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Compared to single ticket purchase behavior, the impact of ticket cancellation behavior on revenue is full of complexity. Due to the
cancelled tickets will be resold with uncertain demand, ticket cancellation behaviors and ticket purchase behaviors are intertwined and
infuenced, composed of a dynamic and complex system in the presale period. How to charge for ticket cancellation behavior in the
name of refund service fee to reduce losses as much as possible is an urgent problem for high-speed railway enterprises. However, there
has been little research on this issue. Terefore, a pricing optimization approach for refund service fee based on negative binomial
distribution was proposed in this article. Firstly, we proved that the probability of passengers arriving based on the accumulated ticket
sales obeyed the negative binomial distribution, which was used to ft the uncertainty demand of passengers. Ten, we categorized the
passengers to build an optimizationmodel with the objective ofmaximizing compensation for losses caused by ticket cancellation. A case
study was implemented to show that the proportion of refund service fee to ticket price is generally higher than 50%.Te refund service
fee remains monotonously nondecreasing as the departure date approaches. It also indicated that the current charging standard for
refund service fees was too low to ofset the losses. In addition, passenger preferences and passenger fow have signifcant impacts on the
dynamic pricing strategy for refund service fees.

1. Introduction

In recent years, China’s high-speed railway has gained
worldwide recognition for its rapid development. As of 2022,
China railway enterprises have operated over
40000 kilometers of high-speed railway network and accu-
mulated rich management experience. High-speed railway
enterprises set market-oriented goals, followed the re-
quirements of revenue management, took price discrimi-
nation as one of the bases, and adopted dynamic pricing or
diferentiated pricing to maximize revenue. Ticket cancel-
lation behavior has a signifcant impact on the revenue of
high-speed railway (Table 1). Te refund amount accounted
for 16.3% of the total income from July 2023 to August 2023.
However, for the high-speed railway managers or scholars in
the pricing feld, the primary focus is on the ticket pricing,
and the charging for ticket cancellation is less involved.

Furthermore, the infuence of ticket cancellation be-
havior on the revenue of high-speed railway is obviously
more complex than ticket purchase behavior. As the can-
celled tickets can be resold with uncertain demand, it is
necessary to optimize ticket cancellation behaviors and
ticket purchase behaviors as a whole. On the other hand,
ticket cancellation behavior will certainly cause losses to
high-speed railway enterprises and signifcantly weaken
revenue. In order to reduce the occurrence of ticket can-
cellation behavior and compensate for their own profts,
high-speed railway enterprises charge a certain proportion
of the corresponding ticket price as refund service fee. To
have a more intuitive understanding and ease of explanation
of the refund service fee, the refund service fee is generally
represented by the proportion of the refund service fee to the
ticket price (refund service fee/ticket price) in the following
content such as tables and fgures.
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High-speed railway enterprises actually adopted a tiered
charging standard during the presale period, as shown in
Figure 1. 20% of the corresponding ticket price will be
charged as the refund service fee within 24 hours before
departure. From 24 hours to 48 hours before departure, 10%
of the corresponding ticket price will be charged, and 5% of
the corresponding ticket price will be charged from 48 hours
to 8 days before departure. Te refund service fee will not be
charged if exceeds 8 days before departure.

Unfortunately, the above charging standards mainly rely
on the personal experience of high-speed railway managers
and lack of support from a theoretical model with actual
data; hence, the rationality cannot be verifed.Tis is the frst
signifcance of this study. Te other is as follows. If railway
enterprises pursue maximum revenue, they can directly
increase the refund service fee and, even in extreme cases,
make the refund service fee to be equal to the ticket price (the
amount refunded to the passenger is 0), while the above
extreme measures cannot be implemented because of pas-
senger complaints and public opinion. Terefore, the key is
what extent should the refund service fee being increased to.
In reality, railway enterprises aim to make up for losses as
much as possible as the objective that can be accepted by
passengers as well as reducing ticket cancellation behaviors
of passengers more or less. Tis goal is lower than simply
pursuing maximum revenue and is easier to achieve.
Terefore, this manuscript proposed a new optimization
approach for pricing of refund service fee to solve the
aforementioned challenges.

2. Literature Review

Te pricing for refund service fee can be regarded as part of
pricing in revenue management. Te core of revenue
management in high-speed railway is pricing and it mainly
refers to dynamic pricing or diferential pricing based on
price discrimination in economics. Among the three levels of
price discrimination, the frst level is hard to realize because
the price of a commodity equals the buyer’s maximum
willingness to pay. Te second level and third level are easier
to apply in practice. Te typical application scenario of the
second-level price discrimination is the mobile communi-
cation market; the price depends on the number of units to
be purchased [1]. Te third-level price discrimination re-
fects pricing policy, according to the price elasticity of
demand, which is changed to adapt to segment market. Price
discrimination is introduced into the feld of transportation
pricing research such as aviation [2, 3] and is shown to have
a positive efect on earnings. Puller and Taylor [4] analyzed
the price discrimination adopted by airlines based on the
time of ticket purchase. Luo and Peng [5] developed

a continuous-time dynamic pricing model for two com-
petitive fights. Zhang and Cooper [6] proposed a Markov
decision process formulation of a dynamic pricing problem
for multiple substitutable fights between the same origin
and destination, taking customers’ choice behaviors among
diferent fights into account. Santos and Gillis [7] proposed
a data-drivenmodeling framework to estimate the fight pass
price, which is a new concept in airlines.

Railway transport enterprises have also introduced
pricing strategies such as diferential pricing and dynamic
pricing to maximize the revenue. Voss [8] proposed
a pricing model for diferent types of fares, such as student
tickets. Wang et al. [9] constructed an optimization model
for diferential pricing of high-speed railway based on dis-
crete price and solving the model by particle swarm opti-
mization. Zhang et al. [10] suggested a revenue-
maximization model that integrated both operation plan-
ning and pricing dimensions, in terms of dynamic ticket
pricing, elasticity in passenger demand, and fexible dis-
patching. Qin et al. [11] divided the passenger market
according to the diferent factors afecting passenger choice
behaviors, maximized ticketing revenue with expected travel
cost as the reference point, and used prospect theory to
construct a diferentiated pricing model under elastic de-
mand. Lin and Sibdari [12] made use of the game theory
model to study the dynamic pricing problem between related
substitutes. Zhao [13] built a comprehensive optimization
model of ticket amount and ticket price for multiple trains
andmultiple stops and designed a hybrid heuristic algorithm
to search for the optimal solution according to the char-
acteristics of the model with the aim of getting diferent
pricing for diferent trains in diferent sections. Li and Cao
[14] took enterprise profts and passenger welfare as the
pricing objectives of high-speed railway, decomposed the
multiobjective problem by using the idea of hierarchical
sequence, and fnally determined the optimal multiobjective
pricing strategy. Cai and Ou [15] categorized high-speed
railway passengers and obtained diferent service attributes
of passengers for parallel trains and then introduced the
concept of revenue management and built a dynamic pricing
model for parallel trains with the goal of maximizing the
overall revenue of multiple trains.

Compared to the larger amount of literature studies on
high-speed railway ticket pricing, few scholars have paid
attention to the issue of how to charge for ticket cancellation
behavior (refund service fee). Cirillo et al. [16] proposed an

Table 1: Te infuence of refund on revenue.

Period

Te proportion of
the number of

refunds to passenger
fow (%)

Te proportion of
refund amount to
total income (%)

July 2023–August 2023 15.1 16.3
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Figure 1: Current charging standard of refund service fee.
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intertemporal choice model of ticket cancellation and ex-
change for railway passengers where customers were as-
sumed to be forward-looking agents. A dynamic discrete
choice model (DDCM) was applied to predict the timing in
which ticket exchange or cancellation occurred in response
to fare and trip schedule uncertainty. Iiescu et al. [17] ex-
plored the use of discrete choice methods for airline pas-
senger cancellation behavior and estimated a discrete time
proportional odds model with a prospective time scale based
on the occurrence of cancellations in a sample of tickets
provided by the Airline Reporting Corporation. Zhao et al.
[18] designed a dynamic pricing model for refund fees that
meet the expectations of passengers and airlines and chose
the equilibrium point between them to solve refund service
fees. Zhong et al. [19, 20] used the expectedmarginal value of
air tickets at the time of ticket sales and refunds to determine
refund service fee based on the dynamic pricing theory of
revenue management and fnally established a refund service
fee model.

On the other hand, passenger arrival probability (ticket
sale intensity) is an important foundation and is often ap-
plied to high-speed railway pricing. Talluri and Ryzin [21]
integrated the multiple logit model into the dynamic model
to estimate passenger arrival intensity. Vulcano et al. [22]
used the method of expectation-maximization (EM) si-
multaneously to estimate passenger arrival intensity pa-
rameters and passenger selection preferences. Vulcano et al.
[23] adopted and expanded this method on the basis of the
expectation-maximization method. Many authors mainly
used normal distribution or Poisson distribution to describe
the probability of passenger arrival. Lee and Hersh [24] were
the frst to describe the arrival behavior of passengers by
introducing the assumption that their arrival process was
a Poisson’s fow.Te assumption was relaxed for establishing
a dynamic pricing programmingmodel to solve the expected
revenue. Talluri et al. [25] pointed out that, in the multistage
pricing problem, the Poisson distribution could be used as
a reasonable assumption. Gallego and van Ryzin [26] and
Bitran and Caldentey [27] assumed that the arrival of
customers followed the Poisson distribution; each customer
had an independent and identically distributed reservation
price (willingness to pay), and then a new demand function
was established. Zhao and Zheng [28] thought that the
dynamic pricing problem of the single product under the
condition of the demand following a nonhomogeneous
Poisson process was studied over time. Feng and Gallego
[29] assumed that the demand for product with each price
level was a Poisson process in a limited sales period; the
optimal time of charging price for a single product on an
admissible time-varying path was discussed. For normal
distribution, Song et al. [30] simulated the passenger de-
mand function with normal distribution to get the mathe-
matical relation between the demand of passengers and
ticket prices and then gradually constructed and solved the
dynamic ticket price optimization model of high-speed
railway trains. However, the facts indicate that neither
normal distribution nor Poisson distribution is accurate
enough to ft the passenger arrival probability in most
situations.

Based on the review of the above literature studies, it can
be summarized as follows:

(1) Tere are many studies on diferential pricing or
dynamic pricing for tickets based on price dis-
crimination in the academic circle. However, re-
search of applying dynamic pricing to refund service
fee is limited. Furthermore, the pricing for refund
service fee which will also greatly afect the goals of
pursuing maximum revenue is as important as ticket
pricing in revenue management. Unfortunately,
most studies always ignore the refund service fee. It is
meaningful to study how to charge for ticket
cancellation.

(2) As the cancelled tickets will be resold, the impact of
ticket cancellation behavior on revenue is full of com-
plexity, that is, ticket cancellation behaviors and ticket
purchase behaviors are intertwined and infuenced,
composed of a dynamic and complex system in the
presale period. Tis increases the research difculties.

(3) Te probability of passenger arrival is one of the
foundations for building a pricing optimization
model, but neither Poisson distribution nor normal
distribution is accurate enough to describe the
passenger arrival probability in most situations in
which some tickets are already sold.

In response to the three points mentioned above, we
proposed a dynamic pricing model for refund service fee
with the following advantages:

(1) Tis is one of the limited numbers of articles that
study pricing for refund service fee so as to fgure out
whether the current refund service fee based on the
personal experience of the high-speed railway
manager is reasonable.

(2) We proved that negative binomial distribution is
more suitable for ftting the arrival probability of
passengers under the situation of having tickets sold
instead of Poisson distribution or normal distribu-
tion. Te arrival probability of passengers is the key
to solve the complex system that couples ticket
cancellation behaviors and ticket purchase
behaviors.

(3) We introduced the concept of psychological ex-
pectations to innovate the utility functions repre-
senting decision-making processes of passengers.

3. Model

3.1. Model Assumption. To simplify the problem and facil-
itate the establishment of models, some reasonable as-
sumptions need to be made as follows:

(1) Only take second-class seat as the research object
(2) A passenger cannot purchase tickets and refund in

the same time period
(3) Te number of tickets sold is equivalent to the

number of passengers arriving in the presale period
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(4) Only one ticket can be refunded at a time

3.2. Variable Defnition. Table 2 defnes all symbols repre-
senting variables or parameters in this manuscript.

3.3. Probability of Passengers Arriving Based on Negative
Binomial Distribution. It is the randomness of passenger
arrival that leads to the uncertain demand. Tus, the pre-
condition for studying uncertain demand is to get the
number of passenger arrivals. Once passengers have the
willingness to travel, they will search for the information of
travel through the Internet. On each day of the presale
period, there will be the occurrence of passenger arrival
events, which is generally described by Poisson distribution.
Referring to literature studies [16, 27–31], the probability of
passenger arrival can be ftted with the Poisson distribution.
Set x as the number of passenger arrivals, and it obeys the
independent Poisson distribution with parameter λ. Ten,
the arrival probability density function can be given as
follows:

P(x � X) �
(λ)

X
e

− λ

X!
. (1)

λ is unknown and is generally estimated through the
mean of samples. Due to the estimated value heavily de-
pendent on the scope of samples, sometimes there may be
obvious errors. In order to describe the distribution pattern
of passengers arriving more accurately, we need to dy-
namically update λ. If more tickets have been sold in the
presale period, it is believed that the probability of passenger
arrival is increasing. On the contrary, fewer ticket sale is
likely to indicate a decrease in passenger arrival probability.
Ten, the Bayesian formula is used to dynamically update
the value of λ based on the accumulated ticket sales so that
a more accurate posterior distribution of passenger arrival
probability will be obtained. Assume that λ obeys Gamma
distribution with parameters (b, a) [32], and the probability
function of λ can be expressed as follows:

fλ(x) �
ae− ax

(ax)
b− 1

Γ(b)
. (2)

Parameters (b, a) can be estimated through mean μ and
variance σ2 of samples:

μ(λ) �
b

a
,

σ2(λ) �
b

a
2.

(3)

Taking A(t)/A(t − 0) as an event representing the
number of passengers arriving from the beginning to the tth

day in the presale period, the probability of A(t) � n can be
derived as follows:

P(A(t) � n) � 􏽚
+∞

0

(xt)
n

n!
e

− xt
fλ(x)dx

� 􏽚
+∞

0

(xt)
n
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− xtae
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(ax)
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dx

�
t
n
a

b

n!Γ(b)
􏽚

+∞

0
x

n+b− 1
e

− (a+t)xdx.

(4)

Set q � (a + t)x and bring it into formula (4). Ten, we
continue to derive the following formula:

t
n
a

b

n!Γ(b)
􏽚

+∞

0
x

n+b− 1
e

− (a+t)xdx

�
t
n
a

b
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1
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􏽚
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x
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e

− qdq

�
Γ(b + n)
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a
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􏼒 􏼓

b t

a + t
􏼒 􏼓

n

�
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a
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􏼒 􏼓
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n

� C
n
n+b− 1

a

a + t
􏼒 􏼓
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a + t
􏼒 􏼓

n

.

(5)

It can be seen from formula (5) that the number of
passengers arriving from the beginning to the tth day in the
presale period obeys the negative binomial distribution with
parameters [b, a/(a + t)]. If n tickets have been sold when
a passenger refunds on the tth day in the presale period,
according to the Bayesian formula, the posterior probability
function of λ is as follows:

fλ[x|A(t) � n] �
P(A(t) � n|x)fλ(x)

P(A(t) � n)

�
(xt)

n/n!( 􏼁e
− xt

ae
− ax

(ax)
b− 1/Γ(b)􏼐 􏼑

(Γ(b + n)/n!Γ(b))(a/a + t)
b
(t/a + t)

n

�
ae

− ax
(ax)

b− 1
(xt)

n
e

− xt

Γ(b + n)

a + t

a
􏼒 􏼓

b a + t

t
􏼒 􏼓

n

�
(a + t)e

− (a+t)x
((a + t)x)

n+b− 1

Γ(n + b)
.

(6)

Formula (6) shows that the posterior probability of λ
obeys the Gamma distribution with parameters
(b + n, a + t). Ten, the probability of z passenger arriving
from refund time to departure time during the presale
period is given as follows:
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P(A(T − t) � z|A(t) � n)

� 􏽚
+∞

0

[x(T − t)]
z
e

− x(T− t)

z!
•

(a + t)e
− (a+t)x

((a + t)x)
b+n− 1

Γ(b + n)
dx

�
Γ(b + n + z)

z!Γ(b + n)

a + t

a + T
􏼒 􏼓

b+n T − t

a + T
􏼒 􏼓

z

.

(7)

Formula (7) means that the number of passengers ar-
riving obeys the negative binomial distribution with pa-
rameters [b + n, (a + t)/(a + T)] during the time period
T − t under the condition A(t) � n. Trough the above
proof, the negative binomial distribution is more accurate
than the traditional Poisson distribution in ftting the
probability of passenger arrival with the condition of some
tickets already being sold.

3.4. Passenger Choice Behavior. Passengers frst decide
whether to purchase tickets after arrival and then make
decisions about which train to take. Passengers’ main
focus is on travel time and ticket price. But diferent
passenger groups have diverse preferences. In the pros-
pect theory, passengers psychologically set a benchmark
called psychological expectation in advance. Tey make

choices that meet their expectations by comparing them
with the benchmark. Tis is the mechanism by which
psychological expectations afect passenger choices. Tus,
we divided the passengers into two categories: price-
sensitive passengers (i � 1) and time-sensitive passen-
gers (i � 2). For time-sensitive passengers, they are more
concerned about the time cost that they spend on the
journey. When the travel time exceeds psychological
expectations, the utility brought by travel time is 0.
Correspondingly, the ticket price will not bring any utility
to price-sensitive passengers when it is higher than their
psychological expectations [32–34]. Passengers’ psycho-
logical expectations can be concretized as average travel
time wrs and average ticket prices prs [35]. Tus, the utility
function for price-sensitive passengers and time-sensitive
passengers, respectively, can be expressed as follows:

Table 2: Parameters and variables.

Variables or parameters Defnition

od(r, s)
Origin-destination (OD) pair in the transportation service which is composed of the

train stops, from station r to station s, equivalent to segment
od(􏽢r,􏽢s) OD pair where ticket cancellation (refund) behavior occurs
T Number of days (periods) included in the presale period
t tth day (periods) in the presale period

A(t)/A(t − 0)
Event, passenger arrival from the beginning of the presale period to the tth day.

Equal to time period (t − 0)
n/z Number of passengers arriving
Γ(b) Gamma function
a, b Parameters of negative binomial distribution
k High-speed railway train, k � 1, 2...K

μk
rs

0-1 judgment variable, when train k provides service between od(r, s), then μk
rs � 1;

otherwise, μk
rs � 0

i Passenger group, i � 1, 2
mi

rs Te proportion of passenger group i to all passengers between od(r, s)

wk
rs Travel time of train k between od(r, s)

prs Average price between od(r, s)

wrs Average travel time between od(r, s)

wk Travel time of train k

Uik
rs Utility obtained from train k for passenger group i between od(r, s)

Pbik
rs Selection probability of passenger group i choosing train k between od(r, s)

φ1,φ2 Parameters of utility function
ck

rs, ck
􏽢r 􏽢s Number of remaining tickets between od(r, s) or od(􏽢r,􏽢s)

ck Capacity of train k

βt

Upper limit of the proportion of the refund service fee to the ticket price on the tth

day
Decision variable Defnition

Rtk
􏽢r 􏽢s Refund service fee of train k on the tth day
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U
ik
rs � φ1•min p

k
rs − prs, 0􏼐 􏼑 + φ2 • w

k
rs − wrs􏼐 􏼑, i � 1,

(8)

U
ik
rs � φ1 • p

k
rs − prs􏼐 􏼑 + φ2•min w

k
rs − wrs, 0􏼐 􏼑, i � 2,

(9)

prs �
1
K

􏽘

K

k�1
p

k
rs • μk

rs, (10)

wrs �
1
K

􏽘

K

k�1
w

k
rs • μk

rs. (11)

On the basis of formulas (8)–(11), the probabilities of
passenger group i selecting train k can be obtained as
follows:

Pb
ik
rs �

μk
rs • exp U

ik
rs􏼐 􏼑

1 + 􏽐
K
k�1μ

k
rs • exp U

ik
rs􏼐 􏼑

. (12)

Correspondingly, the probability that the passenger
group i give up purchasing tickets can be described by the
following formula:

􏽢Pb
ik
rs �

1
1 + 􏽐

K
k�1μ

k
rs • exp U

ik
rs􏼐 􏼑

. (13)

3.5. Dynamic Optimization Model. On the tth day in the
presale period, a ticket cancellation occurs between od(􏽢r,􏽢s),
leading to the number of remaining tickets being added by 1.
Te ticket amount between other od(r, s),∀r, s remains
unchanged. Set Dn

z(t) � P(A(T − t) � z|A(t) � n). Te
expected ticket sales of train k after a ticket cancellation can
be expressed as the following formula:

Sale(􏽢r,􏽢s) � 􏽘
+∞

z�1
D

n+1
z (t) •min c

k
􏽢r 􏽢s + 1, z • 􏽘

2

i�1
m

i
􏽢r 􏽢s • Pb

ik
􏽢r 􏽢s

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(14)

where z • 􏽐
2
i�1m

i
􏽢r 􏽢s • Pbik

􏽢r 􏽢s refers to the passenger demand for
train k between (􏽢r,􏽢s) when the number of passengers ar-
riving is z. min(ck

􏽢r 􏽢s + 1, z • 􏽐
2
i�1m

i
􏽢r 􏽢s • Pbik

􏽢r 􏽢s) means passenger
demand will not exceed the remaining tickets. Te expected
ticket sales between any nonrefund od(r, s)∀r, s are shown
as follows:

Sale(r, s) � 􏽘
+∞

z�1
D

n
z(t) •min c

k
rs, z • 􏽘

2

i�1
m

i
rs • Pb

ik
rs

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(15)

Te expected revenue of train k from the occurrence of
a ticket cancellation to the end of the presale period is Brefund:

Brefund � R
tk
􏽢r 􏽢s + 􏽘

(r,s)

Sale(r, s) • p
k
rs􏽨 􏽩 + Sale(􏽢r,􏽢s) • p

k
􏽢r 􏽢s

� R
tk
􏽢r 􏽢s + 􏽘

(r,s)

􏽘

+∞

z�1
D

n
z(t) • min c

k
rs, z • 􏽘

2

i�1
m

i
rs • Pb

ik
rs

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ • p
k
rs

⎧⎨

⎩

⎫⎬

⎭

+ 􏽘
+∞

z�1
D

n+1
z (t) • min c

k
􏽢r 􏽢s + 1, z • 􏽘

2

i�1
m

i
􏽢r 􏽢s • Pb

ik
􏽢r 􏽢s

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ • p
k
􏽢r 􏽢s.

(16)

Consistent with formula (16), if there is no ticket can-
cellation, the expected revenue of train k is 􏽢Brefund:

􏽢Brefund � 􏽘
(r,s)

􏽘

+∞

z�1
D

n
z(t) • min c

k
rs, z • 􏽘

2

i�1
m

i
rs • Pb

ik
rs

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ • p
k
rs

⎧⎨

⎩

⎫⎬

⎭

+ 􏽘

+∞

z�1
D

n
z(t) • min c

k
􏽢r 􏽢s, z • 􏽘

2

i�1
m

i
􏽢r 􏽢s • Pb

ik
􏽢r 􏽢s

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ • p
k
􏽢r 􏽢s + p

k
􏽢r 􏽢s.

(17)

Te existing literature studies on high-speed railway
pricing always take revenue maximization as the objective
function. It should have been constructed to maximize
revenue for the objective function of refund service fees.
However, based on experience, ticket cancellation behavior
must defnitely lead to losses to the high-speed railway

enterprises, that is, the expected revenue after ticket can-
cellation is very likely lower than it without ticket refund. In
general revenue management, pursuing maximum revenue
is the primary goal. But in order to avoid passengers’
complaints or public pressure, it should be chosen to make
up for losses by charging refund service fees to maximize the
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profts rather than obtaining higher revenue. In other words,
making up losses as much as possible is cost-efective.
Terefore, refund service fee should be equal to the dif-
ference of expected revenue caused by refunds or as much as
possible. Tus, the objective has been transformed from
maximizing revenue to maximizing compensation for losses
generated by ticket cancellation behavior.

maxBrefund R
tk
􏽢r 􏽢s􏼐 􏼑≤ 􏽢Brefund

⟹maxBrefund R
tk
􏽢r 􏽢s􏼐 􏼑 � 􏽢Brefund

⟹Brefund R
tk
􏽢r 􏽢s􏼐 􏼑 � 􏽢Brefund.

(18)

Equation (18) is equivalent to the following equation:

R
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D

n+1
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k
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i
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k
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i
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k
􏽢r 􏽢s + p

k
􏽢r 􏽢s.

(19)

Formula (19) is the objective function and has the fol-
lowing constraints. Constraint (20) is the limit of train
capacity. Constraint (21) sets an upper limit on the pro-
portion of refund service fee to ticket price. As our goal is to
reduce losses as much as possible, so Rtk

􏽢r 􏽢s ≤ptk
􏽢r 􏽢s. Besides,

restricted by practical application scenarios, especially po-
tential passenger complaints and public pressure, we had
better made βt ≤ 1 as the upper limit on the proportion of
refund service fee to ticket price. Constraint (22) means that

refund service fee is monotonically not reducing in the
presale period.

0≤ c
k
􏽢r 􏽢s c

k
􏽢r 􏽢s􏼐 􏼑≤ ck,∀(r, s), (20)

0≤
R

tk
􏽢r 􏽢s

p
k
􏽢r 􏽢s

≤ βt,∀t, (21)

R
t

→
k

􏽢r 􏽢s ≤R
t
⟵

k
􏽢r 􏽢s , t

→≤ t
⟵

, 1≤∀ t
→

, t
⟵
≤T. (22)

4. Solution

To solve decision variable Rtk
􏽢r 􏽢s, objective function (19) can be

transformed into the following formula:

R
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(23)

Record Ok
􏽢r 􏽢s as the border amount of passengers arrival

exceeding the remaining tickets. Tus, Ok
􏽢r 􏽢s � (ck

􏽢r 􏽢s + 1)/
(􏽐

2
i�1m

i
􏽢r 􏽢s • Pbik

􏽢r 􏽢s). Set dn
z(t) as the cumulative probability

that less z passenger arrival from refund time to departure
time during the presale period on the basis of n tickets being
sold. Tat is, dn

z(t) � P(A(T − t)≤ z|A(t) � n).
Ten, put Ok

􏽢r 􏽢s � (ck
􏽢r 􏽢s + 1)/(􏽐

2
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􏽢r 􏽢s) and dn
z(t) �

P(A(T − t)≤ z|A(t) � n) into the frst half of formula (23).
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(24)

Similarly, for these OD pairs (r, s) with no ticket can-
cellation, set 􏽢O

k

rs � ck
􏽢r 􏽢s/􏽐

2
i�1m

i
􏽢r 􏽢s • Pbik

􏽢r 􏽢s. Input it into the
second half of formula (23).
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Finally, by bringing formulas (24) and (25) into formula
(23), we can get Rtk

􏽢r 􏽢s by equation (26). It can be solved di-
rectly by elementary mathematics.
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(26)

5. Case Analysis

5.1. Basic Data. Beijing-Shanghai high-speed railway line in
China was just selected as a numerical example. Te Beijing-
Shanghai high-speed railway line mainly involves four
stations, namely, Beijing South (BS), Jinan West (JS),
Nanning South (NS), and Shanghai Hongqiao (SH). In order
to simulate and verify the applicability and accuracy of our
model, we randomly choose two trains (G19 and G21) with
diferent stop plans on the line to construct a situation of
multiple trains and multiple stops. Tese two trains both
depart from Beijing South Station and fnally arrive at
Shanghai Hongqiao station. G21 only stops at Nanning
South Station. Diferently, G19 stops at Jinan West station
additionally and provides service between all OD pairs. All
the above information can be seen clearly in Figure 2. We
take the data of two trains departing on April 1st as the case
for empirical analysis.

Table 3 details the ticket prices and travel time of two
trains on each segment. It is obvious that the ticket prices of
G21 and G19 are the same between any OD pair. Because of
fewer stops and less travel time between the same OD pair,
G21 has a stronger competitiveness and has been welcomed
by passengers, taking second-class seat as the research ob-
ject. Table 4 describes the capabilities of two trains. Te
maximum number of tickets allocated to any OD pair is 1113
for both trains.

According to the capacity of the two trains, the initial
results of tickets allocated to all OD pairs are set as shown in
Table 5.

As the presale period lasts 15 days, set T � 15. Trough
analysis of the ticket sale data on April 1st, we have obtained
the accumulated ticket sale intensity curves between dif-
ferent OD pairs. Because the accumulated ticket sale in-
tensity curve of each OD pair has a high similarity, we select
statistical results of several representative OD pairs to dis-
play to understand the trend and characteristics of the ac-
cumulated ticket sale intensity curves, as shown in Figure 3.

It can be concluded that the accumulated ticket sales of
each segment in the presale period have certain similarities;
that is, few passengers purchase tickets from 15 days to
5 days before departure (the accumulated proportion of the
ticket sale does not exceed 20% in Figure 3). However, the
accumulated ticket sales begin to increase rapidly in the last
5 days before departure. Table 6 details that the ticket
cancellations were mainly concentrated within 2 days before
departure or 5 days before departure based on the data from
July 2023 to August 2023. On the other hand, it is reasonable
for passengers to refund tickets for free in the early presale
period and the reality is exactly like this (Figure 1).
Terefore, we focus on the ticket cancellation behavior
during the peak of the presale period, that is, set 11≤ t≤ 15.
So, the ticket sale on each day in the peak of the presale
period is obtained in Table 7.
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Based on empirical estimation, price-sensitive passen-
gers account for 80% of the total passengers, and the
remaining 20% is the travel time-sensitive passenger. Tus,
m1

􏽢r 􏽢s � 0.8, m2
􏽢r 􏽢s � 0.2. Te values of utility function param-

eters, for example, are as follows: ϕ1 � − 0.9 and ϕ2 � − 0.1.
Regardless of the current charging standard for refund
service fee, set βt � 1,∀t.

5.2. Computational Results. We used Python software to
solve the model. In order to calculate the probability of
arrival of passengers based on the negative binomial dis-
tribution. Method of moment estimation is used to get the
values of two variables μ and σ through inputting sample
data. Table 8 presents the values of key parameters a and b

which determine the specifcity of negative binomial dis-
tribution obtained by formulas (3) and (4).

Continue to calculate the passenger selection probabil-
ities. According to the defnition of psychological expecta-
tions proposed in this article, the average values of travel
time and ticket price between each OD pair are shown in
Table 9.

Based on the data in Table 3, the probabilities of diferent
passenger groups choosing from train set between each OD
pair are calculated by formulas (9)–(14), which can be seen
in Table 10. Price-sensitive passengers or travel time-
sensitive passengers prefer G21 between OD pairs such as
(BS, NS), (BS, SH), and (NS, SH), where two trains provide
service. Because of less travel time and the same ticket price,
G21 is more competitive than G19 on the same segment.

Set t � 11 to t � 15, respectively, and input them into
formula (25) to solve the decision variable Rtk

􏽢r 􏽢s. Te results
can be seen as follows.

Table 11 shows that the dynamic optimization results
of refund service fee in this article account for over 50% of
the ticket price for all OD pairs. It also indicates that
ticket cancellation behavior of passengers will cause
signifcant losses to high-speed railway enterprises and
seriously damage their goals of maximizing revenue.
Figures 4 and 5 provide comparisons of the trend of the
refund service fee fuctuating between diferent OD pairs
for the same train. Whether G19 or G21, the refund
service fees monotonically increase and have certain
linear characteristics in the peak of the presale period
approaching the departure date due to the probability of
ticket sales decreasing. Te high-speed railway enter-
prises have to raise the refund service fee to ofset the loss
of expected revenue.

5.3. Te Impact of Passenger Choice Behavior. Figure 6
suggests that passenger selection preferences play an im-
portant role in infuencing refund service fee. We take the
OD pair (Beijing South, Nanning South) as an example.
Because of less travel time and the same price (Table 4), G21
possesses stronger competitiveness than G19 between Bei-
jing South and Nanning South segments. Passengers will
give priority to purchase tickets of G21 (50.6% vs. 18.6% for
price-sensitive passengers, 45.2% vs. 27.4% for travel time-
sensitive passengers in Table 10), which results in higher
probability of selling tickets for G21. Terefore, G21 only
charging for a lower refund service fee can minimize the loss
of expected revenue. However, the refund service fee curve
of G21 quickly converges to that of G19, as the presale period
approaches the end. Considering the actual charging stan-
dard for refund service fee (black curve in Figure 6), the
actual refund service fee curve remains far below the curves
of G21 and G19, which demonstrates the current standard of

BS JW NS SH

TerminalDeparture station

G21

G19

Figure 2: Te train stop schemes.

Table 3: Travel time and ticket price.

Train From
station To station Travel time (unit: min) Ticket price

(unit: RMB)

G19

BS NS 204 504
JW NS 120 315
BS SH 268 626
JW SH 184 453
NS SH 62 153
BS JW 82 211

G21
BS NS 194 504
BS SH 258 626
NS SH 62 153

Table 4: Capacity of each train (second-class seat).

Train Capacity (unit: seat)
G19 1113
G21 1113

Table 5: Number of tickets allocated to each OD pair.

Train From station To station Number
of tickets allocated

G19

BS NS 100
JW NS 113
BS SH 800
JW SH 100
NS SH 213
BS JW 213

G21
BS NS 313
BS SH 800
NS SH 313
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Figure 3: Accumulated ticket sale intensity curves of main segments.

Table 6: Statistics of the number of refunds per day in the presale period.

Te proportion of daily refunds to the total number in the presale period (%)
t � 1 t � 2 t � 3 t � 4 t � 5 t � 6 t � 7 t � 8
1.04% 0.91% 0.84% 0.89% 1.03% 1.20% 1.44% 1.97%
t � 9 t � 10 t � 11 t � 12 t � 13 t � 14 t � 15
2.57% 3.14% 4.30% 6.15% 8.43% 19.14% 46.95%

Table 7: Accumulated ticket sales on each day.

Train From station To station
Accumulated ticket sales (n) (tth day in the presale period)

t � 11 t � 12 t � 13 t � 14 t � 15

G19

BS NS 23 29 35 51 90
JW NS 25 34 40 57 89
BS SH 125 151 264 387 611
JW SH 17 28 32 54 78
NS SH 39 55 70 123 173
BS JW 45 67 90 129 182

G21
BS NS 85 101 133 167 265
BS SH 198 255 302 377 759
NS SH 99 121 147 166 257

Table 8: Values of parameters a and b.

From station To station a b
BS SH 0.0064 0.4259
BS JW 0.0068 0.6404
BS NS 0.0066 0.5500
JW SH 0.0521 2.9948
JW NS 0.0655 1.8006
NS SH 0.0100 0.5328
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charging for ticket refund is too low and it is not sustainable
for the fnancial balance-oriented development of high-
speed railway enterprises.

5.4. Te Impact of Passenger Flow. Passenger fow is also
a crucial factor afecting the refund service fee and fuc-
tuates periodically with the departure date. Even on the
two adjacent departure dates, the optimization result of
refund service fee varies signifcantly under the infuence
of passenger fow. To illustrate this, April 2nd was selected
as the departure date to compare with April 1st above from
Beijing South to Nanjing South for G21. Table 12 shows
that the ticket sale on April 2nd is faster than that on April
1st between main OD pairs (Beijing South, Nanning

South) and (Beijing South, Shanghai Hongqiao) during
the presale period with the same seat capacity. Tis in-
dicates that April 2nd has a stronger passenger fow. Te
fnal refund service fee solved on the two adjacent de-
parture dates obtained though the optimization model
proposed in this article is shown in Figure 7. Te refund
service fee curve on April 2nd is always more than that on
April 1st on the same day during the presale period, which
means that the refund service fee varies inversely with
passenger fow. Te higher the passenger fow intensity,
the greater the probability that high-speed railway man-
ager can resell the cancelled tickets, resulting in a lower
refund service fee charged. In summary, we can reduce the
proportion of the refund service fee to the ticket price
when demand exceeds supply.

Table 9: Average travel time and average ticket price.

From station To station Travel time (unit: min) Ticket price (unit: RMB)
BS SH 263 626
BS JW 82 211
BS NS 199 504
JW SH 184 453
JW NS 120 315
NS SH 62 153

Table 10: Te probabilities of diferent passenger groups choosing from train set.

Train From station To station Price-sensitive
passengers (%)

Travel time-sensitive passengers
(%)

G19

BS NS 18.6 27.4
JW NS 50.0 50.0
BS SH 18.6 27.4
JW SH 50.0 50.0
NS SH 33.3 33.3
BS JW 50.0 50.0

G21
BS NS 50.6 45.2
BS SH 50.6 45.2
NS SH 33.3 33.3

Table 11: Refund service fee and proportion to the ticket price.

Train From station To station
Refund service fee (yuan)/proportion of refund service fee to ticket price (%)

(tth day in the presale period)
t � 11 t � 12 t � 13 t � 14 t � 15

G19

BS NS 362/71.9% 394/78.1% 423/84% 451/89.5% 478/94.9%
JW NS 171/54.5% 201/64% 231/73.4% 260/82.5% 315/100%
BS SH 473/75.6% 507/81.1% 540/86.3% 570/91.1% 599/95.7%
JW SH 231/51.1% 273/60.4% 320/70.7% 363/80.3% 408/90.3%
NS SH 102/67.2% 114/74.5% 124/81.4% 134/87.9% 143/94.1%
BS JW 122/57.9% 141/67.1% 160/75.9% 177/84.2% 194/92.2%

G21
BS NS 303/60.2% 348/69.1% 390/77.5% 430/85.4% 468/92.9%
BS SH 396/63.3% 449/71.9% 498/79.7% 544/86.9% 544/86.9%
NS SH 102/67.2% 114/74.5% 124/81.4% 134/87.9% 143/94.1%
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5.5. Discussion. In the light of above, we can make some
conclusions as follows:

(1) Te refund service fee solved by the optimization
model monotonically increases as the presale period
gradually ends, following a linear pattern.

(2) It is evident that refund service fee, which aims to
minimize losses incurred due to ticket cancellation,
is signifcantly higher than the actual value. Tis
suggests that high-speed railway enterprises have set
a low charging standard for refund service fees, and
measures such as refund restrictions and ticket
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Figure 4: Proportion of refund service fee to ticket price between each segment for G19.
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Figure 5: Proportion of refund service fee to ticket price between each segment for G21.
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cancellation penalties should be implemented to
reduce passenger ticket refunds.

(3) Passenger preferences have a signifcant impact on
refund service fee. Te more competitive the train is,

the lower the proportion of refund service fee to
ticket price should be.

(4) Another factor afecting refund service fee is pas-
senger fow intensity, and it is negatively correlated
with the refund service fee. High-speed railway
enterprises should charge for refund service fee
reasonably according to passenger fow regularity.

6. Conclusions

We proposed a pricing optimization approach for refund
service fees based on the negative binomial distribution
under the situation of complexity in ticket sale as well as
address the issues of overreliance on personal experience
and lack of data support in the current pricing strategies of
high-speed railway. Our model was designed to compensate
for revenue loss as much as possible. It was proved that the
arrival conditional probability of passengers conforms to the
negative binomial distribution based on tickets sold in the
presale period. We also weighed passenger preferences in
terms of ticket prices and travel time to derive the selection
probability of diferent passenger groups for high-speed
trains. Finally, we established and solved the dynamic
pricing model to obtain refund service fee for any train and
any segment on tth day of the presale period.

In the case analysis, the current charging standard for
refund service fee is insufcient to make up for the revenue

Table 12: Accumulated ticket sales for G21 on diferent departure dates.

Departure date From station To station
Accumulated ticket sale (n) (tth day in the presale period)

t � 11 t � 12 t � 13 t � 14 t � 15
April 1st BS NS 85 101 133 167 265
April 1st BS SH 334 389 502 689 734
April 2nd BS SH 398 422 515 760 775
April 2nd BS NS 155 186 211 257 299
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Figure 7: Te impact of passenger fow on refund service fee.
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Figure 6: Te impact of passenger choice on refund service fee.
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loss. In fact, the refund service fee should not exceed 50% of
the ticket price to avoid legal issues caused by passenger
complaints. Terefore, the results of this article are based on
the goal of compensating for the revenue losses and are
higher than the actual situation. Considering the reality,
railway enterprises will not raise the current charging
standard of the refund service fee to the level in the case
analysis. As the presale period nears its end, the refund
service fees gradually increase in a linear trend. At the same
time, passenger selection preferences and passenger fow
intensity have dominant impacts on the results.

Our study has only chosen a less focused route to
construct an objective function and explore its feasibility.
Of course, it has limitations, especially without taking the
essential idea of making the fees charged for refunds at
diferent periods and subsequently optimizing it. Fur-
thermore, there is always a gap between theory and reality.
We modeled the issue of pricing for refund service fee
theoretically and still need to overcome application
challenges. Considering the complexity of model con-
struction and solution, how to organize a large-scale
information system to solve the model in parallel to
satisfy timeliness will be the frst challenge. In addition,
the big data required for parameter estimation is also a key
obstacle. Our further studies will consider more ideas and
practical limitations to obtain more applicable results. In
addition, the application scenario can be extended from
a single line with multiple trains and multiple stops in this
article to a complex high-speed railway network com-
posed of multiple lines and trains.
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