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This article focuses on the asymptotic and transient behavior of a food chain model with vigilance in the biparameter spaces.
Firstly, the local asymptotic stability conditions of the positive equilibrium point are obtained. Then, the transient dynamical
behavior of the positive equilibrium point is analyzed based on eight parameters. Using numerical simulation, the stable regions of
the model with single and double parameters are plotted, as well as the value changes of resilience, reactivity, and amplification
envelope within the stable regions. The results show that the coexistence equilibrium point is always reactive, and the corre-
sponding parameter ranges for system stability are large, but the resilience values are small. The vigilance parameter of the middle-
and lower-level organisms has the greatest impact on the system’s resilience and reactivity, and the lowest vigilance corresponds to
the maximum resilience and reactivity. Our results provide important references for effective management and protection of wild

animal populations by the potential for transient amplification, disturbance growth time, and amplitude.

1. Introduction

Ecological theory has always focused on long-term or as-
ymptotic behavior as a way of understanding natural sys-
tems, and the equilibrium of ecological models is typically
characterized by their stability and resilience. In 1977, Pimm
and Lawton [1] first proposed the biological concept of
resilience, which refers to the asymptotic decay rate of
perturbations, and concluded that “the greater the resilience,
the faster the long-term decay rate of perturbations, and the
more stable the system.” As a result, the asymptotic behavior
of the solution of a linearized system can be described by the
dominant eigenvalue. However, ecological systems with
asymptotically stable equilibria may exhibit deviations from
equilibrium in the short term after disturbances. Therefore,
Neubert and Caswell [2] introduced reactivity and ampli-
fication envelopes as supplements to resilience in 1997, to
explain why perturbations can grow significantly before
decaying, opening up a path for the analysis of nonpattern
stability in ecological problems.

People gradually realized that these short-term dy-
namics, or transients, may differ. In 2001, Chen and Cohen

[3] showed that transients are one of the important factors
affecting the sustainability of ecological communities.
Hastings [4] also proposed that transients are a key to
understanding long-term ecology in 2004. In the same year,
Neubert et al. [5] studied the reactivity of predator-prey and
food web models and concluded that coexistence equilibria
are reactive in all predator-prey and food web models, and
short-term disturbances amplified the real possibility of
predator-prey interactions and food webs. Caswell and
Neubert [6] also focused on the short-term dynamics of
long-term stable reactive ecological systems and studied the
reactivity of discrete-time predator-prey models and
density-dependent matrix population models in 2005,
concluding that reactivity is common (but not universal).
More and more scholars have found that the transient
growth of disturbances is a key attribute of dynamic be-
havior in ecological systems. Many studies have also focused
on understanding the ecological reasons for transient growth
of disturbances (Verdy and Caswell [7], Snyder [8]) and
developing a theoretical framework (Neubert et al. [9]) for
identifying transient growth in ecological time series ob-
tained from experiments. In 2014, Tang and Allesina [10]
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derived analytical standards for the reactive behavior of large
ecological systems with species random interactions. The
latest advances in understanding the transient dynamics of
complex ecological systems have revealed that transients can
also persist for relatively long periods of time. Hastings et al.
[11] systematically defined “long-term transients” in 2018,
pointing out that long transients have two characteristics:
a long duration of quasistable state and a short time for
regime shift, and proposed ghosts and crawl-bys as its core
mechanism. Long-term transient dynamics can easily be
mistaken for stable state dynamics but may require radically
different management strategies. In 2020, Boettiger [12]
explored the optimal management of stochastic ecological
systems with long-term transients. Morozov et al. [13] also
quantitatively analyzed this important feature in ecology
“long-term transients” in the same year and conducted
systematic research, revealing several major mechanisms
that lead to the appearance of long transients, filling the gap
in the study of ecological transients and providing a deeper
understanding of the stability and sustainability of ecological
systems. In 2023, Sahoo and Samanta [14] explored the
impact of fear and its legacy effects on long-transient
dynamics.

Reactivity has been extensively studied in many two-
dimensional ecological models, such as ecosystem com-
partment models (Marvier et al. [15]), two-dimensional
infectious disease models (Hosack et al. [16]), and matrix
population models (Ezard et al. [17]). In 2017, Vesipa and
Ridolfi [18] demonstrated the significant dynamic impact of
seasonal forcing on a predator-prey model with a Holling IT
type functional response. Considering that ecological sys-
tems are constantly influenced by external factors in the real
world, it is reasonable to consider stochastic biological
models. In 2014, Buckwar and Kelly [19] extended resilience,
reactivity, and other quantitative standards to perturbed
predator-prey models with stochasticity. In 2021, Liu and
Feng [20] measured how three quantitative standards
(mean-square resilience, mean-square reactivity, and mean-
square amplification envelope) change under different
perturbation conditions using a stochastic proportional
dependence predator-prey model as an example. In the same
year, Sahoo et al. [21] investigated the interplay between the
level of fear and the degree of habitat complexity in
a predator-prey model with two different shaped functional
responses.

With the development of mathematics, community
models based solely on two species as basic components may
overlook important ecological behaviors. In 1973, Rose-
nzweig [22] and, in 1976, Wollkind [23] discovered complex
and striking results in a three-nutrient level model, far
beyond what was seen in the two-species model. In 1987,
Fretwell [24] proposed that food chain dynamics are the core
theory of ecology. In 2019, Panday et al. [25] introduced the
concept of fear cost into a three-species food chain model
and found that it could stabilize a system that was previously
in constant fluctuation. Cong et al. [26] established a three-
species food chain model in 2021 that included antipredator
behavior costs and benefits, which also confirmed the above
theory. In 2022, Hossain et al. [27] studied the changes in
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population density in different bivariate spaces of a three-
species food chain model with a vigilant component and
found that vigilance plays a crucial role in the survival and
extinction of populations. In 2023, Mandal et al. [28] ex-
plored the effects of predator fear and supplementary food
sources on interacting populations in a three-nutrient food
chain model.

Although the asymptotic stability of food chain models
has been well established, there has been relatively little
research on transient behavior. This paper focuses on
a three-species food chain model with a vigilant component,
and the asymptotic and transient behaviors of the system in
single and bivariate parameter spaces, including the basal
prey vigilance, birth rate, mortality, and intermediate
predator vigilance, et al. are investigated.

The structure of this paper is as follows: Section 2
provides a brief introduction to a mathematical model and
related basic concepts. Subsequently, Section 3 obtains the
local asymptotic stability conditions and parameter stability
range of the model. Section 4 uses numerical simulations to
obtain numerical graphs of resilience, reactivity, and am-
plification envelope under single and bivariate parameter
perturbations and provides corresponding analysis.

2. Preliminaries

2.1. The Mathematical Model. Huang and Sih [29] studied
a three-dimensional food chain consisting of green sunfish,
smallmouth salamander larvae, and hatchery isopods. After
documenting the negative impacts of the top predator, green
sunfish, on the intermediate predator, salamanders, and the
salamanders’ impacts on the isopods that served as bait, they
found that the fish caused the salamanders to become
dramatically less active and eat less (even when the sala-
manders were in the same refuges as the isopods). Similarly,
in response to the risk of predation, isopods increased their
tendency to bury themselves in deeper sand. For this reason,
we considered a three-species food chain model [30]:

((11—9: = (r—m)x —cx’ - Pyxy,

d

di)t} =d,P,xy - Q,yz - m,y, (1)
dz

pri d,Q,yz — msz.

Here, x, y, and z, respectively, denote the population size
of the prey, middle predator, and top predator species. t
denotes time, and m,, m,, and m; represent the natural
death rates of prey, middle predator, and top predator,
respectively. r is the birth rate of the prey, and c is the
strength of intraspecific competition among prey in-
dividuals. d, and d, are the conversion efficiencies of preys’
biomass into middle predators’ biomass and middle pred-
ators’ biomass into top predators’ biomass, respectively. P,
and Q, are the maximum predation rates of middle and top
predators, respectively. The maximum predation rate of an
arbitrary predator can be viewed as (the maximum
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encounter rate) x (lethality) of the predator. Our main ob-
jective is to study the effect of a biparameter variation of the
food chain model with vigilance on the dynamical behavior
of this system. We assume that the alerting effect of the basal
prey produces two effects:

(i) Due to increased vigilance, the reduced foraging
time and food intake have weakened the activities
that promote population growth, resulting in a de-
cline in the birth rate of x.

(ii) Increased vigilance reduces successful predator at-
tacks, as the basal prey has more time to hide or flee
from dangerous sources, resulting in lower maxi-
mum encounter rates and catch-lethality of middle
predators against basal prey. Thus, the vigilance of
basal prey reduces the maximum predation rate of
middle predators.

Similarly, the heightened vigilance of intermediate
predators reduces their hunting time, lowers their maximum
encounter rate with top predators, and thus decreases their
maximum encounter rate with basal prey and maximum
predation rate with top predators. The improved model is as
follows:

dx xy(1-v)

E =rx(1—u)—m1X—Cx2—plly+7klu,

dy dipxy(1-v) gqyz

dt ~ L tku  Ltkpy 2 @
dz _ dyqyz

i Liky

The interpretations of the system parameters along with
their dimensions are given in Table 1. Note that all the
system parameters must be non-negative.

2.2. Measurements of Perturbation Response. Table 2 gives
the measures of the response of a linear or linearized system
(x = Ax) to perturbations (x (0) = x,) of the asymptotically
stable equilibrium (x = 0).

3. Local Stability Analysis of Positive
Equilibrium Points

This system has four equilibrium points: E;(0, 0, 0),
E (r(1 -u)-m,/c,0,0), E,(m,(I; +ku)d, p(l-v),]
+kulp(1=v)[r(1 = u)—m; —cmy, (I, + kyu)/d, p(1 - v)],
0), and E* (x*, y*,z"). After calculation, we can obtain

*_1 _ _ _Py*(l_v)
x _c[r(l u) L+ku |
. L, +k
=Wl3(; ZV)) (3)
29
. L+ky[dpx"(1-v)
Z = q [ I, + kyu |

Here, we consider only the coexistence equilibrium point
in the biological sense and its local asymptotic stability
conditions.

Theorem 1. If r(1—u)>my+cm,(l, +ku)/d p(1-v)
+p(1 = v)my (I, + kyv)/dyq (I, + kyu), the interior equilib-
rium point E* (x*, y*,z*) is locally asymptotically stable.

Proof. Linearize the system (2) at E* (x*, y*,z*) and obtain
the Jacobian matrix:

o _Px*(l _V)
. I + kyu 0
dipy"(1-v) m;,
apy L=V 0 BT
I +ku 4, )
* 1_
0 ddpx A=V) 0

I + ku

its characteristic equation is f(A) = A°> + mA* + myA + n3,

where
.
n, =cx >0,

2 % %

» dymspx” (I—V)+d1pxy(1—v) .
27 I +ku (1, +k1u) 213>
dlpcm3(x*)2(1—v) .
ns = I+ ku mymscx
—r(1-u)— _sz(l1+k1”) p(L=v)my (I, + k,v) 0
dip(1-v) dyq (I, + kyu) >
M =nn, —n,
ot dymspx” (1-v) | d,p*x*y" (1-v) o
ll+k1u (ll+k1u) 2113
d, pems (X*)z(l -v) e
I +ku 275
_edip ()Y -
(ll+k1u)
(5)

The Routh — Hurwitz conditions are satisfied, the real
part of all eigenvalues of J (E*) is negative, and the positive
equilibrium point E* is locally asymptotically stable. O

4. Numerical Simulation and Stability Analysis

First, we use the following set of biologically feasible
parameters:

r=2, ¢=0.1, p=0.7, g=0.5, u=0.5, v=0.6, k; =1.5,
k,=18, d, =05, d,=0.7, m,=0.3, m,=0.1, m;=0.05,
I,=12,and I, =1.5.



4 Complexity
TaBLE 1: Details about the variables and parameters present in system (2) [31].

Parameter Dimension Interpretation

t Time Time

x Biomass Basal prey’s density

y Biomass Intermediate predator’s density

z Biomass Top predator’s density

r Time™! Birth rate of the basal prey

m, Time™! Natural death rate of the basal prey

m, Time™! Natural death rate of the middle predator

m; Time™! Natural death rate of the top predator

c Time™! biomass™! Intraspecific competition rate of the basal prey

P Time™! biomass™! Maximum predation rate of middle predator

q Time™! biomass™! Maximum predation rate of top predator

d, Dimensionless Conversion efficiency of the middle predator

d, Dimensionless Conversion efficiency of the top predator

1/ Dimensionless Middle predator’s lethality

1/1, Dimensionless Top predator’s lethality

u Dimensionless Level of vigilance of the basal prey

v Dimensionless Level of vigilance of the middle predator

k, Dimensionless Effectiveness of basal prey’s vigilance

k, Dimensionless Effectiveness of middle predator’s vigilance

TaBLE 2: Measurements of perturbation response [2].

Quantity Definition Calculation method

Resilience Asymptotic proportional decay rate of perturbations: , lim  (1/{x (¢)|ld]lx (£)]/ dt) —-Re (A, (A))

Reactivity Maximum possible instantaneous proportional amplification rate of perturbations: A, (H(A)

Amplification envelope p ()

Pmax

maxyy, ;o [(1/llx ()l dllx (N7 dt | ,_p)]
Maximum possible amplification at time t: max“xl)"#()llx(t)ll/ (EN llle
Maximum possible amplification:

all

max;, p (t)

"The dominant eigenvalue of A is A, (A). 2H(A) = (A + AT)/2. The dominant eigenvalue of H(A) is A, (H (A)). *The matrix norm [le?!|| can be calculated in

Mathematica via “Norm[MatrixExp[A = t]]”.

The parameter values for this set of assumptions are
based on the reported values in [27]. At this point, the
system has a stable coexistence equilibrium E* (6.4708,
0.3686, 1.8812) (Figure 1). Next, we plot the stable regions
of the model with single and double parameters, as well as
the numerical changes in resilience, reactivity, and am-
plification envelope within the stable region. The nu-
merical simulation presented here revolves around eight
parameters: I}, I,, u, v, r, m, p, and q.

4.1. Transient Dynamics of Systems in Single-Parameter Space.
Firstly, we analyze the changes in resilience and reactivity of the
system under a single parameter variation. According to
Theorem 1, the theoretical ranges of the first four parameters
for which the E* is locally asymptotically stable are
I, € [0,8.9028), I, € [0,26.2548), u € [0,0.744968), v € [0,
0.918888). Figure 2 shows that the range of parameters with
positive resilience is consistent with the theoretical results.
When a single parameter of the system changes within the
above range, the system can still adjust itself to a stable state.
The response of resilience to the parameters I;, u, and v is small
(with a maximum value not exceeding 0.166) and shows
a monotonic decreasing trend. When I, changes, resilience
shows a trend of increasing first and then decreasing, reaching

a peak of 0.22 at I, =12.5. In addition, the coexistence
equilibrium point is reactive (reactivity >0).

Among the parameter variables we consider, /; and [,
measure the killing power of intermediate and top predators,
respectively. Higher values can be interpreted as lower
foraging activity and vice versa. Figure 2 shows that when [,
is at a lower level (with higher predation pressure from
intermediate predators), the equilibrium biomass of the x
population in the region is relatively high ([27]). As I,
gradually increases (appropriately reducing the predation
pressure of intermediate predators), the equilibrium bio-
mass of the y population increases, and the system’s resil-
ience increases with the increase of I,. However, when the
value of I, is too high (greater than 12.5), the foraging ac-
tivity of the z population decreases significantly, which
greatly reduces the restriction on intermediate predators, as
the y population maintains a low level of predation pressure
on the base prey (I, = 1.2). This leads to an increase in the
equilibrium biomass of intermediate predators, causing
a sharp decline in the equilibrium biomass of x, and
a sudden drop in the resilience shown in the figure (b).

According to Theorem 1 of the local asymptotic stability
condition of E*, the theoretically obtained stable ranges for
the last four parameters are r € (0.984418,+00), m; €
(0, 0.807791), p € (0.141447, 1), and gq € (0.0471926, 1).
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FIGURE 1: Phase portrait and time-series evaluations of the system (2), where the initial value is (8, 1, 5).
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FIGURE 2: Resilience and reactivity as a function of the range of variation about a single parameter (I;,1,,u,v).

Figure 3 shows that the parameter ranges with positive
resilience are consistent with the theoretical results. Resil-
ience is not sensitive to the response of the parameters r, m;,
and p, with a maximum value not exceeding 0.04. The
parameter g, which represents the attack rate of the top

predator, has a minimum threshold of 0.05, and the response
curve has a significant inflection point before the g value of
0.02, with a maximum peak of 0.154, followed by a de-
creasing trend. The coexistence equilibrium point is reactive
(reactive >0).
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FIGURE 3: Resilience and reactivity as a function of the range of variation about a single parameter (r,m;, p,q).

The range of the last four parameters for which the
system is stable according to the E* stability condition
can be obtained theoretically as r € (0.984418, +00), m; €
(0, 0.807791), p € (0.141447, 1), and g € (0.0471926, 1).
As can be seen from Figure 3, the range in which the
restoring force is positive for each parameter remains
consistent with the theoretical results. The response of the
restoring force to the changes of these four parameters is
small, with the maximum value not exceeding 0.04, and
the internal equilibrium of this system is all reactive
(reactivity >0).

Figures 4-7 show the individual Figure 5 effects of
Figure 6 eight parameter pairs on the amplification en-
velope and max (the maximum value of perturbation
amplification). They provide information on the potential
for disturbance growth time, amplitude, and transient
amplification. We found that the impact of each pa-
rameter change on max is very consistent with its impact
on reactivity. The greater the reactivity, the larger the
maximum disturbance amplification p,,,, but there is no
necessary correlation with the time it takes to return to
a stable state. For example, in Figure 4, when [; = 0, the
maximum value of p_,. for the amplified envelope is
achieved, but the time it takes to return to a stable state is
the shortest.

4.2. Transient Dynamics of Systems in Biparameter Space.
We have gained a rough understanding of the impact of the
vigilance parameters u, v, and six other parameters on the
ecosystem. However, the results only provide an isolated
view of system dynamics, as they keep other parameters
constant and only examine the impact of a single parameter.
One major improvement of this article is to simultaneously
change two parameters.

In Figure 8, figures (a) and (b) show the numerical
equipotential chart of the resilience and reactivity of the system
(2) within the u-v € [0, 1] x [0, 1] bounded region. Figures
(c) and (d) show the numerical equipotential chart of the
resilience and reactivity of the system within the /,-I, bivariate
space [0, 9] x [0, 42] range. The corresponding color bars
indicate the corresponding values, and the white area repre-
sents the region where the resilience is less than zero.

As seen in Figures 8(a) and 8(b), the trends of resil-
ience and reactivity are consistent in that smaller pa-
rameter values increase asymptotic stability while also
increasing transient instability, and conversely, larger
parameters result in less resilience and reactivity. Eco-
system stability is highest and responsiveness to distur-
bance is greatest at low vigilance levels for both bottom
prey and intermediate predators. Resilience and reactivity
values were greatest when the vigilance parameters u and v
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FIGURE 4: The effect of a single parameter (I;,1,) on the amplification envelope and p,,,.

were both zero. In addition, we note that the setting of u is
significant for the ecosystem. When u is greater than
0.782, resilience decreases below zero regardless of the
value of v. This is because u is directly related to the
biomass level of the bottom prey. In the food chain, the
base prey is critical for the survival of other prey.

Next, we consider the changes in resilience and reactivity
in the [,-1, bivariate space (Figures 8(c) and 8(d)). By ob-
serving Figures 8(c) and 8(d), we can see that the resilience
has a high constraint on the range of I, variation, with
a maximum value of 9. Moreover, most of the response
regions obtained from bivariate changes have a resilience
value of 0.02 and a reactivity value of 0.1. The response
regions with a resilience value greater than 0.04 are con-
centrated around a parabolic curve, while the response re-
gions with a reactivity value greater than 0.2 are
concentrated in the lower left corner of the figure, and the
maximum reactivity value corresponds to the lowest values
of I, and [,.

We consider another set of important parameters, r and
m;. Figures 9(a) and 9(b) show that the birth rate r of the
bottom-level prey in the system must not be lower than the

threshold of 0.39. When the birth rate r is below 0.39, the
system resilience is less than 0 regardless of the value of m,.
When 7 exceeds this value, the basic prey can still be extinct
from the system at a relatively high death rate under low
birth rates. Overall, the impact of the biparameter variations
of r and m; on resilience is very small, with values remaining
stable at around 0.02, and the highest value being only 0.025.
In Figure 9(b), the highest reactivity corresponds to high
birth rates and low death rates.

The last important set of parameters, p and g, rep-
resent the attack rate (or encounter rate) of intermediate
and top predators, respectively. Figures 9(c) and 9(d)
show that the system only exhibits resilience and reactivity
when the p value is greater than 0.143. Most of the re-
sponse regions obtained from the biparameter variation
show a resilience value of 0.03. In the lower right corner of
Figure 9(c) (p > 0.6, g <0.3), the maximum resilience does
not exceed 0.16. By observing Figure 9(d) vertically, it can
be seen that the higher the p value at the same g value, the
stronger the reactivity. Although high p and g values
correspond to the maximum reactivity, the numerical
value is only 0.45.
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FIGURE 7: The effect of a single parameter (p,q) on the amplification envelope and p,,..

While Hossain et al. [27] only explored the variation in  variations that indicate the transient dynamical behavior of the
population density with different parameters, we build on thisby ~ system, reactivity, and obtaining the maximum possible am-
not only simulating the numerical variation in model resilience ~ plification of the system at time ¢ through the amplification
over a range of parameters desirability but also obtaining  envelope, prompting us to take action before maximizing losses.
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5. Conclusions

This article focuses on a food chain with three species that
includes a vigilance factor. Eight parameters including the
vigilance, birth rate, death rate of the basal prey, and the
vigilance of the intermediate predator are set as single and
double variables. Firstly, a single parameter variable is set
and numerical simulations are used to obtain the change
images of resilience, reactivity, and amplification envelope.
Then, by simultaneously changing two parameters, the stable
areas of the model with biparameters are plotted, and the
numerical changes of resilience and reactivity within the
stable regions are obtained. Based on the above analysis, this
article concludes that

(1) In a single-parameter space, among the eight ex-
amined parameters, the system’s resilience is most
sensitive to the top predator’s kill /, parameter, and
reactivity is most sensitive to the top predator’s
maximum predation rate g. When regulating an
ecosystem, attention should be paid to keeping pa-
rameter values within the range of the system’s as-
ymptotic stable state (with positive resilience values).

(2) In the bivariate space, the birth and mortality rates of
the bottom prey r-m, biparameters have essentially
no effect on system resilience. In contrast, the vig-
ilance parameter of the mid-to-low level organisms
has a more significant impact on both the system’s
resilience and reactivity. The lowest vigilance cor-
responds to the highest resilience and reactivity.
Additionally, to ensure positive resilience, the food
chain must ensure that the birth rate (r) of the lower
trophic level prey and the maximum predation rate
(p) of the intermediate predator are not below
a certain threshold.

(3) The simulation results of the u-v bivariate space for
the alertness of mid-low level organisms show
a consistent trend in the changes of resilience and
reactivity. That is, if the parameter changes increase
asymptotic stability (by increasing resilience), it will
also increase transient instability (by increasing
reactivity).

(4) The coexistence equilibrium point under stable
conditions is always reactive. The corresponding
parameter range is large when the system is stable,
but the value of resilience is small. The amplification
envelope value chart provides the maximum value of
disturbance amplification: p,_, and the time of
maximum disturbance: t,,,. Decision-makers
should issue commands and actively execute them
before t,,, to avoid significant losses and save re-
sources and manpower.

At last, as artificial interference, such as tourism,
hunting, and industrial development, continues to increase,
this paper provides important references for effective
management and protection of wild animal populations by
presenting the model’s single and double parameter stable
regions, as well as the numerical changes of the recovery,
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reactivity, and amplification envelope within the stable re-
gions. However, we did not include noise disturbance and
stochastic factors in the model. Therefore, how to deal with
these factors will be an important task in future work.
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