize the expected cumulative long-term reward. In this
study, we consider learning algorithms compatible with the
action space. Te action space used has a multidiscrete
nature because the action is defned by multiple discrete
values (route, core, and slot identifer). Tus, the learning
algorithms available in the Stable-Baselines [52] library that
was compatible with a multidiscrete space state were selected
(as also done in [27, 31]). Tese are as follows:

(i) Advantage Actor-Critic (A2C) [53] and Actor-Critic
using Kronecker-Factored Trust Region (ACKTR)
[54]. Tese are approaches based on the actor-critic
algorithm [53], which has two interacting neural
networks. Te actor uses a dense neural network to

Table 3: Network, trafc and training parameters.

Parameters Value
Network parameters
Topologies NSFNet [50] and COST239 [51]
Number of cores 3
Number of FSU by link 100
Modulation formats BPSK, QPSK, 8-QAM, 16-QAM
Trafc parameters
Bit rates (Gb/s) Uniformly distributed in [25–100] Gbps
Agent training parameters
Precomputed candidate routes 5
Number of connection requests per episode 50 [27]
Simulated requests per training 160,000
Agent’s learning algorithm parameters By-default [52]
Agent’s hyperparameters By-default [31]

Core 1
Core 2
Core 3

FSU
Core 1
Core 2
Core 3

FSU

Route

Route

Request from node 5 to node 3
Demand and Guard band: 

[Action 2]

[Action 1]

1

2
3

4

5

a1 = [k=1, c=2, j=1]

a2 = [k=2, c=2, j=1]

k=1

k=2

Figure 2: Example of a connection request from node 5 to 3, requesting 3 slots (2 for data, 1 as guard band). K� 2, meaning 2 routes. Te
routes spectral use is represented by white blocks (available FSUs) and red and grey ones (occupied for data and as guard bands,
respectively).
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process and update the policy obtained. Te critic
uses a separated neural network to evaluate the
quality of the policy by calculating the “value
function” [45]. Both algorithms difer in how they
update their neural networks’ weights. A2C does that
by using the feedback the critic’s network gives to the
actor’s network, whilst ACKTR uses a Kronecker-
factored approximation [56], which is a method that
optimizes the stochastic gradient descent.

(ii) Proximal Policy Optimization (PPO2) [55] and
Trust Region Policy Optimization (TRPO) [56].
Tese learning algorithms use only one neural
network, whose weights are updated based on the
policy gradient descent. Tey difer in the way the
policy gradient descent is approached. TRPO
avoids sudden changes in the neural network
weights, updating only those that do not difer by
a greater distance than what the Kullback–Leibler
restriction (relative entropy) [56] allows. Instead,
PPO2 does not impose limits on the neural network
weights’ changes to optimize the policy’s descent
curve.

3. Performance Evaluation

Table 3 lists the values of the main parameters used to train
the agents. In terms of network parameters, we consider two
topologies, namely, the NSFNet (mills [57]) and the
COST239 (Batchelor [58]). For each one, we assume 100
FSUs and 3 cores arranged in a triangular geometry per link,
and the available modulation formats are BPSK, QPSK, 8-
QAM, and 16-QAM. Tese simplifcations have been con-
sidered due to memory constraints. Te same number of
slots was considered in [33]. As in [59], we use (5) to cal-
culate the XT.

Regarding the trafc characteristics, we assume a fully
dynamic behavior, where connection establishment re-
quests arrive as a Poisson process and connection holding
times follow a negative exponential distribution. Te
bitrate associated to each connection is uniformly selected
from the range [25–100] Gbps, as in [27]. Finally, re-
garding the agents (one per learning algorithm), they will
select one out of 5 precomputed routes, one out of 3 cores,
and the identifer j of the FSU block for the connection
considering a total of 100 FSUs. Agents will be trained in
episodes made of 50 connection requests each (to simplify
backpropagation in the dense neural network used by the
agent by delivering small batches of data continuously),
and the whole training session will consider a total of
160,000 connection requests. Te parameters of the four
agents will be the ones set by default in the agent’s library
Stable Baselines [52]. Te DRL system developed is
available in a Git repository (Te new environment, under
the name DeepRMSCAEnv, is available at https://gitlab.
com/IRO-Team/deeprmsca-a-mcf-eon-enviroment-for-optical-
rl-gym/).

3.1. Preliminary Training Results. Results for the training
process of 4 agents are presented. Te following discussion
about the results obtained is valid only for the hyper-
parameters used for each agent defned in Table 3.

Te agents TRPO, PPO2, A2C, and ACKTRwere trained
with a trafc load of 250 Erlang, as in [27].

Figures 3 and 4 show the reward accumulated by the
diferent agents during their training in the NSFNet and
COST239 topologies, respectively. Given that each episode is
made of 50 connection requests, the maximum reward
achievable by an agent is 50. It can be seen that the A2C and
TRPO agents are the only ones reaching values close to the
maximum expected reward in both topologies with an av-
erage reward of 49 and 47, respectively, with TRPO
exhibiting slightly better performance. On the other hand,
the PPO2 and ACKTR agents did not perform well using the
default parameters. PPO2 performed well on the COST239
topology (reward oscillated around 42) but not on NSFNet
(reward oscillated around 30). In both topologies, the agent
got stuck to the same value of reward from the very be-
ginning, showing no signs of learning. In the case of ACKTR,
the default parameters were not suitable for this task either.
Not only the agent got low values of reward in both to-
pologies, but in the COST239 topology, the reward obtained
decreased during several periods of the training process,
never again exceeding the value obtained in the frst 10,000
timesteps.

Te A2C (Actor-Critic) learning algorithm flters those
agents’ actions leading to a low reward. Such fltering is
possible thanks not only to the feedback received from the
environment but also to the feedback given to the Actor
(neural network in charge of applying the policy) by the
Critic (neural network in charge of evaluating the quality of
the policy used through the Value function). As a result, the
agent starts with low values of reward (exploration phase) to
then quickly increasing its reward per episode (exploitation
phase) as the training progresses. Such behavior can be
observed in Figures 3 and 4, where the A2C agent requires
a few episodes to achieve a reward close to 50 and exhibits
one of the best results in both topologies.

ACKTR (Actor-Critic using Kronecker-Factored Trust
Region) is a trust-region optimization algorithm for actor-
critic methods with gradient update sped up by means of the
Kronecker-factored approximation. Te efectiveness of the
trust-region method is highly dependent on the learning
algorithm’s parameters. In practice, using the by-default
parameters of the Stable Baselines led to the following: (a)
the weights of the actor’s neural network not being updated,
trapping the agent in a local optimum, as seen in Figure 3
(NFSNet topology) and (b) not fnding the trust region,
resulting in random actions, as seen in Figure 4 (COST 239
topology).

PPO2 uses a diferent approach by updating the gradient
more frequently than other methods. As a result, it can fnd
a good policy more quickly than other methods, as shown in
Figures 3 and 4. However, Figure 3 shows that it also gets
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stuck in a local optimum.Most probably this is due to the use
of the by-default learning algorithm’s parameters of Stable
Baselines.

Finally, TRPO combines the policy gradient method of
PPO2, but it also uses a trust region to avoid radical
changes in the update of the neural network weights. Te
size of the trust region is aimed to avoid increasing the
relative entropy of information based on the factor
Kullback− Lieber As a result, it improves slowly and
monotonically, as seen in Figures 3 and 4. For the problem
studied here, this agent achieved the highest cumulative
reward.

Please notice that parameter tuning is out of the scope of
this work, as our aim was to show the potential of DRL as
a solution for the dynamic resource allocation in MCF-
EONs.

Figures 5 and 6 show the evolution of the blocking
probability during the training process of the same agents for
the NFSNet and COST239 topologies, respectively. For
comparison, the dashed red line shows the blocking prob-
ability obtained by one of the baseline heuristics, kSP-FF-
FCA.Tis heuristic has a list of 5 precomputed routes, sorted
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Figure 3: Accumulated reward for the A2C, PPO2, TRPO, and
ACKTR agents in the NSFNet topology.

ACKTR
A2C
PPO2
TRPO

COST239 topology - Reward

0

10

20

30

40

50

Re
w

ar
d

400 600 14001200800 1600200 1000
Number of simulated request (×102)

Figure 4: Accumulated reward for the A2C, PPO2, TRPO, and
ACKTR agents in the COST239 topology.
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Figure 5: Blocking probability for A2C, PPO2, TRPO, and ACKTR
in NSFNet Topology.
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from shortest (k � 1) to longest (k � 5). When a connection
request arrives, the heuristic attempts to establish the
connection in the shortest path of the list (k � 1), applying
the frst-ft policy for spectrum allocation and frst-ft
crosstalk-aware for core allocation, as described in [60].
Te same procedure is repeated for the following route in the
list if unsuccessful: After attempting all paths, the connec-
tion is rejected if there are no available resources.

From the fgure, we can see that once the agents are in
steady-state, TRPO and A2C agents outperform the heu-
ristic, improving blocking of 24.3% and 73.9% for the
NSFNet topology and 14.51% and 38.71% for the COST239
topology, respectively.

Given the excellent performance of the TRPO agent in
both topologies, in the following section, this agent will be
trained for diferent trafc loads, and then its performance
will be contrasted with that of the heuristics selected in [61].

3.2. TRPOTrainingResults. Te TRPO agent was trained for
trafc loads between 500 and 3000 Erlang, in steps of 500.
Figures 7 and 8 show the evolution of the blocking prob-
ability achieved by the TRPO agent as the training process
progresses for diferent trafc loads for the NSFNet and
COST239 topologies, respectively. It can be seen that the
agent exhibits consistent behavior, with the blocking
probability increasing with the trafc load, as expected. It
can also be seen that at the beginning of the training process,
the agent obtains a high blocking probability due to the
exploration process. When the exploitation process starts,
the blocking probability is reduced until it converges to
a steady value.Tis happens after 150 thousand timesteps for
the NFSNet and 130 thousand timesteps for COST239,
irrespective of the trafc load. Given this steady value, we
assume training has fnished and the trained agent can now
be evaluated in a testing setting.

3.3. TRPO Agent VS. Heuristic: Blocking Performance.
Figures 9 and 10 show the blocking probability achieved by
the trained TRPO agent and the same heuristics, selected for
blocking evaluation in the survey [50], namely, KSP-FF-FCA
[61], KSP-RF-RCA [61], and KSP-SCMAXT/demand-aware
[22]. Results assume operation in the C-band (320 FSU) for
the NSFNet and COST239 topologies, respectively.Te three
heuristics apply alternated routing. KSP-FF-FCA uses the
First Fit policy to select core and spectrum, KSP-RF-RCA
applies a random policy to select core and spectrum, and
KSP-SCMA XT/demand aware allocates diferent parts of
the spectrum and core depending on the bitrate of the
connection request. If the connection request’s demand is
below a bitrate’s threshold, a First-Fit allocation policy is
applied for spectrum and core assignment as long as the
cross-talk levels are not exceeded; otherwise, a Last-Fit
policy is applied if the connection request’s demand is
above the threshold.

Compared to the best-performing heuristic, KSP-SCMA
XT/demand-aware, a signifcant improvement in the
blocking performance of the DRL approaches is observed.
For example, in the NFSNet topology, at the highest load

studied, the TRPO agent exhibits a blocking probability of
about 1.9 · 10− 2, about four times slower than the blocking of
8.5 · 10− 2 achieved by the heuristic. On average, considering
both topologies and loads over 2000 Erlang, TRPO achieves
a 4-times decrease in blocking concerning the best heuristic,
being ideal for the future scenario of demand for connection
requests [64] and highlighting the benefts of applying DRL
techniques to the RMSCA problem.
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Figure 7: Blocking probability progress for TRPO agent training in
NSFNet Topology.
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Figure 8: Blocking probability progress for TRPO agent training in
COST239 Topology.
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Finally, our results show that the trained agent can
generalise policies for diferent trafc loads and spectrum
resources and outperform the rule-based heuristics. Te
improved performance comes from the ability of the DRL to
explore solutions other than those detected by the expert
knowledge of the human designer of the heuristics. We have
also observed that training in adverse conditions achieves
good results. Tat is, training the agent at high trafc loads
makes the agent to perform well at lower trafc loads
whereas training the agent using links with reduced capacity
leads to the agent to perform better in links with increased

capacity. In line with previous research [33], such gener-
alisation was not observed in terms of topology: Te agent
trained in the NFSNet topology did not perform well in the
COST 239 topology and vice versa. Studying the beneft of
using Graph Neural Networks to overcome the lack of to-
pology generalisation is part of current research [63].

4. Conclusion

Tis paper presents a deep reinforcement learning approach
applied for the frst time in the literature to solve the routing,
modulation format, spectrum, and core allocation problem
in dynamic multicore elastic optical networks. Simulation
results show that the deep reinforcement learning approach
ofers a signifcant performance advantage over the best
heuristic strategy studied.

Further research on improving the DRL approach
performance should focus on hyperparameter tuning, ap-
plying transfer learning techniques or graph neural networks
to cover a broader range of topologies with decreased
computational efort, increasing the size of the data to be
processed to study fbers with more cores and investigating
diferent reward schemes that diferentiate the reward
according to the cause of blocking (e.g. crosstalk, capacity
unavailability, fragmentation, or optical reach).

Additionally, we would like to explore explainability
techniques that might help understand how the agent makes
its decisions to improve current heuristics.

We expect these results and the code made available in
the Git repository to help the research community study the
benefts of deep reinforcement learning in the area of optical
networks.
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trained in NSFNet topology.
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[26] J. Žerovnik, “Heuristics for np-hard optimization problems:
simpler is better,” Logistics & Sustainable Transport, vol. 6,
no. 1, pp. 1–10, 2015.

[27] X. Chen, B. Li, R. Proietti, H. Lu, Z. Zhu, and S. J. B. Yoo,
“Deeprmsa: a deep reinforcement learning framework for
routing, modulation and spectrum assignment in elastic
optical networks,” Journal of Lightwave Technology, vol. 37,
no. 16, pp. 4155–4163, 2019.

[28] B. Tang, Y.-C. Huang, Y. Xue, and W. Zhou, “Heuristic re-
ward design for deep reinforcement learning-based routing,
modulation and spectrum assignment of elastic optical net-
works,” IEEE Communications Letters, vol. 26, no. 11,
pp. 2675–2679, 2022.

[29] T. Panayiotou, M. Michalopoulou, and G. Ellinas, “Survey on
machine learning for trafc-driven service provisioning in
optical networks,” 2022, https://arxiv.org/abs/2209.05080.

Complexity 11

http://media.mediapost.com/uploads/CiscoForecast.pdf
http://media.mediapost.com/uploads/CiscoForecast.pdf
https://www2.telegeography.com/hubfs/LP-Assets/Ebooks/state-of-the-network-2022.pdf
https://www2.telegeography.com/hubfs/LP-Assets/Ebooks/state-of-the-network-2022.pdf
https://www2.telegeography.com/hubfs/LP-Assets/Ebooks/state-of-the-network-2022.pdf
https://tinyurl.com/2uerpfv2
https://arxiv.org/abs/1907.08538
https://arxiv.org/abs/1907.08538
https://arxiv.org/abs/2209.05080


[30] X. Chen, R. Proietti, C.-Y. Liu, Z. Zhu, and S. J. B. Yoo,
“Exploiting multi-task learning to achieve efective transfer
deep reinforcement learning in elastic optical networks,” in
Optical Fiber Communication Conference (OFC) 2020Optical
Society of America, Washington, DC, USA, 2020.

[31] C. Natalino and P.Monti, “Te optical rl-gym: an open-source
toolkit for applying reinforcement learning in optical net-
works,” in Proceedings of the 2020 22nd International Con-
ference on Transparent Optical Networks (ICTON), pp. 1–5,
Bari, Italy, July 2020.

[32] B. Li and Z. Zhu, “Deepcoop: leveraging cooperative drl
agents to achieve scalable network automation for multi-
domainsd-eons,” in 2020 Optical Fiber Communications
Conference and Exhibition, pp. 1–3, OFC), 2020.

[33] P. Morales, P. Franco, A. Lozada et al., “Multi-band envi-
ronments for optical reinforcement learning gym for resource
allocation in elastic optical networks,” in Proceedings of the
2021 International Conference on Optical Network Design and
Modeling (ONDM), pp. 1–6, Gothenburg, Sweden, June 2021.

[34] N. E. D. E. Sheikh, E. Paz, J. Pinto, and A. Beghelli, “Multi-
band provisioning in dynamic elastic optical networks:
a comparative study of a heuristic and a deep reinforcement
learning approach,” in Proceedings of the 2021 International
Conference on Optical Network Design and Modeling
(ONDM), pp. 1–3, Gothenburg, Sweden, June 2021.

[35] X. Luo, C. Shi, L. Wang, X. Chen, Y. Li, and T. Yang,
“Leveraging double-agent-based deep reinforcement learning
to global optimization of elastic optical networks with en-
hanced survivability,” Optics Express, vol. 27, no. 6,
pp. 7896–7911, 2019.

[36] R. Zhu, S. Li, P. Wang, L. Li, A. Samuel, and Y. Zhao, “Deep
reinforced energy efcient trafc grooming in fog-cloud
elastic optical networks,” in Proceedings of the 2020 Optical
Fiber Communications Conference and Exhibition (OFC),
pp. 1–3, San Jose, CA, USA, March 2020.

[37] X. Tian, B. Li, R. Gu, and Z. Zhu, “Reconfguring multicast
sessions in elastic optical networks adaptively with graph-
aware deep reinforcement learning,” Journal of Optical
Communications and Networking, vol. 13, no. 11, pp. 253–265,
2021.

[38] R. Li, R. Gu, W. Jin, and Y. Ji, “Learning-based cognitive
hitless spectrum defragmentation for dynamic provisioning in
elastic optical networks,” IEEE Communications Letters,
vol. 25, no. 5, pp. 1600–1604, 2021.

[39] R. Zhu, G. Li, P.Wang,M. Xu, and S. Yu, “Drl-based deadline-
driven advance reservation allocation in eons for cloud–edge
computing,” IEEE Internet of Tings Journal, vol. 9, no. 21,
pp. 21444–21457, 2022.

[40] C. Wang, N. Yoshikane, F. Balasis, and T. Tsuritani,
“Deepcms3: a deep reinforcement learning framework for
core, mode and spectrum sequential scheduling over optical
transport network,” in Proceedings of the 2020 European
Conference on Optical Communications (ECOC), pp. 1–4,
Brussels, Belgium, December 2020.

[41] S. S. Mousavi, M. Schukat, and E. Howley, “Deep re-
inforcement learning: an overview,” in Proceedings of the SAI
Intelligent Systems Conference (IntelliSys) 2016, Y. Bi,
S. Kapoor, and R. Bhatia, Eds., Springer International Pub-
lishing, London, UK, pp. 426–440, September 2018.

[42] Y. Xiong, Y. Yang, Y. Ye, and G. N. Rouskas, “A machine
learning approach to mitigating fragmentation and crosstalk
in space division multiplexing elastic optical networks,”
Optical Fiber Technology, vol. 50, pp. 99–107, 2019.

[43] Y. Xiong, Y. Ye, H. Zhang, J. He, B.Wang, and K. Yang, “Deep
learning and hierarchical graph-assisted crosstalk-aware
fragmentation avoidance strategy in space division multi-
plexing elastic optical networks,”Optics Express, vol. 28, no. 3,
pp. 2758–2777, 2020.

[44] Q. Yao, H. Yang, R. Zhu et al., “Core, mode, and spectrum
assignment based on machine learning in space division
multiplexing elastic optical networks,” IEEE Access, vol. 6,
pp. 15898–15907, 2018.

[45] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[46] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare,
and J. Pineau, An Introduction to Deep Reinforcement
Learning, vol. 1, Now Foundations and Trends, Hanover; MA,
USA, 2018.

[47] B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno,
“Distance-adaptive spectrum allocation in elastic optical path
network (slice) with bit per symbol adjustment,” in Pro-
ceedings of the 2010 Conference on Optical Fiber Communi-
cation (OFC/NFOEC), pp. 1–3, San Diego, CA, USA, March
2010.

[48] A. Muhammad, G. Zervas, and R. Forchheimer, “Resource
allocation for space-division multiplexing: optical white box
versus optical black box networking,” Journal of Lightwave
Technology, vol. 33, no. 23, pp. 4928–4941, 2015.

[49] Y. Zhao, Y. Zhu, C. Wang et al., “Super-channel oriented
routing, spectrum and core assignment under crosstalk limit
in spatial division multiplexing elastic optical networks,”
Optical Fiber Technology, vol. 36, pp. 249–254, 2017.

[50] I. Brasileiro, L. Costa, and A. Drummond, “A survey on
challenges of spatial division multiplexing enabled elastic
optical networks,” Optical Switching and Networking, vol. 38,
Article ID 100584, 2020.

[51] C. Chen, M. Ju, S. Xiao, F. Zhou, and X. Yang, “Minimizing
total blocking by setting optimal guard band in nonlinear
elastic optical networks,” in Proceedings of the 2017 19th
International Conference on Transparent Optical Networks
(ICTON), pp. 1–4, Bari, Italy, July 2017.

[52] A. Hill, A. Rafn, M. Ernestus et al., “Stable baselines,” 2018,
https://github.com/hill-a/stable-baselines.

[53] V. Mnih, A. P. Badia, M.Mirza et al., “Asynchronous methods
for deep reinforcement learning,” 2016, https://arxiv.org/abs/
1602.01783.

[54] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable
trust-region method for deep reinforcement learning using
kronecker-factored approximation,” 2017, https://arxiv.org/
abs/1708.05144.

[55] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” 2017,
https://arxiv.org/abs/1707.06347.

[56] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz,
“Trust region policy optimization,” in Proceedings of the 32nd
International Conference on Machine Learning, vol. 37,
pp. 1889–1897, Lille, France, December 2015.

[57] D. L. Mills and H. Braun, “Te nsfnet backbone network,” in
Proceedings of the ACM Workshop on Frontiers in Computer
Communications Technology, SIGCOMM ’87, pp. 191–196,
Association for Computing Machinery, Stowe, Vermont,
August 1987.

[58] P. Batchelor, B. Daino, P. Heinzmann et al., “Study on the
implementation of optical transparent transport networks in
the european environment—results of the research project

12 Complexity

https://github.com/hill-a/stable-baselines
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1708.05144
https://arxiv.org/abs/1708.05144
https://arxiv.org/abs/1707.06347


cost 239,” Photonic Network Communication, vol. 2, pp. 15–
32, 2000.

[59] M. Klinkowski and G. Zalewski, “Dynamic crosstalk-aware
lightpath provisioning in spectrally-spatially fexible optical
networks,” Journal of Optical Communications and Net-
working, vol. 11, no. 5, pp. 213–225, 2019.

[60] G. M. Saridis, D. Alexandropoulos, G. Zervas, and
D. Simeonidou, “Survey and evaluation of space division
multiplexing: from technologies to optical networks,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 4,
pp. 2136–2156, 2015.

[61] S. Fujii, Y. Hirota, and H. Tode, “Dynamic resource allocation
with virtual grid for space division multiplexed elastic optical
network,” in Proceedings of the 39th European Conference and
Exhibition on Optical Communication (ECOC 2013), pp. 1–3,
London, UK, September 2013.

[62] A. A. Saleh and J. M. Simmons, “Technology and architecture
to enable the explosive growth of the internet,” IEEE Com-
munications Magazine, vol. 49, no. 1, pp. 126–132, 2011.
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