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In the fog computing paradigm, if the computing resources of an end device are insufcient, the user’s tasks can be ofoaded to
nearby devices or the central cloud. In addition, due to the limited energy of mobile devices, optimal ofoading is crucial. Te
method presented in this paper is based on the auction theory, which has been used in recent studies to optimize computation
ofoading. We propose a bid prediction mechanism using Q-learning. Nodes participating in the auction announce a bid value to
the auctioneer entity, and the node with the highest bid value is the auction winner. Ten, only the winning node has the right to
ofoad the tasks on its upstream (parent) node. Te main idea behind Q-learning is that it is stateless and only considers the
current state to perform an action. Te evaluation results show that the bid values predicted by the Q-learning method are near-
optimal. On average, the proposed method consumes less energy than traditional and state-of-the-art techniques. Also, it reduces
the execution time of tasks and leads to less consumption of network resources.

1. Introduction

Recently, a new paradigm called fog computing has
emerged, also known as “cloud at the edge” [1]. Te use of
this technology in areas such as e-health [2, 3], industry
[4, 5], vehicular trafc management [6–8], and agriculture
[9] is expanding rapidly.Te core idea of fog computing is to
transfer large volumes of data from the Internet of Tings
(IoT) devices to the remote cloud, especially for delay-
constraint applications. Here, if an end device’s comput-
ing capacity is insufcient, the task is ofoaded to a near fog
device. Similarly, if the resources in the fog device are in-
adequate, the task is ofoaded to the remote cloud.

A review of the literature shows that the primary concern
in most fog computing research is the minimization of
execution delays. Tis operation, if performed alone, may
result in higher energy consumption throughout the system.
Tis is because, with such a single goal, mobile devices tend
to ofoad their tasks to the nearest fog, which does not
necessarily lead to minimal total energy consumption.
Terefore, performing a joint optimization of delay and
energy consumption is necessary.

So far, extensive research has been conducted on of-
loading optimization in fog computing. Some of the essential
methods used in the literature are game theory [10], auction
theory [1, 11, 12], probabilistic modeling [13], heuristic [14],
and metaheuristic [15]. Recently, the use of machine
learning methods, especially reinforcement learning (RL)
[16] to optimize ofoading has received much attention
from the research community. Here, each agent learns to
behave in a way that leads to optimizing a predetermined
goal by performing a series of actions and inspecting the
reward/penalty. Tis learning method is inspired by be-
havioral psychology. In other words, the RL enables an agent
to learn in an interactive environment using experiences
gained from previous actions. For example, when a child’s
hand burns in the face of heat, he/she quickly learns that fre
is dangerous. Pleasure/pain is an excellent example of the
reward/penalty through which humans and animals learn
environmental behavior.

We believe that the auction theory is one of the most
important mathematical tools to motivate fog nodes to
participate in ofoading operations. We consider the
bandwidth of services as a commodity. Fog nodes and cloud

Hindawi
Complexity
Volume 2023, Article ID 5222504, 20 pages
https://doi.org/10.1155/2023/5222504

https://orcid.org/0000-0002-0292-7008
mailto:mhossein.rezvani@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5222504


datacenter play the role of bidders and auctioneers, re-
spectively. Each fog node has an output queue (bufer). Once
the output bufer becomes full, the fog node requests the
auction operation by sending a message to the upstream
(parent) node. Te parent node announces the winner after
collecting the bids of all downstream nodes. In the proposed
mechanism, nodes participating in the auction report their
bid values to the corresponding parent nodes.Te node with
the highest bid value wins the auction and ofoads its tasks
to the parent node. Bid value has an important impact on the
winning of a participating node. Te operation is performed
suboptimally if the bufer of the winner node is empty or it
has no task to ofoad.Tis, in turn, leads to increased energy
consumption and latencies in executing tasks. Terefore,
there is a need to design an optimal auction mechanism. For
this purpose, the designed mechanism must guarantee
optimal bidding. In this paper, we use RL to predict bid
values.

Various studies have been conducted for bid prediction
using RL.Te diference between these studies is in the goals
and, most importantly, the subtleties used in the RL system
design. Designing actions, states, and reward functions are
some of the critical diferences among previous researches.
Te main contribution of this paper is as follows:

(i) We solve the joint minimization of latency and
energy consumption with the Q-learning method.
Unlike other RL research, we model the system with
queuing theory to better capture agents’ behavior in
the real world.

(ii) We design a price-based reward function in the Q-
learning model. In this function, each joule of energy
consumption has a predetermined price. Tis paper
complements one of the state-of-the-art research [1],
in which each agent uses a second-price sealed-bid
(SPSB) auction mechanism for ofoading. In our
modeling in this paper, the user who wins the
auction has a diferent state than the others. Te
winning user can immediately use the fog device
resources to ofoad his/her tasks. Nevertheless, our
proposed model considers diferent situations for
other users who may resubmit their requests shortly.

Te remainder of this paper is organized as follows:
Section 2 reviews the most critical studies on ofoading
optimization based on RL methods; Section 3 explains the
system model; Section 4 describes the proposed method;
Section 5 presents the evaluation results of the proposed
method along with statistical analysis; fnally, Section 6
concludes the study and outlines future research trends.

2. Related Work

Machine learning is a primary method to solve the of-
loading problem. Signifcant eforts have focused on su-
pervised learning methods [4, 17] and reinforcement
learning (RL). Given that our proposed method is based on
RL, we focus on this type of research in this section.Te RL is
a method based on rewarding desirable behaviors or pun-
ishing undesirable behaviors [16]. Each agent can

understand and interpret the environment and perform
several actions here. Te agent’s sequence of movements
over time through trial and error leads to learning the
optimal state. Te main diference between previous re-
search is in arranging the above details and presumptions.

We now proceed to explain research in the scope of RL.
Most of the research in this area is related to deep re-
inforcement learning (DRL). Readers interested in studying
DRL models for IoTapplications can refer to [18, 19]. Santos
et al. [20] proposed a DRL method for embedding service
function chains (SFCs) in a fog environment using mixed
integer linear programming (MILP). Tey aimed at joint
minimization of energy consumption and cost. Ten, they
showed that the proposed method could achieve a 95%
acceptance ratio for user requests. Gazori et al. [21] proposed
a task scheduling algorithm to minimize the latency and cost
of tasks. Tey also paid special attention to load balancing
and showed that the proposed method could resolve the
challenges of the single point of failure. Zhang et al. [7]
targeted the problem of selecting and switching mobile
network operators (MNOs) by considering the cost of
switching and QoS requirements among MNOs and cloud/
fog servers. Using the DRL, they proposed a switching policy
that could guarantee the average long-term cost of each
vehicle with reliable latency. Performance evaluations using
datasets collected from a city-wide LTE network showed that
their proposed approach could reduce the cost of payment
by any vehicle connected to the fog. Rahman et al. [22]
proposed an algorithm to minimize fog radio access net-
works (F-RANs) latency.Teir algorithm uses DRL to decide
on local execution or ofoading and allocates the desired
amount of computing resources and power. A similar study
was conducted by Jazayeri et al. [23] to jointly minimize
latency and energy consumption using the DRL. Teir re-
sults showed that the proposedmethod could reduce latency,
energy consumption, and network usage compared to full
local execution and First-Fit (FF) methods.

Chen et al. [24] solved the same problem using the deep
deterministic policy gradient (DDPG) algorithm. Te most
important advantage of this method is that it does not need
to know the transmission probabilities in diferent network
states. Te simulation results showed the superiority of the
proposed method compared to the policy gradient (PG),
deterministic policy gradient (DPG), and actor-critic (AC)
methods. Baek and Kaddoum [25] proposed a combination
of DRL and game theory to solve the ofoading optimization
problem. In this game, each fog node cooperates to maxi-
mize local rewards while it only has access to local obser-
vations. To deal with partial visibility, the DRL approximates
the optimal value functions. Te results show that the
proposed algorithm can achieve a higher success rate and
fewer overfows than the baseline methods. Shi et al. [8]
aimed at minimizing execution delay using the AC-based
DRL. Te proposed algorithm maximizes expected rewards
and policy entropy so that vehicles are motivated to share
their idle computing resources through dynamic pricing.
Chen et al. [5], by leveraging collaborative DRL, propose
a method to minimize the delay and energy consumption of
tasks. Tis study considers the mobility of mobile users to
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select the most efective samples of shared experiences. Also,
they use a distributed collaborative method to learn the
probability distribution of the approximate reward and
optimize the parameters. Te simulation results show that
their method has fast convergence and high stability. Te
DRL method has also been used in fog computing for other
purposes. Some of these goals include caching [26], com-
bining blockchain with fog computing [2], and cloud-fog
optical networks [27]. Readers interested in studying other
DRL-based research can refer to [28, 29].

We now review research conducted using other RL
methods. Mebrek et al. [30] targeted the problem of joint
computation and communication optimization through
game theory and RL. Teir goal is to achieve an optimal
policy that makes a trade-of between energy consumption
and QoS. Te core idea of the proposed method is to learn
the optimal ofoading policy without having prior
knowledge of system dynamics. Cui et al. [31] proposed an
optimal ofoading mechanism based on the multiarmed
bandit (MAB) theory for unmanned surface vehicles
(USVs). Teir sole purpose is to minimize ofoading
delays in environments where the topology and wireless
channel states constantly change. Dehury and Srirama [32]
conducted a similar study to provide personalized services.
Neelakantam et al. [33] designed an ofoading system
using Q-learning to minimize passenger waiting time in
a smart city. Tey showed that the Q-learning method is
more efective than SARSA’s popular RL method. Nassar
and Yilmaz [34] targeted the problem of latency mini-
mization in the F-RAN for 5G communications. Tey
compared the performance of several RL methods, in-
cluding SARSA and expected SARSA, with the baseline
method. Teir results show that RL methods consistently
achieve the best possible performance regardless of the IoT
environment.

So far, very few studies have been conducted regarding
bid value prediction in online auctions using RL. For
example, in [35], the stochastic game predicts the bid
value. Te authors then solved the problem with multi-
agent RL. In [36], the environment depends on the
number of applied impressions. Terefore, the proposed
solution is not suitable for dynamic and online envi-
ronments. In [37], the Markov decision process (MDP)
method was used to hold an online auction. Te authors
frst model the bid prediction problem with MDP and
defne transition and reward functions based on users’
click rates. Tey then solve the problem by leveraging
dynamic programming. In [38], CMDP optimizes the bid
value in a sequential auction. Te authors model the
CMDP with a six-element tuple. Tuple elements are state,
action, state transition function, reward, cost, and con-
straint value, respectively. Tey consider click-through
rate (CTR) as the state and the number of clicks on each ad
as the reward. After modeling the CMDP, they solve the
problem by leveraging linear programming.

RL has also been used in other areas of fog computing.
Due to space limitations, we do not review this research in
depth. Te most interesting topics that have attracted the
attention of researchers are trafc signal controlling [39],

secure ofoading [40], medical information processing [41],
load balancing [42, 43], and service function chain
allocation [44].

After reviewing the literature, the following points can be
presented as the most important diferences between our
modeling and previous research:

(1) None of the above research has used queuing theory
to model user behavior. Such modeling allows us to
have closed-form relations for delay and energy.
Tis, in turn, can be used later in the design of the
reward function. In other words, the system model
formulation based on queuing theory provides
a more realistic description of the fog-cloud
environment.

(2) None of the above research has designed the reward
function based on price. We set a predetermined
price for each joule of energy consumption. In ad-
dition to bidding values, these prices are used in the
reward function, which will be formulated later
in (32).

3. System Model

An illustration of the system model is shown in Figure 1.
Te system includes M mobile users, F fog devices, and
a central cloud. Each mobile user can only connect to a fog
node via the base station (BS). Te set of mobile users is
denoted by U � u1, u2, . . . , uM􏼈 􏼉. Also, the set of fog nodes
is denoted by F � f1, f2, . . . , fF􏼈 􏼉. Every mobile user has
several tasks to be performed. Tese tasks are entered into
the system continuously. If the user’s computational re-
sources are insufcient to perform the task or the user
intends to save his/her resources, he/she can ofoad them
into a fog node. Similarly, if the computational resources
of the fog node are insufcient, the task is ofoaded to the
central cloud. For each fog node fj, we denote all users
who are ofoading to it by a set C(fj). For example, in
Figure 1, C(f1) � u1, u2, u3, u4􏼈 􏼉 indicates that users u1, u2,
u3, and u4 are ofoading their tasks to the node f1.
Similarly, in this fgure, we can write C(f2) � u5, u6􏼈 􏼉 and
C(c1) � f1, f2􏼈 􏼉. Te notations used in this study are
shown in Table 1. We model mobile user trafc in this
study as an M/M/1/K queue. As mentioned in [1], this
model can capture the behavior of mobile users better
than M/M/1, which was previously used by researchers
[45]. Also, we model each fog node as an M/M/c/K queue
[1, 46].

3.1.Te Edge LayerModeling. As with previous research [1],
we assume that each mobile user ui ∈ U can have multiple
tasks to be performed. Te number of these tasks follows the
Poisson distribution [46] with the mean arrival rate λui

. Te
size of each task submitted to the user ui is denoted by θi.
Performing this task requires spending several processor
cycles for each bit that is denoted by σi. Te time needed to
complete the task on the processor of the mobile device ui,
hereafter referred to as local execution, is calculated as
follows [47]:
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s
ui
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σi.θi

Cui

. (1)

In the above formula, Cui
represents the computing

capacity of the mobile user ui in cycles/sec. Terefore, the
service rate on the mobile device ui is calculated as follows:

μui
�

1
t
s
ui

. (2)

As mentioned earlier, we use an M/M/1/K queuing
system to model the mobile user in this study. In this model,
the maximum number of bufer rooms is K. If the number of
tasks entered is more than K, the extra ones will be dropped.
Tasks are entered at a rate λui

while the acceptance rate by the
mobile device is λa

ui
. Let πK

ui
represent the task blocking ratio.

Tis means that when the mobile device queue is full, only
1 − πK

ui
percent of the tasks can be served, and the rest are not

accepted [48]. For admitted tasks, the local acceptance rate,
λa

ui
, is as follows:

λa
ui

� 1 − πK
ui

􏼐 􏼑.λui
. (3)

Tasks that are not accepted on the mobile device must be
ofoaded to the appropriate fog device. Before we proceed,
let us defne the utilization of a mobile user ui as follows:

ρ′ui
�
λa

ui

μui

. (4)

Given that the above birth-death process is a discrete-
time Markov chain (DTMC), the following two properties
always hold:
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􏼐 􏼑

k
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, (5)

􏽘
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� 1. (6)

Simplifying (6) and replacing it in (5) give the blocking
probability (i.e., k � K) as follows:
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�
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Te average number of tasks, Lui
, for the mobile user ui is

obtained as follows:
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After simplifcation, it follows that
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�

ρui

1 − ρui
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(K + 1). ρui

􏼐 􏼑
K+1
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Now, applying Little’s law gives the local execution time
for each task, tl

ui
, as follows:
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l
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Now, the local energy consumption of the mobile user ui

is calculated as follows:

E
l
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l
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l
ui

�
P

l
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.
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In the above formula, Pl
ui
represents the local power of

the mobile user ui. Before calculating the ofoading time, to
ui
,

let us defne the ofoading rate, Ri. Applying Shannon’s law,
the ofoading rate for each mobile device ui is obtained as
follows [49]:

Ri � W · log2 1 +
P

t
i · hi

N0 · W
􏼠 􏼡. (12)

In the above formula, W represents the bandwidth of
the communication channel. Also, Pt

i is the transmission
energy for the mobile user ui for which 0<Pt

i ≤Pmax
i .

Here, Pmax
i is the maximum transmission power of the

mobile user ui. Also, hi represents the channel
gain through which the mobile user connects to the BS,
and N0 denotes the noise that afects the channel during
transmission. Now, the ofoading time is calculated as
follows:

t
o
ui

�
πK

ui
.λui

.θi

Ri

. (13)
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u2 u3
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central cloud

fog node

mobile user

Figure 1: An illustration of the system model.

4 Complexity



Table 1: Te notations used in this research.

Sym. Symbol description
M Total number of mobile users
F Total number of fog devices
U Te set of all mobile users
F Te set of all fog devices
C(fj) Te set of users who are ofoading their tasks to the fog device fj

λui
Te arrival rate of tasks to a mobile user ui

λk
ui

Te arrival rate of tasks to a mobile user ui, when there are already k tasks in it
λa

ui
Te rate that is acceptable to a mobile user ui

λfj
Te arrival rate of tasks to a fog node fj

λa
fj

Te rate that is acceptable by the fog device fj

μui
Te rate of service for a mobile user ui

μk
ui

Te rate of service at the mobile user ui, when there are already k tasks in it
μfj

Te rate of service at the fog device fj

μ Te rate of service for each server inside the fog device
θi Te average task size entered by a mobile user ui (bit)

σi

Te number of CPU cycles required to perform each bit of the task in the mobile
user ui

ρui
Te utilization of a mobile user ui

ρfj
Te utilization of a fog device fj

πk
ui

Probability of having k tasks in a mobile user ui’s device

πK
ui

Te probability of blocking the execution of tasks for a mobile user ui

π0ui
Probability of not submitting any task to the mobile user ui

πk
fj

Probability of having k tasks in a fog device fj

πK′

fj
Te probability of blocking the execution of tasks for a fog device fj

π0fj
Probability of not submitting any task to the fog device fj

Cui
Computing capacity in a mobile user ui (cycle/sec)

Cfj
Computing capacity at the fog device fj (cycles/sec)

tl
ui

Response time for each task when it is executed locally by the mobile user ui

tl
fj

Response time for each task when it is executed by a fog device fj

to
ui

Te time required for each task to be ofoaded by the mobile user ui toward a fog
device

to
fj

Te time required for each task to be ofoaded by the fog device fj toward the
central cloud

ts
ui

Te time required for a task to be executed using the computing capacity of a mobile
user ui

ts
fj

Te time required for a task to be executed using the computing capacity of a fog
device fj

Lui
Te average number of tasks by the mobile user ui

Lfj
Number of tasks queued in the fog device fj

ri

Te rate at which tasks are ofoaded from the mobile device ui to the relevant fog
device

Ri

Te uplink rate at which tasks are ofoaded from themobile device ui to the relevant
fog device

hi Te gain of the channel located between the mobile user ui and the base station (BS)
W Te channel bandwidth
N0 Te noise of the channel between the mobile user and the fog device
Pl

ui
Power required to execute a task locally at the mobile user ui (watts)

Pl
fj

Power required to execute a task locally at the fog device fj (watts)

Po
ui

Power required to ofoad a task from the mobile user ui to the relevant fog device
(watts)

Po
fj

Power required to transfer a task from the fog device fj to the central cloud (watts)
Pt

i Te transmission power of the mobile user ui

Pmax
i Te maximum transmission power of the mobile user ui

El
ui

Te amount of energy consumed by the mobile user ui to perform tasks locally

Erem
ui

Te remaining energy in the mobile user ui (J)

EThr
ui

Te threshold limit for the lowest energy level in the mobile user ui (J)

El
fj

Te amount of energy consumed by the fog device fj to perform tasks locally
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Finally, the energy consumed during the task ofoading
from the mobile device ui to the relevant fog device is
calculated as follows:

E
o
ui

� P
o
ui

.t
o
ui

� P
o
ui

.
πK

ui
.λui

.θi

Ri

. (14)

3.2. Te Fog Layer Modeling. Like [1], we represent the in-
coming trafc to each fog device with an M/M/c/K′ model,
in which there are c individual internal servers and a bufer
of size K′. As mentioned in the previous section, if a task
cannot be admitted to the mobile device ui ∈ U, it will be
ofoaded to the relevant fog device fj, for which ui ∈ C(fj).
Te size of a task that is submitted from the mobile device ui

to the fog device fj is denoted by θi. Performing this task
requires spending several processor cycles for each bit that is
denoted by σi. Te time required to perform the task on the
fog device fj is calculated as follows:

t
s
fj

�
σi.θi

Cfj

. (15)

In the above formula, Cfj
represents the computing

capacity of the fog device fj in cycles/sec. Terefore, the
service rate on the fog device fj is calculated as follows:

μfj
�

1
t
s
fj

. (16)

At any given time, the fog device fj may receive several
tasks, each of which comes from the child nodes. Here, the

child nodes are mobile devices that ofoad their extra tasks
into the fog device. Te rate of arrival of tasks to the fog
device, λfj

, is calculated by summing the rates submitted by
the children as follows:

λfj
� 􏽘

i∈C fj( 􏼁

λui
− λa

ui
􏼐 􏼑.

(17)

Let us denote the blocking ratio and the admitted arrival
rate by πK′

fj
and λa

fj
, respectively. Now, the utilization of the fog

device fj is defned as ρfj
� λfj

/μfj
. Ten, the probability that

k tasks are present in the fog device is obtained as follows [37]:

πk
fj

�

ρfj
􏼒 􏼓

k

k!
π0fj

, 0≤ k< c,

ρfj
􏼒 􏼓

k

c
k− c

c!
π0fj

, c≤ k<K
′
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

If we normalize the above equation according to
the characteristics of DTMC, the probability of emptying the
queue, π0fj

, in the fog device fj is obtained as follows:

π0fj
� 􏽘

c− 1

k�0

ρfj
􏼒 􏼓

k

k!
+ 􏽘

K′

k�c

ρfj
􏼒 􏼓

k

ck− cc!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

. (19)

Suppose a � ρfj
/c, and then with a series of simplif-

cations, we get the following expression [1]:

Table 1: Continued.

Sym. Symbol description

Erem
fj

Te remaining energy in the fog device fj (J)

EThr
fj

Te threshold limit for the lowest energy level in the fog device fj (J)

Eo
ui

Te amount of energy consumed by the mobile user ui to ofoad a task
Eo

fj
Te amount of energy consumed by the fog device fj to ofoad a task

puj
Price per joule of energy to be paid by the mobile user ui (US$/J)

b
fj

ui

Te bid price per joule of energy to be paid by the mobile user ui to the fog device fj

(US$/J)
bui

Te budget of the mobile user ui (US$)
Nfj

Te number of end devices connected to a fog device fj

mui

Te expected payof of an end device ui ∈ U when it reports b
fj

ui
to the parent fog

device fj, while other buyers tell the truth

qui

Te probability that an end device ui ∈ U gets the resource when reporting its bid
value bui

S Te set of all possible states
si

t Te state of the mobile user ui at a time t

St Te system state vector at a time t

T Te set of terminal states
A Te set of actions
ai

t Te action performed by the mobile user ui at a time t

ri
t+1 Te reward that an agent ui gets when moved to a new state at a time t + 1

Q Te learned action-value function
Q∗ Te optimal action-value function vector
α Te learning rate
c Te discount factor
V(s) Te value function in the state s

V∗(s) Te optimal value function in the state s

Fui
Te bidding distribution function for the mobile user ui
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(20)

We now proceed to calculate the number of tasks, L
q

fj
, in

the fog device queue. Using the defnition of mathematical
expectation, we write
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After a series of simplifcations, it follows

L
q

fj
�
π0fj

. ρfj
􏼒 􏼓

c

.a

c!(1 − a)
2 1 − a

K′− c+1
− (1 − a). K

′
− c + 1􏼒 􏼓.a

K′− c
􏼔 􏼕.

(22)

Te rate at which tasks arrive at the fog device is cal-
culated when the system is not full. Terefore, it follows that

λa
fk

� λfk
. 1 − πK′

fj
􏼒 􏼓 � μfk

.c. (23)

On the other hand, the number of system tasks, Lfj
, is

equal to the number of tasks in the queue, L
q

fj
, plus the

number of those currently being served by CPUs. Tis leads
us to the following relation:

Lfj
� L

q

fj
+ c. (24)

Altogether, from (23) and (24), it follows that

Lfj
� L

q

fj
+ ρfk

. 1 − πK′

fj
􏼒 􏼓. (25)

Similar to (10), using Little’s law gives the local execution
time for each task in the fog device fj as follows:

t
l
fj

�
Lfj

λa
fj

. (26)

Now, the local energy consumption of the fog device fj

is calculated as follows:

E
l
fj

� P
l
fj

.t
l
fj

� P
l
fj

. t
q

fj
+

1
μfj

⎛⎝ ⎞⎠. (27)

In the above formula, Pl
fj

represents the local power of
the fog device fj. If the computing resources in the fog
device are insufcient to process a task, it is ofoaded to the
central cloud. We denote the communication capacity be-
tween the fog device fj and the central cloud by Rj. Similar
to (13), the ofoading time by the fog device fj is calculated
as follows:

t
o
fj

�
πK′

fj
.λfj

.θi

Rj

, i ∈ C fj􏼐 􏼑. (28)

Finally, the energy consumed during the task ofoading
from the fog device fj to the central cloud is calculated as
follows:

E
o
fj

� P
o
fj

.t
o
fj

� P
o
fj

.
πK′

fj
.λfj.θi

Rj

, i ∈ C fj􏼐 􏼑.

(29)

4. Proposed Method

In our previous research [1], we used the auction algorithm
for ofoading in fog computing. Each end device has a local
memory (bufer); after flling this bufer, it announces the
auction request to its parent. Te parent node requests bid
values from its children. A child with the highest bid wins the
auction and ofoads its tasks to its parent (higher layer).
Figure 2 and Table 2 show the sequence diagram (workfow)
and the messages’ specifcations of the proposed auction
method.

Te bid value’s efect on the participant’s winning node is
very high. Since the winner performs the ofoading, the bid
value signifcantly impacts the execution time and energy
consumption. An RL method has been used to predict the
bid value in the auction operation.

To predict the bid value, we use one of the model-free
algorithms of RL theory called Q-learning. It lies in the fnite
Markov decision process (FMDP) family of approaches.
Here, “Q” refers to the function that the algorithm calculates.
Tis function also called a reward function, is the expected
reward, rt+1, for an action at performed in a given state st.
Agents learn to treat the environment based on previous
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experiences they have gained. Tese previous experiences are
captured by the Q value and controlled by the reward
function. As shown in Figure 3, after each action at, the agent
is moved from the state st to a new state st+1 and receives
a reward rt+1. Tis reward refects the importance of the
action and can be the basis for deciding what to do next. Te
sequences of states in which each agent enters over time can
be represented by (s0, r0, a0, s1, r1, a1, s2, r2, a2, . . . , st, rt, at).
In Figure 3, the environment for each fog node fi consists of
the rest of the nodes, denoted by f− i. In this way, the model
captures the experiences acquired from other agents. As we
will see later, the model rewards/punishes the agent for these
experiences. Tis makes the RL process more dynamic than
the supervised learning case.

Q-learning is called model-free because it does not need
any prior knowledge of the environment to learn the value of
an action in a given state. It can solve the bid prediction
problemwith rewards without needing consistency. Here, an
optimal policy can maximize the expected value of the total
reward through multiple iterations. In this way, Q-training
can fnd the optimal action-selection policy for each
FMDP over time through a somewhat random policy.

Table 2: Te specifcation of messages in the proposed mechanism.

Message Abbr. Message format Description
Ofoading Auction Request OAR 〈????????〉 Specifcation of the requested source by a node ej

Bidding Value Request BVR <> Temonopolist auctioneer fi asks each of his children to send him their bid values
Bidding Value Confrm BVC 〈xej

〉 Each bidder ej submits its bid value xej
to the relevant monopoly auctioneer fi

Finding Winner Done FWD 〈w〉 Te bidder w is introduced as the winner of the auction

Invoice Approval Request IAR mw(xw)
Te amount of payment that the bidder w (as the auction winner) must pay to the

seller fi

Invoice Approval Confrm IAC < > Te winning bidder w confrms the payment mw(xw) to the seller fi

rt+1

at

st+1

rt

st

f–i

u1

u2
u3

u4

Agent

Environment

Figure 3: Elements of Q-learning: environment, action, state, and
reward.
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Figure 2: Te sequence diagram (workfow) of messages.
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Te components of our RL-based bid prediction approach
are as follows:

4.1. Agent. For each fog device fj, all mobile users ui, which
are i ∈ C(fj), are the operating agents in the proposed
modeling.

4.2. State. Te state of the mobile user ui at a time t is
denoted by si

t ∈ S, in which S represents the set of all possible
states as follows:

S � ″offload_pending″, ″local_pending″, ″running″􏽮 􏽯.

(30)

A “local_pending” state means that the user intends to
perform the task locally on the end device. A
“offload_pending” state means that the user intends to
ofoad the task on the fog device to save local resources.
Here, we use the second-price sealed-bid (SPSB) mechanism
proposed in one of the state-of-the-art researches [1]. Here,
frst, the tasks of all users who want to ofoad are submitted
to the fog device. Ten, using the SPSB auction mechanism,
they send their bids to the fog device. Tese are the prices
that diferent users are willing to pay for each joule of energy
consumption to the fog device. In other words, the unit of
the bid price is the dollar per joule (US$/J). Te ofoading
optimization problem for an end device ui ∈ U using SPSB is
defned as follows [1]:

maxE mui
bui

􏼐 􏼑􏽨 􏽩, (31)

subject to

(I) Te mechanism is incentive compatible (IC), i.e., the
requirement that quj

be nondecreasing.
(II) Te mechanism is individual rational (IR), i.e., the

requirement that mui
(0)≤ 0.

In the above equation, mui
(bui

) denotes the expected
payof of the end device ui ∈ U when it reports b

fj

ui
to the

parent fog device fj, while other buyers tell the truth. Also,
qui

(bui
) denotes the probability that the end device ui ∈ U

gets the resource when reporting its bid value bui
.

After determining the winning user, whom we denoted
by uw, the fog device allocates computing resources to him/
her. At this moment, the user state changes from
“offload_pending” to “running.” Tis means that the fog
device processes the winning user’s task in a non-
preemptive way until it is completed. Let us denote all users
except uw, who are losers in the auction, by e− w. Tese users
may experience one of two situations: (a) the user remains
in the same state “offload_pending” to participate in the
next round of the auction or (b) the user refuses to ofoad,
in which case, his/her state changes from “offload_pending”
to “local_pending.” Tus, if the number of end devices
connected to a fog device fj is Nfj

, the state of all users at
a time t can be represented by a Nfj

-size vector St. For
example, suppose four users are connected to a fog node and
all, but the last one intends to ofoad. Now, if the third user

wins the auction, the system state vector is represented as
follows:

St � (“offload_pending,”“offload_pending,”“running,”
“local_pending”). Now, if the capacity of the fog node is still
sufcient, users whose state is “offload_pending” can try again
to ofoad their tasks. For example, if at the next time t + 1, the
second user wins the auction, the state vector changes to St+1 �

(“offload_pending,”“running,”“running,”“local_pending”).
As is common in FMDP, at least one of the states must be
defned as the terminal state T. For a user ui, if his/her state at
the time t, namely si

t, belongs to the setT, then its value will not
change with any future action. In our problem, the state
“running” is terminal, i.e., T � “running”􏼈 􏼉. In other words, if
a user’s task is in “running” state (that is si

t ∈ T), it stays in that
state until the task is completed.

4.3. Action. Te action performed by the mobile user ui at
a time t is denoted by ai

t ∈ A. Here, A is a set of all possible
actions as follows:

A � ″local_request″, ″offload_request″􏼈 􏼉. (32)

Te simplest way is to select an action based on a greedy
strategy. In this strategy, the action is selected to have the
highest value, ai

t ≐ argmax
ai

Qt(si
t, ai).

4.4. TransitionFunction. It is the probability that an agent ui

will move from the state si
t � s to a new state si

t+1 � s′ when it
acts ai

t � a. It is denoted by a matrix P(s′, r|s, a), which
P: S × A × S⟶ [0, 1] and 􏽐s′􏽐rP(s′, r|s, a) � 1.

4.5. Reward Function. Depending on what action the agent
chooses, it will receive a reward as follows:

r
i
t+1 �

− pui
.E

l
ui

,

pui
.E

l
ui

− pui
.E

o
ui

− b
fj

ui
.E

l
fj

,

0,

if si
t+1 �� local_pending,

else if si
t+1 �� running,

else if si
t+1 �� offloading_pending.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(33)

As stated in the above relation, if after acting ai
t, the

mobile user ui is moved to a new state local pending, he/she
will receive a reward − pui

.El
ui
. Note that the system’s goal

here is to minimize the energy consumption of mobile
devices. In other words, the proposed algorithm encourages
users to ofoad their tasks to fog devices instead of per-
forming them locally on their own devices. If the user
performs the task locally, he/she will receive a penalty pui

.El
ui
.

Simply speaking, if the user ofoaded the task instead of
running it locally, he/she could save pui

.El
ui

dollars by not
consuming valuable local resources. Te second condition in
the above relation states that if the user is moved to a state
“running”, he/she will receive a reward pui

.El
ui

− pui
.Eo

ui
−

b
fj

ui
.El

fj
. Here, the frst term, pui

.El
ui
, is the amount of money

the user has saved by not performing the task locally. Simply
put, if the user wanted to run the task locally instead of
ofoading it, he/she would have to pay pui

.El
ui
dollars for local

resource usage. Te second term, − pui
.Eo

ui
, is the amount of
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money that must be paid to transmit the task to the BS. Te
third term, − b

fj

ui
.El

fj
, is the amount of money that must be

paid to the fog device to perform the task. Note that b
fj

ui
is the

bid price previously ofered by the user ui to the fog device fj.
As mentioned earlier, in this research we adopt the SPSB
auction mechanism proposed by Besharati et al. [1]. When all
users submit their bids to the fog device, only one of them
who has ofered the highest bid (here, the user ui), will win the
auction. Ten, the winning user ui has to pay b

fj

ui
dollars for

each joule of energy consumption to the fog device. Finally,
the last condition in (33) states that if the user is moved to
a state “offloading_pending”, he/she will not receive any
reward. Although this user tends to ofoad the task, his/her
bid price has not been the highest compared to other com-
petitors. Terefore, the user is temporarily moved to the state
“offloading_pending” so that he/she may win the auction in
the next time slot.

Based on performing a specifc action, the agent is
transferred from one state to another. Te basic form of the
Q-learning algorithm for the agent ui is (si

t, ai
t, ri

t+1, si
t+1, ai

t+1),
meaning that the agent was in the state si

t, performed the
action ai

t, received the reward ri
t+1, and fnally ended up in the

state si
t+1, from where it decided to act ai

t+1. By doing so, it
provides a new iteration to update Q(si

t, ai
t).

Te Q-learning algorithm is one of the of-policy RL
methods. We adopt the simplest form of it, which is called
single-step Q-learning. It is defned as follows:

Q s
i
t, a

i
t􏼐 􏼑⟵Q s

i
t, a

i
t􏼐 􏼑 + α r

i
t+1 + cmax

bi
Q s

i
t+1, b

i
􏼐 􏼑 − Q s

i
t, a

i
t􏼐 􏼑􏼢 􏼣.

(34)
In the above formula, Q and α are the learned action-value

function and learning rate, respectively. Te α value strikes
a balance between the agent’s fndings from the environment
and what he/she has learned. Also, c denotes the discount
factor, which satisfes 0≤ c≤ 1. A lower discount factor en-
courages the agent to take action sooner rather than post-
poning it indefnitely. In other words, it determines howmuch
importance should be given to immediate rewards and future
rewards. Tis helps us to avoid infnity as a reward. A value of
c � 0 means that more priority is given to immediate rewards,
and a value of c � 1 means that more importance is given to
future rewards. In practice, the discount factor c � 0 is never
learned because it only considers immediate rewards, and the
discount factor c � 1 continues for future rewards, which may
lead to infnity. Terefore, the optimal value for the discount
factor, c, is in the range (0, 1).

After determining the transition function P and the
received reward ri

t+1 by the parent node (controller), the
MDP problem can be easily solved using dynamic pro-
gramming algorithms. Here, the core idea is to use the value
function V(s) to fnd the optimal action ai

∗. Te optimal
action in any state si

t is the action that brings themost reward
to the agent. For this purpose, the state value function must
be expressed in the following form, which is known as the
Bellman equation:

V∗(s) � maxE r
i
t+1 + c.V∗ s

i
t+1􏼐 􏼑|s

i
t � s, a

i
t � a􏼐 􏼑. (35)

Te above formula after simplifcation can be rewritten
as follows:

V∗(s) � max
a

􏽘

s′ ,r

P s
′
, r | s, a􏼒 􏼓 r + c.V∗ s

′
􏼒 􏼓􏼔 􏼕. (36)

One of the most common ways to solve the Bellman
equation is to rewrite it in the following recursive form:

Vt+1(s) � max
a

􏽘

s′ ,r

P s
′
, r | s, a􏼒 􏼓 r + c.Vt s

′
􏼒 􏼓􏼔 􏼕. (37)

Tus, the value of all states can be obtained. Given that
0≤ c≤ 1, it can be proved that the Bellman equation will
converge and, therefore, the solution is as follows:

V∗(s) � lim
t⟶∞

Vt(s). (38)

Te key advantage of Q-learning over other RL methods
is that it converges very quickly. Te main reason is that Q
can directly approximate the optimal action-value function,
q∗. Here, the policy serves to determine which state-action
pairs to be visited and updated. Like most RL methods, the
prerequisite for convergence here is that all pairs continue to
be updated. Under this assumption and other common
indefnite approximation conditions in the sequence of size-
step parameters, it is found that Q converges with a prob-
ability of 1 to q∗. Another advantage of Q-learning is that it
does not require a specifc model of the environment. In RL
terminology, it is a model-free method and does not require
a predetermined policy to fnd any optimal state-action pair.

Note that the Q-learning algorithm is executed both in
the fog layer and in the cloud layer. Due to space limitations
and the similarity of pseudocodes, we only show the of-
loading operation in the fog layer. Te pseudocode of the Q-
learning for the ofoading problem is shown in Algorithm 1.
Also, Algorithms 2 and 3 represent the pseudocode of the
mobile user ui and the fog device fj (controller), re-
spectively. Algorithm 3 itself calls Algorithm 4 to calculate
the bid price per joule of energy consumption based on the
second-price sealed-bid (SPSB) mechanism [1]. Let us now
give a brief description of these algorithms. In lines 5–8 of
Algorithm 2, if the energy consumption is within the al-
lowable range and does not exceed the remaining energy of
the mobile device, the task is performed locally. In this case,
the state of the task, si

t, is changed to “local_execution” and
then the user adds the revenue from the local energy con-
sumption, pui

.El
ui
, to his/her current budget. In lines 10–12

of Algorithm 2, because the energy consumption has
exceeded the residual energy of the mobile device, the task is
ofoaded to the fog device by calling Algorithm 3. In this
case, the costs of ofoading, pui

.Eo
ui
, and remote processing,

b
fj

ui
.El

fj
, are deducted from the mobile user’s budget. Sim-

ilarly, in lines 7–14 of Algorithm 3, if the task energy
consumption exceeds the remaining energy of the fog device,
it is ofoaded to the remote cloud. In this case, in addition to
the cost of ofoading, pui

.Eo
ui
, and processing in the fog

device b
fj

ui
.El

fj
, the cost of ofoading to the remote cloud,

pfj
.Eo

fj
, must also be deducted from the user’s budget.
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Otherwise, if the user’s budget is sufcient to process the task
on the fog device, the task state is changed to
“offload_pending”; otherwise, it must be processed locally on
the mobile device itself. In lines 15–17 of Algorithm 3,
a second-price sealed-bid (SPSB) auction mechanism is held
by calling Algorithm 4. Readers interested in a detailed study
of Algorithm 4 can refer to [1]. Finally, after determining the
auction winner, the task state for the user who won the auction
is changed to “running”. Ten, in line 18 of Algorithm 3, the
optimal action-value function vector Q∗ is found by calling
Algorithm 1.Tis vector specifes exactly on which device each
task should be performed. Te task must be performed locally
on the user’s device, the fog device, or the remote cloud. Here,
an important question arises regarding Algorithm 4: if the bid
value of two nodes is the same, which one will have more
priority? According to the implementation in [1], in such
a case, the node whose remaining bufer capacity and the
remaining energy are less has a higher priority.

5. Performance Evaluation

In this section, after explaining the simulation settings, we
will compare the proposed method with one of the state-of-
the-art methods [1]. Tis comparison is made in terms of
important criteria such as execution time, power con-
sumption, and network usage.

5.1. Experimental Setting. Te iFogSim software has been
used for simulation [50]. Also, statistical analysis of the
simulation results was performed using SPSS software. Te
results were obtained on a laptop with a 64-bit Intel® Core™i5-8269U processor, 6MB Cache, 4 Cores, 4.20GHz CPU,
and 8GB of RAM. As with other research [1], a three-tier
hierarchical tree structure has been used for the simulation,
which includes the central cloud layer, the fog device layer,
such as routers and switches, and the end device layer.

As mentioned earlier, this study adopts the second-price
sealed-bid (SPSB) auction mechanism proposed in [1] to
determine the price of computational resources concerning
parent-child nodes. Accordingly, in the diagrams in this
section, we abbreviate the baseline method of [1] to
SPSB_Auction. We also abbreviate our proposed method to
SPSB_Auction_RL. Note that there is no learning mecha-
nism in SPSB_Auction [1], and the only contribution is the
auction-based pricing method. However, SPSB_Auction_RL
uses a dynamic approach based on RL. We also compare our
results with the default ofoading mechanism used in the
iFogSim, i.e., First-Come-First-Serve (FCFS). Tis method
asks the corresponding parent node to perform the of-
loading operation when a node’s queue becomes full.

For the sake of simplicity, we ignore interdependencies
between tasks. In other words, each task is independent of its
previous and subsequent tasks. Although this assumption is
not always correct, it still makes sense in many web ap-
plications. Te time between the arrival of tasks in the
iFogSim simulator follows an exponential distribution in
which the arrival rate, λui

, is 50 tasks per minute. Te bufer
size of each fog device is 20. For fairness, we adopt the

settings used by [1] on iFogSim. Table 3 shows the details of
the simulation settings. Since some parameters of iFogSim
follow probabilistic distributions, we performed each test 40
times. Ten, average values were used to draw the curves.

5.2. Execution Time. Figure 4 shows a comparison of run-
time for diferent numbers of fog nodes. Like most previous
research [51, 52], we consider the number of fog nodes
almost small. Tis is because a typical fog device does not
have as much computing power as a central cloud. As shown
in the fgure, the average execution time of all methods
increases as the number of nodes increases. However, it
shows much less growth for SPSB Auction_RL. From
a practical point of view, the proposed method ofers an
attractive implication for scalability for network designers.

An interesting point in Figure 4 is the dramatic increase
in response time in the SPSB-Auctionmethod (green curve).
To explain this, note that the response time consists of two
parts: (1) frst, it takes time for the nodes to submit their
bidding values; (2) after the auction winner is determined,
resources are allocated based on the announced price.Tis is
the time that was previously calculated in (15) and (28). In
the SPSB-Auctionmethod (green curve), the bidding price is
proportional to the number of bufer rooms and the
remaining energy of the nodes [1]. As time passes, the nodes
experience a lack of bufer and energy. Tis makes them less
likely to win the auction. In other words, when resources are
more utilized, the time required to determine the winning
node becomes longer. Te advantage of the proposed
method (blue curve) appears exactly here. Here, better al-
location of resources by leveraging RL leads to more eq-
uitable distribution of resources. Tis, in turn, causes the
nodes to experience less bufer and energy shortages. Nodes
whose bufer is empty or having more remaining energy do
not need to ofoad tasks. Tus, they do not participate in
auction operations. By reducing the number of nodes
participating in the auction, the time required to announce
the winner is reduced dramatically.

We use the Analysis of Variance (ANOVA) test to
compare the average execution time of the three methods
FCFS, SPSB_Auction, and SPSB_Auction_RL. Te ANOVA
test compares the mean of a quantitative variable between
more than two independent groups.Tis test is a generalized
T-test between two independent samples with the same
assumptions. Readers interested in studying more about
these statistical tests can refer to [15, 53, 54]. Te ANOVA
test hypotheses are introduced as follows:

(H0) Te average execution time of all methods is
the same.

(H1) Tere is at least one method whose average exe-
cution time difers from others.

Given that the confdence interval is assumed to be 95%
by default, the threshold value for accepting/rejecting the
comparison results, called the Sig value, is 0.05. Table 4
shows the within-group and between-group values ob-
tained from the ANOVA test regarding the execution time.
As seen from the table, since Sig � 0.033< 0.05, the
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assumption H0 is rejected. Tis means that the three
methods under study have diferent average execution
times. In Table 4, feld F shows the amount of between-
groups changes compared to within-group changes. To
obtain the F-value for each group, the sum of the squares of
the diference of its data concerning the mean is calculated.
Te larger F is, the higher the probability of rejecting
hypothesis H0. On the contrary, a small value of F indicates
the nonsignifcance of the diference between the groups. In
the ANOVA test, the df feld indicates the degree of

freedom. Statistically, the degree of freedom is the sample
size minus the number of parameters estimated from
the data.

Te pairwise comparison of runtime values for diferent
methods obtained from the ANOVA test is shown in Table 5.
As seen from the table, the execution time of the
SPSB_Auction method is diferent from the other two
methods and has a signifcant diference. In other words, the
SPSB_Auction method has a longer execution delay than
others. For the sake of simplicity of comparison, the average

Input: Te fog node identifer fj, the set of states S, the set of actions A, the set of terminal states T

Output: the optimal action-value function vector Q∗
(1) Set t � 0
(2) for i ∈ C(fj) do
(3) for si

t ∈ S do
(4) for ai

t ∈ Ado
(5) Initialize Q(si

t, ai
t) arbitrarily

(6) Initialize terminal state value, Q(Ti, .) � 0
(7) end for
(8) end for
(9) end for
(10) repeat
(11) Initialize St

(12) repeat (for each step of the episode)
(13) Choose At from St using policy derived from Qt (e.g., ε-greedy)
(14) Take action At, observe Rt+1, St+1
(15) Q(St,At)⟵Q(St,At) + α[Rt+1 + cmax

B
Q(St+1,B) − Q(St,At)] using equation (33)

(16) St⟵ St+1
(17) untilSt ∈ T

(18) t⟵ t + 1
(19) until Max_Num_Episodes
(20) Q∗⟵Q(St, At) using equation (37)
(21) return Q∗

ALGORITHM 1: Pseudocode of the Q-learning for the ofoading problem.

Input:Te arrival rate of tasks λui
, the task size of the mobile user θi, the number of CPU cycles required to perform each bit of the

task in the mobile user σi, computing capacity in mobile user u i

C , the uplink rate at which tasks are ofoaded Ri, the gain of the
channel located between the mobile user ui and the BS hi, the channel bandwidth W, the noise of the channel N0, power required
to execute a task locally Pl

ui
, the maximum transmission power of the mobile user Pmax

i , price per joule of energy to be paid by the
mobile user puj

Output: local energy consumption El
ui
, the ofoading energy consumption Eo

u i

(1) Calculate the response time of the task in local execution, tl
u i
, using equation (10)

(2) Calculate the ofoading time of the task, to
ui
, using equation (13)

(3) Calculate the local energy consumption, El
ui
, using equation (11)

(4) Calculate the ofoading energy consumption, Eo
ui
, using equation (14)

(5) if (El
u i
≤Erem

u i
and Erem

ui
≥Ethr

ui
) then

(6) si
t⟵ “local_execution”

(7) Perform the task locally
(8) budgetui

� budgetui
+ pui

.El
ui

(9) else
(10) Send pui

, El
ui
and Eo

ui
to the fog device fj (controller) by calling Algorithm 3

(11) budgetui
� budgetui

− pui
.Eo

ui
− b

fj

ui
.El

fj

(12) end if

ALGORITHM 2: Pseudocode of a mobile user ui in the proposed ofoading method.

12 Complexity



execution time of diferent methods is shown in Figure 5.
Again, in this fgure, it is clear that the execution time of the
SPSB_Auction method is signifcantly diferent from other
methods.

We use the Mann‒Whitney U test to check the corre-
lation between the execution times of the SPSB_Auction and
SPSB_Auction_RLmethods. Unlike the T-test, here, the sum
of the scores is used instead of the mean. For this purpose,
the samples are frst merged and assigned ranks. Te allo-
cated sums are then calculated in each method separately.
Te total number of data points is 22, half belonging to the
SPSB_Auction_RLmethod and the rest to the SPSB_Auction.

First, the 22 data points are sorted in ascending order, and
then they receive the smallest rank number 1, and the
highest rank number 22. Te result of theMann‒Whitney U
test for execution time is shown in Table 6. As can be seen in
the table, the “Sum of Ranks” values for the SPSB_Auc-
tion_RL and SPSB_Auction methods are 97 and 156, re-
spectively. Since the “Sum of Ranks” in the
SPSB_Auction_RL method is less than that of the
SPSB_Auction method, its execution time is less than the
SPSB_Auction method.

Te Mann‒Whitney U value, UMW, for each dataset is
calculated as follows [1]:

Input: Te arrival rate of tasks in the fog node λfj
, the task size of the mobile user θi, the number of CPU cycles required to

perform each bit of the task in the mobile user σi, computing capacity in the fog device Cfj
, the power required to execute a task at

the fog device Pl
fj
, price per joule of energy to be paid by the mobile user puj

Output: the optimal action-value function vector Q∗
(1) Calculate the response time of the task when it is executed by the fog device, tl

fj
, using equation (26)

(2) Calculate the ofoading time of the task towards the central cloud, to
f j
, using equation (28)

(3) Calculate the local energy consumption, El
fj
, using equation (27)

(4) Calculate the ofoading energy consumption towards the central cloud, Eo
f j
, using equation (29)

(5) Call Algorithm 1 to get the optimal action-value function vector Q∗
(6) Update computing capacity in the fog device Cfj

(7) if (El
f j
>Erem

f j
or Erem

f j
<EThr

f j
) then

(8) Send pfj
, tl

f j
, and to

f j
to the remote cloud

(9) budgetui
� budgetui

− pui
.Eo

ui
− b

fj

ui
.El

fj
− pfj

.Eo
fj

(10) else if (pfj
.El

fj
≤ budgetui

) then
(11) si

t⟵ “offload_pending”
(12) else
(13) si

t⟵ “local_execution”
(14) end if
(15) call Algorithm 4 to hold the second-price sealed-bid (SPSB) auction
(16) w⟵ the identifer of the node who is the winner of the auction
(17) sw

t ⟵ “running”
(18) call Algorithm 1 to calculate the optimal action-value function vector Q∗

ALGORITHM 3: Pseudocode of a fog device fj (controller) in the proposed ofoading method.

Input: Te identifer of the buyer u i (bidder node), the bidding distribution function Fui

Output: the identifer of the node who is the winner of the auction w, the bidding value whichmust be paid by the winner to the fog
device fj for each Joules of energy consumption b

fj

w

(1) Wait to receive the bidding value xui
from all mobile users u i

(2) b
f j

u i
⟵Maximum bidding value

(3) w⟵the identifer of the node who is the winner of the auction
(4) Introduce the winner w to other bidder nodes
(5) Delete the node w from the set of future bidders
(6) Return w and b

fj

w

ALGORITHM 4: Pseudocode of the Second-price Sealed-bid (SPSB) auction [1].

Table 3: Te simulation settings.

Module CPU computing capacity (MIPS) RAM (MB) UP bandwidth (kbps) Down bandwidth (kbps)
Cloud 44800 40000 10000 10000
Gateway (fog) 2800 4000 10000 10000
End device 3200 1000 10000 270
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UMW � Srank −
N(N + 1)

2
, (39)

where N and Srank denote the number of data points in each
dataset and the sum of ranks, respectively. According to (39),
the Mann‒Whitney U values for the SPSB_Auction_RL and
SPSB_Auctionmethods are 97–11 ∗ 12/2� 31 and 156–11 ∗
12/2� 90, respectively. Figure 6 shows the largest value, 90,
which corresponds to the value of WilcoxonW� 156 for the
SPSB_Auction method.

Figure 6 presents an interesting implication for the “risk
aversion” property [55] of SPSB_Auction_RL and
SPSB_Auction methods. Based on this property, the bid
values announced by mobile users do not difer signifcantly
from each other. Tis leads to the fact that the execution
times of these two methods are slightly diferent from each
other. Te hypotheses used are as follows:

H0: the selected ofoading approach has a signifcant
efect on the execution time.
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Figure 4: Execution time for diferent numbers of fog nodes.

Table 4: Intragroup and intergroup values obtained from the ANOVA test regarding the execution time.

ANOVA
Execution time Sum of squares df Mean square F Sig
Between groups 405683979302.606 2 202841989651.303 3.842 0.033
Within groups 1583952298280.72 30 52798409942.691
Total 1989636277583.33 32

Table 5: Pairwise comparison of runtime values for diferent methods obtained from the ANOVA test.

Multiple comparisons
Dependent variable: execution time
LSD

(I) Approach (J) Approach Mean diference
(I − J) Std. error Sig

95% confdence interval
Lower bound Upper bound

SPSB Auction_RL SPSB auction − 240349.36364∗ 97978.11 0.020 − 440447.3680 − 40251.3593
FCFS − 10654.45455 97978.11 0.914 − 210752.4589 189443.5498

SPSB auction SPSB Auction_RL 240349.36364∗ 97978.11 0.020 40251.3593 440447.3680
FCFS 229694.90909∗ 97978.11 0.026 29596.9048 429792.9134

FCFS SPSB Auction_RL 10654.45455 97978.11 0.914 − 189443.5498 210752.4589
SPSB auction − 229694.90909∗ 97978.11 0.026 − 429792.9134 − 29596.9048

∗Te mean diference is signifcant at the 0.05 level.
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Figure 5: Te average execution time for diferent approaches.

Table 6: Ranks assigned to each method in the Mann‒Whitney U test.

Ranks Approach N Mean rank Sum of ranks

Execution time
SPSB Auction_RL 11 8.82 97.00
SPSB auction 11 14.18 156.00

Total 22

Independent-Samples Mann-Whitney U Test Summary
Total N 22
Mann-Whitney U 90.000
Wilcoxon W 156.000
Test statistics 90.000
Standard Error 15.229
Standardized Test Statistic 1.937
Asymptotic Sig. (2-sided test) .053
Exact Sig. (2-sided test) .056
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Figure 6: Execution time analysis information of diferent methods in the Mann‒Whitney U test.
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H1: the selected ofoading approach has little impact
on the execution time.

Hypothesis acceptance in the Mann‒Whitney U test is
based on the asymptotic Sig andMann‒Whitney U value. As
shown in Figure 6, we have the asymptotic Sig� 0.053>
α� 0.05 and Mann‒Whitney U� 90. Terefore, the hy-
pothesis H0 is not rejected.

5.3. Energy Consumption. Figure 7 shows the energy con-
sumption of the entire system, which includes the total
energy consumed in local execution (11) and (27) and
ofoading (14) and (29) in all layers. As shown in the fgure,
the amount of energy consumption in all methods increases
with an increase in the number of fog nodes. However, the
proposed method, SPSB_Auction_RL, manages to consume
less energy than others. Due to space limitations, the results
of the ANOVA test have been omitted.

For the sake of simplicity of comparison, the average
energy consumption of diferent methods, as well as their
variance, is shown in Figures 8 and 9. Again, in these fgures,
it is clear that the energy consumption of the SPSB_Auc-
tion_RL method is signifcantly diferent from other
methods. Also, Figure 9 can provide an interesting impli-
cation for the stability of the proposed method. As is evident
in the fgure, the variance of energy consumption in the
SPSB_Auction_RL method is less than others. Tis indicates
that it has acceptable stability concerning selected hyper-
parameters, α and c, in (34).

5.4. Network Usage. Figure 10 shows the network usage for
diferent numbers of fog nodes. Tis is one of the criteria
for which the iFogSim simulator generates reports. Te
network usage criterion is the number of bits transmitted
to ofoad all tasks in the network. As can be seen from the
fgure, network usage increases as the number of fog nodes
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increases. However, the network usage in the
SPSB_Auction and SPSB_Auction_RL methods is signif-
icantly less than that of the FCFS. Also, note that
SPSB_Auction and SPSB_Auction_RL methods,

themselves, have very little diference in terms of
network usage.

Also, the average network usage of diferent methods is
shown in Figure 11. Again, in this fgure, it is clear that the
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energy consumption of the FCFS method is signifcantly
diferent from other methods.

6. Conclusion and Future Trends

Tis paper used reinforcement learning to optimize bid
value prediction in auction-based ofoading. In our pro-
posed mechanism, nodes participating in the auction report
their bid values to their corresponding parent nodes. Te
node with the highest bid wins the auction and ofoads its
tasks to the parent node. After discussing the strengths and
weaknesses of previous research, wemodeled the problem by
queuing theory. In this model, the response time and energy
consumption of mobile users’ tasks were formulated in all
three layers edge, fog, and cloud. Ten, using the Q-learning
method, a price-based mechanism was designed to en-
courage users to ofoad their tasks so that the energy
consumed by the fnal devices is minimized.

Te performance of the proposed method was evaluated
against one of the state-of-the-art methods, in which only
the second-price sealed-bid auction mechanism is used for
ofoading. Te simulation results showed that the proposed
method signifcantly reduces task execution time compared
to the baseline and the FCFS methods. Te average energy
consumption of the proposed method is lower than other
methods. However, the FCFS and the baseline methods have
almost equal energy consumption. In addition, the lower
energy consumption variance makes it more stable than
other methods. Unlike the FCFS method, both the proposed
and baseline methods save the network resources
signifcantly.

One future research trend is considering users’ mobility
and hand-of. Also, using other RL methods in combination
with metaheuristic methods can probably remarkably re-
duce learning time.
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