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Population demography can change the network structure, which further plays an important role in the spreading of infectious
disease. In this paper, we study the epidemic dynamics in temporal clustered networks where the local-world structure and
clustering are incorporated into the attachment mechanism of new nodes. It is found that increasing the local-world size of new
nodes has little influence on the clustering coefficient but increases the degree heterogeneity of networks. Besides, when the
network evolves faster, increasing the local-world size of new nodes leads to a faster initial growth rate and a larger steady density
of infectious nodes, while it has small impacts on the steady density of infectious disease when the network evolves slowly.
Furthermore, if the average degree is fixed, increasing the probability of triad formation p enlarges the clustering coefficient of
a network, which reduces the initial growth rate and steady density of infectious nodes in the network. This work could provide

a theoretical foundation for the control of infectious disease.

1. Introduction

Infectious diseases, such as HIN1 influenza and the ongoing
coronavirus disease 2019 (COVID-19), pose a significant
health and economic burden on society. Mathematical
models have been used as a powerful tool to mitigate the
impacts of infectious diseases as they can provide valuable
insights into the transmission mechanism of diseases and
then guide policymakers implementing effective prevention
and control measures. More recently, researchers have de-
voted a great deal of effort to mathematically model the
spread of COVID-19 and seek for effective non-
pharmaceutical interventions, such as social distancing,
isolation, and intercity travel restrictions, to control the local
outbreak of COVID-19 [1-5]. Besides, Li et al. used the
signed networks to study the influence of structural balance
on epidemic transmission [6]. Sun et al. investigated the
effects of resource diffusion on epidemic propagation in
multilayer networks with simplicial complexes, showing that
increasing the resource diffusion on 2-simplexes can sup-
press the epidemic spreading [7]. It is also discovered that

information transmission induced by the 2-simplex can
suppress epidemic outbreak to a certain extent [8]. Also,
a review of different phenomena on higher order networks
was given by Majhi et al. [9]. All these studies have dem-
onstrated that the population contact pattern which can be
described as a network plays an important role in the epi-
demic spreading.

The population demography can change the network
structure which further affects the disease spreading process
on networks. Kamp introduced an SID model with HIV as
a case study to investigate the interplay between epidemic
spreading and the dynamics of network structure [10]. Jin
et al. established an SIS heterogeneous mean-field model
with a constant recruitment rate and derived the global
dynamics of the model where the new members link to
existing nodes randomly [11]. Piccardi et al. integrated the
birth and death process into the SIRS model on heteroge-
neous networks and disentangled the underlying causes of
the different outcomes obtained for SIR and SIRS processes
by applying an age-degree model [12]. Based on conditional
Markov chain and pairwise approximation, Luo et al.
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studied an SIS pairwise model on networks, finding that
demographics of individuals can induce the extinction of an
epidemic [13]. Jing et al. studied the effects of different
moment closure methods [14], adaptive behaviors of new
members [15], and the distribution of infection age [16] on
epidemic spreading in networks with demographics. Leung
et al. provided a new framework using digital proxies of
population mobility and mixing to monitor viral trans-
missibility and effectiveness of social distancing in-
terventions in the ongoing COVID-19 pandemic [17].

Currently, most research in network epidemic models
with demographics has assumed that a new node links to
existing nodes according to random or preferential at-
tachment mechanism when it enters the network. In fact,
there has been evidence to indicate that the preferential
attachment mechanism works on a local world of each node
[18, 19]. Using a local preferential attachment mechanism, Li
and Chen constructed a local-world evolving network whose
distribution is a transition between that of an exponential
network and of a power-law scaling network [18]. Zhang
et al. proposed a local-world evolving network model with
changeable local-world size and tunable clustering by in-
cluding a triad formation step in the local-world evolving
network model [20]. Wen and Duan introduced extended
links to mimic the weak relations between nodes in different
local worlds, obtaining a local-world evolving model which
exhibits scale-free behavior as well as the small-world
property [21]. Wang et al. presented a local preferential
attachment model where a local area consists of a node and
all its neighbors [22]. They derived the stable degree dis-
tributions and clustering-degree correlations of the network.
Besides, the epidemic spreading behavior [23], rumor
spreading process [24], and cascading failures [25] in local-
world evolving networks are studied. It shows that the at-
tachment mechanism of new members has a significant
impact on the network structure and the propagation
process on networks.

Many real-world networks exhibit nonnegligible clus-
tering which can have an important impact on epidemic
dynamics. However, there is no clear consensus on the role
of clustering. For example, it shows that the effect of
clustering on epidemic spreading in Watts—Strogatz net-
works is stronger than the effect of clustering on epidemic
spreading in Facebook network [26]. Considering the local-
world structure and clustering characteristics, we will in-
vestigate the effects of attachment mechanism of new
members on the network structure and epidemic dynamics
in this paper.

The rest of this paper is organized as follows. In Section
2, we introduce some basic characteristics of networks. Then,
the evolving network model and epidemic spreading process
on networks are given in Section 3. In Section 4, numerical
simulations are conducted to explore the impacts of
mechanisms that new nodes connect existing nodes on the
network structure and epidemic dynamics. Finally, some
conclusions and discussions about this work are given in
Section 5.
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2. Basic Characteristics of Networks

Let G(V, E) be an unweighted, undirected network with V
representing the set of nodes and E € V x V representing the
set of links between nodes in the network. For a finite
network with N nodes, the set E can be encoded in the
adjacency matrix whose entry g;; is 1 if there is a link be-
tween i and j, and 0 otherwise. A finite network is de-
termined uniquely by its adjacency matrix.

Degree distribution is the most important characteristic
of the network. The degree of one node is the number of
links connecting it. Then, the degree distribution is given by
Pr = N /N, where N is the number of nodes with degree k.
Some widely used networks include regular random, Pois-
son, bimodal, and scale-free networks.

Clustering, one frequently used statistical property of
characterizing networks, measures the probability that two
neighbors of a randomly chosen node share a link to form
a triangle [27]. Specifically, the clustering coefficient of node
i is defined as the ratio of the number of triangles and triples:
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where T; and k; (k; — 1)/2 are the total number of existing

links and the number of all possible links between the

neighbors of node i, respectively. Furthermore, the degree-

dependent clustering coefficient of node with degree k can be

defined as the average clustering coefficient of nodes with
degree k, ie.,
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where % (k) is the set of nodes with degree k. Then, the
clustering coefficient of the network is defined as the

weighted average of degree-dependent clustering coefficient,
which is also the average of clustering coefficient of nodes:
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where k. is the maximum degree of nodes.
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3. The Model

3.1. The Evolving Network Model. The local-world evolving
network was first proposed by Li and Chen [18]. It captures
the localization of real-life networks. Then, Zhang et al.
presented expanded local-world evolving network with
tunable clustering by including a triad formation (TF) step
[20]. Considering the local-world structure and clustering of
networks, we propose the generating algorithm of the dy-
namic clustered network with demographics. It is sum-
marized as follows:

(i) Initial condition: the initial network consists of N
nodes and has a Poisson degree distribution with
average degree (k).
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F1GURE 1: Sketch of the network evolving process with the local-world size M = 8 and the value m = 3. In (a), M nodes (the red nodes) are
randomly selected as the local world of the new node v (the blue node). In (b), 7 nodes in the local world are chosen to be connected with v
by blue lines according to the preferential attachment. In (c), for the m nodes in (b), a randomly chosen neighbor is linked to v (by blue
dashed line) with probability p. In (d), one randomly selected node as well as its links (denoted by pink color) is deleted from the network.
Then, the network after one step, i.e., adding one node and then deleting one node, is shown in (e).

(ii) Network evolving: At each time step ¢, we fist add
a new node v to the network and then delete
a randomly selected node as well as its links from the
network. The attachment mechanism between the
new node v and existing nodes is as follows:

(1) Local-world establishment: randomly select M
nodes from the network, referred to as the “local
world” of v.

(2) Local preferential attachment (LPA): The new
node v connects to m different nodes in its local
world according to the preferential attachment.
Thus, the probability II; ., (k;) that node v is
connected to an existing node i in the local world
of node v depends on the degree k; of node i:
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(3) Triad formation (TF): When the new node v
connects an existing node i, we then implement
a TF step with probability p. Specifically, if a link
between v and i was added in the previous LPA
step, then one more link between v and a ran-
domly chosen neighbor of i is added. If all
neighbors of i have already been connected to v,
do one more LPA step instead.

HLacal (kl)

A sketch of the network evolving process is shown in
Figure 1. After T steps (the designed total iteration steps
which are large enough to reach a stationary network), the
algorithm results in a connected network with N nodes and
average degree is (k) = m(1 + p). Obviously, the network
size keeps a constant and it has M < N and 0< p< 1. There
are two limiting cases for the evolving network: M =m, p =
0 and M =N, p=0. When M =m, p =0, the stationary

degree distribution is Poisson with mean m, while when M =
N, p =0, the stationary degree distribution is “stretched
exponential,” namely, p, ~ k- ®Ye~ @VK) [28]. Besides, the
parameter p allows us to include the clustering effect into
network by building triads.

3.2. Epidemic Spreading on Evolving Networks. We consider
an SIS epidemic spreading on evolving networks, where the
initial network is the stationary network obtained by the
generating algorithm in Section 3.1. During the epidemic,
nodes can either be susceptible (S) or infectious (I). The
susceptible nodes can be infected by their infectious
neighbors with a per-contact transmission rate A if they are
connected to one or more infected nodes, while the in-
fectious one can be cured at a recovery rate p. When an
infectious node recovers, it turns to susceptible and can be
infected again. Meanwhile, existing nodes together with all
their links can leave the network due to death, and new
nodes enter the network due to birth. Here, the mechanism
that nodes enter or leave the network is identical to that in
Section 3.1. Thus, the population size is a constant. Given
a short time interval §,, the algorithm of epidemic spreading
on evolving networks can be summarized as follows:

(i) Initialization: An undirected and unweighted net-
work with N nodes is created and set to the initial
network by performing the network generating
algorithm in Section 3.1. Then, I(0) randomly se-
lected nodes in the network are initially infected and
the other nodes are susceptible.

(ii) Epidemic process: Given the state of each node at
time ¢, the states of nodes at time ¢ + &t are updated
as follows. Each infected node recovers and becomes
susceptible again with probability yéd,. Each



susceptible node, such as node i, turns into in-
fectious with probability An;, where #; is the number
of infectious neighbors of i.

(iii) Network evolving: At time ¢, D, (extracted from the
binomial distribution B (N, ud,)) randomly selected
nodes as well as all their links are eliminated from
the network. Then, D, nodes are added into the
network sequentially where links are created
according to the mechanism in Section 3.1.

To sum up, we can simulate the epidemic spreading on
dynamic clustered networks by iterating the epidemic
process and networking evolving process until there is no
infectious node in the network or the number of infectious
nodes reaches a steady state. During the iteration, record the
number of infectious nodes in each time step.

3.3. The Heterogeneous Pairwise Model on Evolving Networks.
In line with the above algorithms, we construct the het-
erogeneous pairwise model on evolving networks in this
section. The notations of the model follow those established
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in [29], i.e., using square brackets [ ] to denote the expected
numbers of nodes, pairs, or triples of a particular type.
Specifically, let [A;] be the number of nodes in state A and
with degree k, and [A] be the number of nodes in state A.
[A,B;] represents the number of pairs with one node in state
A having degree k and with the other node in state B having
degree I. [AB,C,,] stands for the number of triples of type
Ay — B; - C,,. If a disease state of a variable has no subscript,
it implicitly contains the sum over all possible degrees, such
as [A] = Y [Ag] and [AgB] = ), [A(B)]. Let IT,, denote the
probability that a link of new nodes is connected to an
existing node in state A with degree k. It depends on the
values of M and p. Furthermore, according to the attach-
ment mechanism, the degree distribution of new nodes is

m
( )pk"‘(l—p)z’"k, m<k<2m,
e = k-m

0, others.

(5)

Using the notations above, the SIS pairwise model on
evolving networks can be written as

d[s
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FIGURE 2: Time dependence of the densities of infectious nodes for different values of M. The lines are averaged over 200 stochastic
simulations according to the algorithm of epidemic spreading on evolving networks in Section 3.2, with the parameter values being

N =2000,A=03,y=1,m=38, p=0, (a) 4 =0.5, and (b) y =0.1.

In order to close the above equations, we need to give the
expression of I1 4, and an approximation of triples in terms
of nodes and pairs. The expression of II, depends on the
values of M and p, which are classified as the following three
cases:

(1) M=m, p=0: In this special case, newcomers
connect to all nodes in their local world. It means
that the LPA is reduced to uniform attachment, that
is, new nodes connect to existing nodes randomly.
Therefore, it has

I - k[Si] ,
% X (h[Su] +h[1,])
(7)
m, = k(1] .
£ Zu(h([Sy] +h[1,])
Moreover, the network clustering coefficient

approached 0 such that the triples can be approxi-
mated by the triple closure in [30]:

1-1 [AB][BC,]
ABC,| = — ————""=. 8
[ k21 m] ] [Bl] ( )
Substituting equations (7) and (8) into equation (6)
yields a closed system.

(2) M =N, p=0: In this limiting case, the network
clustering coefficient approached 0 and new nodes
connect existing nodes exactly the same as global
preferential attachment mechanism. Therefore, it has

_ k([Si]
< 2 (h[S,] + R[I,])

o - k(]
B Y (S, ]+ h[1])

I
9)

Substituting equations (8) and (9) into equation (6)
gives a closed system.

(3) m<M < N: In this general case, the explicit ex-
pressions of ITg and IT; are much more complicated
and unable to be derived since they depend on the
values of M and p. Thus, we do not give the exact
formula of the model here. There are two remarks
about the model.

Remark 1. It is assumed in [18] that ;o ki =
(k)M, finding that the local-world growing net-
work also has a power-law degree distribution
when m < M. Similarly, the formulas of IIg and
II; are exactly the same as in equation (9) under
this assumption. This reveals the main reason that
as M increases, the epidemic curves are closer to
those when M = N as shown in Figure 2.
Remark 2. When p#0, there is small but non-
negligible clustering in the network. Let ¢ be the
network clustering coefficient; then, the triples can
be approximated by the triple closure with clus-
tering in [31]:

_nN [Aka]>
km [AB,] )

(10)

4. Numerical Simulations

4.1. Degree Distribution and Clustering Coefficient of
Networks. We will investigate the degree distribution and
clustering coefficient of networks by stochastic simulations.
In these simulations, the initial network size is N = 2000 and
each pair of nodes has a link independently of any others
with probability (m(p + 1)/N — 1). Thus, the initial network
has a Poisson degree distribution with mean m (p + 1). The
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FIGURE 3: Stationary degree distribution of networks for different values of M. Results are obtained by stochastic simulations according to
the network generating algorithm in Section 3.1, where the initial network has a Poisson degree distribution with mean m(p + 1). The
parameters are m = 10, T = 20000, (a) p =0, (b) p = 0.3, and (c) p = 0.6.

simulation lasts 20000 time steps according to the network
generating algorithm described in Section 3.1.

Figure 3 gives the stationary degree distribution of
networks under different values of M and p. It demonstrates
that the local-world size M and the probability of triad
formation p have a direct impact on the network structure. It
can be seen from Figure 3(a) that when p = 0, the larger the
value of M, the flatter and wider the degree distribution. This
means that increasing the local-world size reinforces the
degree heterogeneity for networks. However, as both the
values of p and M increase, this impact disappears as shown
in Figure 3(c). If the values of p and M are large enough, new
nodes link to existing nodes with approximately a global
preferential attachment mechanism, that is, the local

preferential attachment selection is not effective. Thus, there
is relatively little change in the degree distribution of
networks.

Figure 4 shows the evolution of clustering coefficients for
different values of M and p. It suggests that the local-world
size M has little effect on the network clustering for a fixed
value of p. However, for fixed M, the network clustering
coeflicient is approximately 0 if p = 0, whereas it converges
rapidly to a stable value if p>0. Furthermore, compared
with the growing network without deletion of nodes [20], it
can be found that node removal dramatically decreases the
degree distribution and clustering in networks. But the
network still has nonnegligible clustering where the clus-
tering coeflicient is increasing with p in our model. Thus, the
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F1GURE 4: Clustering coefficients of the network during the evolution of the network for different values of M. The network evolves as the
generating algorithm in Section 3.1, where the initial network has a Poisson degree distribution with mean m(p + 1). The parameters are

m =10, (a) p=0, (b) p=0.3, and (c) p = 0.6.

clustering coefficient can be tuned by changing the proba-
bility of triad formation.

4.2. Epidemic Dynamics. Figure 5 provides a comparison of
stochastic simulations to numerical simulations of pairwise
model for two limiting cases M =m and M = N, which
correspond to uniform attachment and global preferential
attachment, respectively. One can see that the agreement is very
good in both cases. Besides, when new nodes connect existing
nodes according to global preferential attachment, the epi-
demic has a faster initial growth rate and a larger steady density
of infectious nodes compared to the case of uniform attach-
ment. This phenomenon is more significant in Figure 5(a)
where the average degree of the network is smaller. It indicates
that the attachment of new nodes can significantly affect
disease dynamics, and decreasing the degree heterogeneity of
networks is helpful in mitigating epidemics.

Figure 2 investigates the effects of local-world size M on
epidemic dynamics. In Figure 2(a) where y is large, higher
values of M correspond to faster initial growth rate and
larger steady density of infectious nodes. However, when y is
small as shown in Figure 2(b), the value of M has only
a relatively small effect on the initial growth rate and does
not affect the steady density of infectious nodes. Besides, it
can be seen that a larger value of y leads to a higher steady
density of infectious nodes, and the epidemic reaches the
steady state quicker by comparing Figures 2(a) and 2(b). This
is due to the fact that the network evolves faster such that M
has a more significant effect on the network distribution as y
increases. Specifically, infectious nodes are removed faster
from the network and susceptible nodes enter the network
instead. Meanwhile, more infectious nodes leave the net-
work before they infect others, reducing the average in-
fection period. All these factors contribute to the decline in
epidemic spreading. In contrast, when u is small, the
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FIGURE 5: A comparison of stochastic simulations and model predictions of infection dynamics for two limiting cases M = m and M = N.
The parameter values are A = 0.3; y = 1; N = 2000; (a) m = 8, p = 0; and (b) m = 10, p = 0. Red and green lines correspond to numerical
solutions of pairwise model ((6a)-(6e)) with the linking mechanism being (7) and (8), respectively. Dashed lines present the average of 250
stochastic simulations according to the algorithm of epidemic spreading on evolving networks in Section 3.2.
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F1GURre 6: Time dependence of the densities of infectious nodes based on the average of 200 stochastic simulations for different values of m
and p. The lines are averaged over 200 stochastic simulations according to the algorithm of epidemic spreading on evolving networks in
Section 3.2, and the parameter values are A = 0.3, ¢ = 0.5, y = 1, N = 2000, (a) M =m, (b) M =20, (c) M =40, and (d) M = N.

network evolves slowly and the network structure is rela-
tively stable, such that the local-world size has little influence
on the steady density of infectious diseases.

Figure 6 gives the simulation results based on the average
of 200 stochastic simulations for different values of M and p.
For comparison, M and p are determined such that the
networks have the same average degree, i.e., m(1 + p) = 10.
It shows that the initial growth rate and steady density of
infectious nodes decrease with increasing p values for fixed
M and average degree. On the other hand, combining with
the result noted in Figure 4 that larger values of p lead to
a larger clustering coefficient of the network, it implies that
clustering in networks is capable of suppressing infection of
an epidemic. This is consistent with the previous work in
static clustered networks [29, 32].

5. Conclusion and Discussion

The present study has explored the interplay between
epidemic spreading and network evolution. In our model,
new nodes fist connect m existing nodes according the
local preferential attachment mechanism and then con-
nect to one randomly chosen neighbor of these nodes
with a given probability p. Such network evolution
mechanism incorporates both the local-world structure
and clustering into networks. Simulation results illustrate
that the attachment mechanism of new nodes can in-
fluence the degree distribution, clustering, and epidemic
dynamics in networks. It shows that increasing the local-
world size leads to a stronger heterogeneity in the net-
work degree distribution but has little impact on the
clustering in networks. Furthermore, it corresponds to
a faster initial growth rate as well as a larger steady
density of infectious nodes when the network evolves
faster. In contrast, the local-world size has a small impact

on the steady density of infectious nodes if the network
evolves slowly. On the other hand, for a given average
degree and local-world size, increasing the probability of
triad formation leads to a larger clustering coefficient of
the network which further suppresses the infection of an
epidemic. In conclusion, controlling the attachment
mechanism of new nodes could be an effective measure to
mitigate an epidemic.

A limitation of our study is that the probability that an
edge emanating from new nodes connects a susceptible or an
infectious node in networks cannot be calculated explicitly.
Besides, the high dimensionality of the model poses
a challenge for theoretical analysis of epidemic dynamics.
How to derive an explicit formula for the probability (ITg,
and II; ) and investigate the steady states as well as their
stability of the model needs more rigorous mathematical
techniques. This remains an open question.
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