
Research Article
Secure Two-Party Decision Tree Classification Based on Function
Secret Sharing

Kun Liu and Chunming Tang

School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510000, China

Correspondence should be addressed to Chunming Tang; ctang@gzhu.edu.cn

Received 13 April 2023; Revised 19 September 2023; Accepted 26 September 2023; Published 31 October 2023

Academic Editor: Roberto Natella

Copyright © 2023 Kun Liu and Chunming Tang. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Decision tree models are widely used for classifcation tasks in data mining. However, privacy becomes a signifcant concern when
training data contain sensitive information from diferent parties. Tis paper proposes a novel framework for secure two-party
decision tree classifcation that enables collaborative training and evaluation without leaking sensitive data.Te critical techniques
employed include homomorphic encryption, function secret sharing (FSS), and a custom secure comparison protocol. Ho-
momorphic encryption allows computations on ciphertexts, enabling parties to evaluate an encrypted decision tree model jointly.
FSS splits functions into secret shares to hide sensitive intermediate values. Te comparison protocol leverages FSS to securely
compare attribute values to node thresholds for tree traversal, reducing overhead through efcient cryptographic techniques. Our
framework divides computation between two servers holding private data. A privacy-preserving protocol lets them jointly
construct a decision tree classifer without revealing their respective inputs. Te servers encrypt their data and exchange function
secret shares to traverse the tree and obtain the classifcation result. Rigorous security proofs demonstrate that the protocol
protects data confdentiality in a semihonest model. Experiments on benchmark datasets confrm that the approach achieves high
accuracy with reasonable computation and communication costs.Te techniques minimize accuracy loss and latency compared to
prior protocols. Overall, the paper delivers an efcient, modular framework for practical two-party secure decision tree evaluation
that advances the capability of privacy-preserving machine learning.

1. Introduction

Te two stages of a machine learning process are as follows.
A model or classifer is developed using a potentially vast
collection of training data during the frst phase, also known
as the learning phase. Ten, the raw data are classifed using
the model. In many felds, including healthcare, fnance,
spam fltering, intrusion detection, and remote diagnostics,
machine learning (ML) classifers are useful tools [1]. Tese
classifers frequently need access to highly sensitive personal
information like medical or fnancial records to execute their
duties. Investigating systems that guarantee data privacy
while reaping the rewards of ML is, therefore, essential. On
the one hand, the ML model itself could include private
information. For instance, a bank that utilizes a decision tree
to evaluate its credit by clients would wish to keep the

information about the model private. On the other hand, the
model may have been created using private information. So-
called model inversion attacks are widely known. Further-
more, these attacks might jeopardize the confdentiality of
the training data, which are promoted by white-box and,
even worse, black-box access toMLmodels [2–4].Terefore,
publicizing the ML model can confict with the training data
privacy.

Private decision tree evaluation can be implemented
using general secure two-party computation [5–7] tech-
niques like secret sharing and garbled circuits. Te goal is to
protect the decision tree algorithm so that it may be reviewed
without disclosing any personal information. Some frame-
works like ObliVM [8] and CBMC-GC [9] can transform
plaintext programs written in high-level programming
languages into oblivious programs suitable for secure

Hindawi
Complexity
Volume 2023, Article ID 5302915, 13 pages
https://doi.org/10.1155/2023/5302915

https://orcid.org/0000-0001-7634-4705
mailto:ctang@gzhu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5302915

computing. Teir straightforward application to decision
tree algorithms unquestionably improves performance
compared to a manually created architecture. Nonetheless,
the size of the resulting ignorant program is still pro-
portional to the size of the tree. Generic methods are,
therefore, typically useless, especially when the tree is large.

2. Overview of Our Construction

We make use of homomorphic encryption and function
secret sharing to implement a server-server secure two-party
decision tree classifcation evaluation protocol without the
trusted third party.

Te basic idea is as follows. (1) Without relying on
a trusted third party, two diferent servers share their data
sources and combine their common data to perform security
decision tree training on the ciphertext. (2) In this study, we
address the problem of private decision tree training on
confdential data from diferent data sources. Te charac-
teristics of the data of the two servers are public, and the
server requires to combine the data of the other party to
classify the private attribute vector. Te goal of the com-
putation is to determine the classifcation while keeping the
user input and the decision tree confdential. Once the
calculations are complete, only the classifcation models and
their respective training results are shared in secret; neither
party knows anything else. Use any general secure multi-
party computation to solve the problem. Tere are spe-
cialized solutions that integrate multiple methodologies and
leverage subject matter expertise to create efective
agreements.

In this study, we provide a 2PC-based (two-party
computation) framework for decision tree training and
inference that is quicker and more precise. We provide
several new building blocks based on the comparison
protocol [10–19], support and implement secret sharing
comparison on 2PC, and establish a new preprocessing
protocol for mask creation. Te experimental fndings
demonstrate that our approach is more accurate and time-
efective than the majority of existing frameworks.

It is more challenging to prevent collusion among
participants when several parties are involved and there are
issues with the deployment itself. Although the present 3PC
(three-party computation) or multi-PC security architecture
must ensure an honest majority, the real world makes it
difcult to meet this condition. Te cooperation of parties
can only be easily regulated if it is implemented on cloud
servers owned by many businesses. Nevertheless, 2PC can
fulfll this need.

Our intent is to deliver and implement a unique two-
server protocol that gives both parties access to a complete
classifcation model while maintaining the privacy of their
own data and a tolerable level of speed. Te plan is to
evaluate ciphertext trees encrypted with a server public key
while using fully or somewhat homomorphic encryption
(FHE/SHE).Terefore, the evaluation server is not informed
of any intermediate or fnal calculation results. Existing fully
homomorphic encryption techniques have high computa-
tional overhead and data transmission costs. To address this,

we use efcient data representation and algorithm im-
provements. However, fully homomorphic encryption still
has substantial overhead compared to our approach.

We summarize the key diferences between our method
and prior work by De Cock et al. [20] and Lu et al. [21] in
Table 1. In this work, we have introduced a novel framework
for secure two-party decision tree classifcation that provides
substantial improvements over prior art. As evidenced by
the table, our approach achieves higher accuracy, lower
communication overhead, and reasonable computation
complexity compared to De Cock et al. [20] and Lu et al.
[21]. Our innovations in computing decision bits and
combining secret sharing with homomorphic encryption
lead to a highly performant and accurate framework with
demonstrable gains. Te empirical results substantiate the
concrete efciency and accuracy advantages of our proposed
techniques over existing methods.

In this paper, we present secure two-party decision tree
classifcation for diferent data sources’ training and in-
ference. Te two-party setting is reasonable for real-world
applications [22] and has been widely employed in privacy-
preserving machine learning [23–26]. First, exploiting an
advanced cryptographic primitive, function secret sharing
(FSS) [27], we present an efcient comparison protocol for
the choice of the best split.Temain challenge is that directly
using the general FSS scheme [28] leads to a high evaluation
overhead, since it requires two FSS invocations to handle the
wrap around problem illustrated in Section 3. We address
this by providing a novel theoretical analysis, which shows
that the probability of incurring the wrap around problem is
negligible with appropriate parameter settings even though
we only invoke one FSS evaluation. Tis achieves approx-
imately 2× reduction in the online runtime compared to the
most efcient FSS scheme [28], while resulting in a slight
accuracy loss in the training of trees. For communication,
our protocol only requires one communication round with 2
ring elements. Nonetheless, the computational workload can
be parallelized, thereby reducing computational time, even
though the computational overhead may still end up being
larger than existing protocols. By providing encrypted input
and returning only encrypted output, we are able to provide
a noninteractive protocol that enables clients to outsource
evaluation to servers. Furthermore, it is possible to make
existing systems unilaterally simulatable and secure in
a semihonest model by employing techniques that may
double computation and communication costs.

3. Related Work

Te scope of our research pertains to private function
evaluation (PFE) [29, 30], specifcally, privacy-preserving
decision tree evaluation [10–16] as a component of secure
multiparty computation [5–7, 31–35]. In this section, we will
give a brief evaluation, while a more comprehensive analysis
can be found in the literature.

Brickell et al. [12] introduced the frst private decision
tree evaluation protocol by utilizing a novel combination of
homomorphic encryption (HE) and garbled circuits (GC).
Te server translates the decision tree into a GC, which the

2 Complexity

client subsequently executes. Tis protocol combines ho-
momorphic encryption and oblivious transmission, which
enables the client to discover its garbling key (OT).While the
evaluation time is sublinear in the tree size, the technique
could be more efcient for large trees due to the linear secure
program and communication cost. Barni et al. [10] improved
upon this technique by removing the leaf node from the
secure program, thereby reducing calculation costs by
a constant factor.

Bost et al. [11] have modelled the decision tree as
a multivariate polynomial where the constants in the
polynomial signify the classifcation labels and the variables
signify the outcomes of the Boolean conditions at the de-
cision nodes. In order to clandestinely calculate the value of
the Boolean conditions, each threshold is matched with the
respective encrypted attribute values under the client’s
public key. Subsequently, the client receives the result once
the server homomorphically evaluates the polynomial.

In their study, Wu et al. [4] have employed various
methods that exclusively require additive homomorphic
encryption (AHE). Tey have also used the protocol from
[36] to compare data and broadcast the encrypted com-
parison bits with the client’s public key to the server.
Upon evaluating the tree, the server communicates the
client’s index of the matching categorization label, and the
outcome is conveyed to the client via an OT. Tai et al. [15]
have implemented the comparison methodology of [36]
and AHE in their work.Tey have assigned costs to the left
and right edges of each node, namely, b and 1 − b, re-
spectively, where b is the result of the comparison at that
specifc node. Ultimately, the costs are tallied along each
tree branch, and the classifcation label pertains to the
path that yields zero cost.

Tueno et al. [16] have represented the tree as an array and
conducted comparisons of the depth of the tree using small
garbled circuits to obtain secret shares of the subsequent
node’s index along the tree. Tey have also introduced
a novel primitive called oblivious array indexing to enable
the selection of the following nodes without memorization.
Using a modular approach, Kiss et al. [14] have incorporated
subfunctionalities such as attribute selection, integer com-
parison, and route evaluation. For covertly computing these
subfunctionalities, they have thoroughly examined the
trade-ofs and performance of various potential combina-
tions of reduction protocols.

De Cock et al. [20] utilized a similar approach to
earlier methods by initially carrying out comparisons. To
minimize interactions, they have implemented secret
sharing-based secure multiparty computation (SMC) and
commodity-based cryptography [37] in an information-
theoretic model. In contrast to ours and other protocols,

De Cock et al.’s approach is secure in the computational
environment. Lu et al. [21] have proposed XCMP,
a noninteractive comparison protocol using BGV ho-
momorphic method [38] with the polynomial encoding
of the inputs. Tey have further employed output ex-
pressive XCMP to construct the private decision tree
protocol suggested by Tai et al., thereby maintaining
additive homomorphism.

Te decision tree technique is efcient and non-
interactive due to its short multiplicative depth. However, it
has limitations and is not universal as it works best with
small inputs and depends on BGV-type homomorphic
encryption (HE) schemes. Furthermore, it lacks output
expressiveness like XCMP. It cannot support SIMD oper-
ations, which makes it unsuitable for expanding to more
complex protocols such as random forest [39] while pre-
serving its noninteractive nature. Additionally, the output
length of the technique is exponential in the depth of the
tree. In contrast, our binary instantiation has a marginally
linear output length, and the integer instantiation can
further reduce it by utilizing SIMD.

Like most privacy-preserving techniques based on FSS
[28, 40–42], their schemes derive correlated randomness
through a third party. However, the role of the third party
can be jointly simulated by the two parties using either
generic two-party secure protocols such as garbled circuits
(GCs) [43] and GMW [44], or specifc techniques [45].
Specifcally, (1) one can use generic GCs or GMW style
protocols to produce the required correlated randomness
during the ofine phase. Although versatile, these protocols
necessitate a private evaluation of underlying pseudoran-
dom generators (PRGs) during the FSS key generation
phase. (2) In a customized approach, Doerner and Shelat
[45] proposed a new solution that ofers signifcant efciency
advantages, as PRG evaluation takes place locally without the
need for secure simulation. However, it is suitable only for
moderate domain sizes and challenging to extend to more
generalized and signifcant cases.

4. Preliminaries

Tis section provides essential defnitions and notations
for our system, serving as a background for the rest of the
study. Fully or somewhat homomorphic encryption is the
fundamental concept, wherein we have simplifed the
mathematical intricacies to facilitate the reader’s com-
prehension and presentation. In this work, we utilize the
terminology presented in [46] to delineate several
foundational concepts. Relevant literature [12, 46–52]
regarding homomorphic encryption is recommended for
further understanding.

Table 1: Comparison to prior work.

Our results De Cock et al. [20] Lu et al. [21]
Accuracy drop 0.05% 2–5% —
Communication per comparison 2 ring elements Information-theoretic 100 ring elements
Secure computation technology Homomorphic encryption, secret sharing Secret sharing Homomorphic encryption
Security model Semihonest Malicious Semihonest

Complexity 3

5. Decision Tree Classifier

Machine learning relies heavily on decision trees for data
classifcation and regression. Tis study considers two
parties that provide their distinct input variables and in-
dependently reconstruct the tree model, with data from one
party kept confdential from the other. Te decision tree
classifcation’s primary objective, given an input query x, is
to follow the tree model and compare the input entries to
node-specifc thresholds for each decision node. Te left or
right child node is chosen as the next node depending on the
comparison result. Te classifcation model eventually ends
in a specifc leaf node, giving the input query a unique
classifcation label.

Let elements x ∈ Zk be a feature vector. A functionT(x)

with a k-dimensional feature space is implemented by
a decision tree T: Zk⟵Z. Let the input query
q � (q1, . . . , qn) ∈ Zk of the party i be an ni-dimensional
positive integer vector over Z. Te Boolean function
Bool(x) � 1, xik

< tk􏽮 􏽯 is connected to each child node vk in
the tree, where ik ∈ [n] is indeed the index of the feature
vector x ∈ Z and tk is the threshold.

Ten the decision tree evaluation on input
x � (x1, . . . , xn−1) is given by llabel � T(x) withT: Zk⟵
l1
label, . . . ,lm

label􏼈 􏼉, in which m is the number of leaf nodes.
Tis function starts from the root node and then does
a comparison at each decision node. Let j be the index of
a decision node and f be the function mapping the decision
node index j to the corresponding input index f(j). Besides,
let tj be the threshold value of decision node j. Ten if
xf(j) ≥ tj holds for node j, the right child is chosen as the
next decision node; otherwise, the left child node is chosen.
At the end, the function outputs the classifcation label llabel
of the fnal leaf node.

A decision tree (DT) is a function T: Z⟶ c0, . . . ,􏼈

ck−1} that maps an attribute vector x � (x0, . . . , xn−1) to
a fnite set of classifcation labels. Te tree consists of

(i) Nodes that either contain a test condition or are
internal decision nodes.

(ii) Nodes that contain a classifcation label and are
considered as leave nodes.

Te decision tree model comprises a decision tree and
the functions outlined below:

(i) A threshold value is assigned to each decision node
by the function thr: [0, m − 1]⟶ Z.

(ii) An attribute index is assigned to each decision node
by the function att: [0, m − 1]⟶ [0, n − 1].

(iii) A label of each leaf node is assigned to each decision
node by a labeling function lab: [m, M − 1]⟶
c0, . . . , ck−1􏼈 􏼉.

At each decision node, a comparison of “greater-than” is
made between the assigned threshold and attribute values,
i.e., the decision at node v is [xatt(v) ≥ thr(v)].

Node Indices. If we have a decision tree, the index of
a node can be determined using breadth-frst search

(BFS) traversal, starting at the root with index 0. When
the tree is complete, a node with index v will have a left
child of 2v + 1 and a right child of 2v + 2.

6. Homomorphic Encryption

Tis article focuses on lattice-based homomorphic en-
cryption methods that allow for computations on cipher-
texts by generating an encrypted output that corresponds to
the result of a function applied to the plaintexts. Such en-
cryption schemes facilitate several linked additions and
multiplications on plaintexts in a homomorphic manner.

Defnition 1. Consider the plaintext space defned as a ring
Zq[X]/(XN + 1), where q is a prime number and N can be
expressed as a power of two. Te homomorphic encryption
(HE) scheme under consideration includes the following
algorithms:

(i) (pk, sk, ek)⟵KGen(λ): Te generation of private
key sk, public key pk, and evaluation key ek is
achieved through a probabilistic algorithm denoted
by KGen(λ). Tis algorithm employs a security
parameter λ to ensure the randomness and security
of the generated keys.

(ii) c⟵Enc(pk, m): An encryption algorithm using
a probabilistic algorithm is employed to produce
a ciphertext c from a given message m and public
key pk. We will denote the resulting encryption as
⟦m⟧.

(iii) c⟵Eval(ek, f, c1, . . . , cn): a probabilistic algo-
rithm is utilized to generate a ciphertext c by
employing the evaluation key ek, an n-ary function
f, and n ciphertexts denoted as c1, . . . , cn.

(iv) m′⟵Dec(sk, c): a message m′ can be generated
from a given ciphertext c and private key sk using
a deterministic algorithm.

When using the encoding method in homomorphic
encryption (HE), the ciphertext is modifed by in-
troducing “noise,” which can increase during homo-
morphic evaluation. While the noise level grows
exponentially upon multiplication, adding ciphertexts
results in a linear increase. If the noise level becomes too
high, it makes the decryption of the ciphertext impossible.
To avoid this problem, either the refresh algorithm can be
employed or the depth of the circuit for the function f can
be kept sufciently low. Tese techniques include key-
switching or bootstrapping procedures that convert a ci-
phertext encrypted with one key into a ciphertext of the
same message encrypted with another key and a specifed
amount of noise [46].

7. Function Secret Sharing

Function secret sharing (FSS) works by splitting a function f

into two succinct function parts such that each part reveals
nothing about the function f, but when the evaluations are
combined at some point x, the result is f(x).

4 Complexity

Formally, an FSS scheme is a pair of algorithms Gen and
Eval with the following syntax. We identify two FSS con-
structions [28, 40] as a natural ft for our scheme: (1) dis-
tributed point function (DPF) (GenDPFa,b ,EvalDPFa,b) that
satisfes fa,b(x) � b is x � a and 0 otherwise and (2) dis-
tributed comparison function (DCF) (GenDCFa,b ,EvalDCFa,b) that
satisfes fa,b � b is x< a and 0 otherwise.

Defnition 2 (function secret sharing [27, 53]). A two-party
function secret sharing (FSS) scheme is a pair of algorithms
(Gen,Eval) such that

(1) Gen(1κ, 􏽢f) is a probabilistic polynomial-time (PPT)
key generation algorithm that given secure param-
eter 1κ and a function 􏽢f∈ 0, 1{ }∗ outputs a pair of
keys (k0, . . . , kσ). We assume that 􏽢f explicitly
contains descriptions of input and output groups
Gin,Gout.

(2) Eval(σ, kσ , x) is a polynomial-time evaluation al-
gorithm that given σ ∈ 0, . . . , m{ } (party index), kσ is
defned as the key of function fσ : Gin⟵Gout. Let
x ∈ Gin be the input of function fσ and output
a group element yσ ∈ Gout.

When σ is omitted, it is understood to be 2. When σ � 2,
we sometimes index the parties by σ ∈ 0, 1{ } rather than
i ∈ 1, 2{ }.

Defnition 3 (correctness and security [27, 53]). LetF � f􏼈 􏼉

be a function family and Leak be a function specifying the
allowable leakage about 􏽢f. When Leak is omitted, it is
understood to output onlyGin,Gout. We say that (Gen,Eval)
as in Defnition 2 is an FSS scheme for F (with respect to
leakage Leak) if it satisfes the following requirements.

(3) Correctness: for all 􏽢f: Gin⟵Gout and every
x∈Gin, if (k0, k1)⟶Gen(1λ, 􏽢f), then
Pr[Eval(0, k0, x) + Eval(1, k1, x) � f(x)] � 1.

(4) Security: for each σ ∈ 0, 1{ } there is a PPTalgorithm
Simσ (simulator), such that for every sequence
(􏽢fλ)λ∈N of polynomial-size function descriptions
from F and polynomial-size input sequence xλ for
fλ, the outputs of the following experiments Real
and Ideal are computationally indistinguishable:

(i) Realλ: (k0, k1)⟵Gen(1λ, 􏽢fλ); output kσ .
(ii) Idealλ: Output Simσ(1λ, Leak(􏽢fλ)).

A central building block for many of our constructions is
an FSS scheme for a special interval function referred to as
a distributed comparison function (DCF) as defned below.
We formalize it below.

Defnition 4 (distributed comparison function). A special
interval function f<α,β, also referred to as a comparison
function, outputs β if x< α and 0 otherwise. We refer to an
FSS scheme for comparison functions as DCF. Analogously,
function f≤α,β outputs β if x≤ α and 0 otherwise. In all of
these cases, we allow the default leakage Leak(􏽢f) �

(Gin,Gout).

Theorem 5 (concrete cost of DCF). Given
a PRGG: 0, 1{ }λ⟵ 0, 1{ }(2λ+2), there exists a a DCF for
f<α,β: Gin⟵ Gout with key size 4n · (λ + 1) + nl + λ, where
n � 􏼆 log|Gin|􏼇 andl � 􏼆 log|Gout|􏼇. Forl′ � 􏽬l/λ + 2􏽭, the key
generation algorithm Gen invokes G at most n · (4 + l′) times
and the algorithm Eval invokes G at most n · (2 + l′) times.

We use DCFn,G to denote the total key size, i.e.,
|k0| + |k1|, of the DCF key with input length n and output
group G. On the other hand, we use DCFn,G (nonbold) to
denote the key size per party, i.e., |kb|, b ∈ 0, 1{ }. Tis cap-
tures the key size used in Eval algorithm. In the rest of the
paper, we use DCFn,G to count number of invocations/
evaluations as well as key size per evaluator Pb, b ∈ 0, 1{ }.

8. Our Construction

Tis section outlines a modular description of our base
protocol for secure two-party decision tree classifcation. We
frst introduce the data structures used in the protocol. By
employing this structured representation of data, we can
ensure that each party has access to necessary information
while preserving the privacy of sensitive data. Tis enhances
the security of our protocol, making it suitable for real-world
applications requiring secure data analysis.

At last, we show the honest-but-curious adversarial
model assumed in our protocol and cryptographic primi-
tives like function secret sharing, homomorphic encryption,
and secure comparison to prevent leakage of sensitive data to
each party for our protocol. Overall, the modular design of
our base protocol enables us to address specifc security
concerns by considering data structures and access control
mechanisms. In subsequent sections, we describe the key
components of the protocol in more detail, including the
cryptographic primitives employed and the communication
protocol used to facilitate secure multiparty computation.

9. Data Structure

Defnition 6. For a decision tree model M � (T, thr, att),
we denote the tree T of each node v which consists of

(i) v.threshold: the threshold of node v, denoted by
thr(v), is stored in the variable v.threshold.

(ii) v.aIndex: the associated index, denoted by att(v), is
stored in the variable v.aIndex.

(iii) v.parent: A pointer to the parent node is stored in
the variable v.parent. For the root node, this pointer
is null.

(iv) v.left: Pointers to the left child nodes are stored in
the variables v.left. For leaf nodes, these pointers are
null.

(v) v.right: Pointers to the right child nodes are stored
in the variables v.right. For leaf nodes, these
pointers are null.

(vi) v.cmp: During tree evaluation, the comparison bit
b⟵ [xatt(v.parent) ≥ xthr(v.parent)] is computed and

Complexity 5

stored in the variable v.cmp. If v is a right node, it
stores b; otherwise, it stores 1 − b.

(vii) v.cLabel: the classifcation label is stored in the
variable v.cLabel if v is a leaf node; otherwise, it
stores an empty string.

Defnition 7 (classifcation function). Let the attribute vector
be x � (x0, . . . , xn−1) and the decision tree model be
M � (D,L). We defne the classifcation function to be
fc(x,M) � tr(x, root), where root is the root node and tr is
the traverse function defned as

tr(x, v) �

tr(x, v.left), if v ∈ D andxv.Index < v.threshold,

tr(x, v.right), if v ∈ D andxv.Index ≥ v.threshold,

v, if v ∈L.

⎧⎪⎪⎨

⎪⎪⎩

(1)

10. Building Blocks

A one-time key is generated as part of the initialization
process for a homomorphic encryption system.Te server S0
is responsible for creating the triple (pk, sk, ek), which
consists of the public, private, and evaluation keys. Fol-
lowing this, Si(i � 0, 1{ }) sends (pk, ek) to the other server
S1−i. For each instance of data categorization, Si encrypts
their input and forwards it to the server S1−i. A trusted
randomizer can be employed to reduce transmission costs,
which is not authorized to cooperate with the server and
does not participate in the actual protocol. Tis technique is
similar to commodity-based cryptography, except that the
client can act as the randomizer themselves and provide the
list of ⟦r⟧ before the start of the protocol when the network is
not overloaded.

Te server starts by computing for each node v ∈ D the
comparison bit b⟵ [xatt(v) ≥ thr(v)] and stores b at the
right child node (v.right.cmp � b) and 1 − b at the left child
node ((v.left.cmp � 1 − b)). It is illustrated in Algorithm 1.

10.1. Initialization. Te initialization consists of a one-
time key generation. One server Si(i ∈ 0, 1{ }) generates
appropriate triple (pk, sk, ek) of public, private, and
evaluation keys for a homomorphic encryption scheme.
Ten, another server S1−i sends (pk, ek) to the server. For
each input classifcation, Si just encrypts its input and
sends it to the other S1−i. To reduce the communication
cost of sending input of S1−i, Si can use a trusted ran-
domizer that does not take part in the real protocol and is
not allowed to collaborate with S1−i. Te trusted ran-
domizer generates a list of random strings r and sends the
encrypted strings ⟦r⟧ to server and the list of r to S1−i. For
an input x, this server S1−i then sends x + r to the server Si

in the real protocol. Tis technique is similar to the
commodity-based cryptography with the diference that
S1−i can play the role of the randomizer itself and sends the
list of ⟦r⟧’s (when the network is not too busy) before the
protocol setting.

10.2. Computing Decision Bits. Te server starts by com-
puting for each node v ∈ D the comparison bit
b⟵ [xatt(v) ≥ thr(v)] and stores b at the right child node
(v.right.cmp � b) and 1 − b at the left child node
(v.left.cmp � 1 − b). It is illustrated in Algorithm 2.

10.3.AggregatingDecisionBits. Ten for each leaf node v, the
server aggregates the comparison bits along the path from
the root to v. We implement it using a queue and traversing
the tree in BFS as illustrated in Algorithm 1.

10.4. Finalizing. After aggregating the decision bits along
the path to the leave nodes, each leaf node v stores either
v.cmp � 0 or v.cmp � 1. Ten, the server aggregates the
decision bits at the leaves by computing for each leaf v the
value ⟦v.cmp⟧ ⊕ ⟦v.cLabel⟧ and summing all the results.Tis
is illustrated in Algorithm 3.

Te comparison operation is used to select the maximum
Gini impurity gain. Algorithm 4 gives a specifc comparison
protocol Compare(⟦x⟧, ⟦y⟧) based on FSS, which outputs
the shares of z � 1 y>x􏼈 􏼉. Note that the comparison pro-
tocol is executed over the secret-shared inputs rather than
public values, which should be supported by our designed
FSS scheme. As a result, the key idea is to construct the FSS
scheme for the ofset function f⟦r⟧(x) � f(x + r), where r is
randomly selected from Z2n and secret sharing between S0
and S1. In this way, S0 and S1 frst reconstruct x + r and then
evaluate f⟦r⟧(x), which exactly equals to evaluating f(x).
Note that the ofset function fails if x + r wraps around. Our
protocol only invokes 1 DCF and introduces 2n commu-
nication bits within 1 round in the setup phase.

11. SecureTwo-PartyDecisionTreeClassification

In this section, we present our secure two-party decision tree
classifcation protocol that caters to scenarios where two
counterpart parties provide privacy information, and both
parties can own a decision tree model (see Figure 1). Te
proposed protocol ensures that both servers possess
knowledge of the classifcation results but only of the in-
dividual inputs of the self-party. Our protocol is designed to
be secure for “honest and curious” parties.

To establish the necessary functionality for the tree array AT

and feature arrayX, S0 and S1 perform the required setup work
for function secret sharing. Additionally, S0 shares the root node
AT[0] with S1, which serves as the starting evaluation node.Our
secure two-party decision tree classifcation protocol provides an
efective solution for secure data analysis while maintaining data
privacy. It enables both parties to access the classifcation results
without compromising sensitive information, thereby ensuring
transparency in the data analysis process.

In each iteration, the evaluation process starts with the
call of the FFS functionality F on Si, which initiates the
sharing ofX[v] among the parties. Te parties then perform
a secure comparison between ⟦X[v]⟧ and thr, the purpose of
which is to obtain a comparison result, denoted as b.
Subsequently, the MUX computation determines which
child becomes the next evaluation node. Te computation of

6 Complexity

this decision incorporates the application of the XOR op-
erator on two values: ⟦v.left⟧ and ⟦v.right⟧. In such a case
where b equals 1, ⟦idx⟧ becomes equal to v.⟦left⟧. Con-
versely, if b does not equal 1, ⟦idx⟧ becomes equal to
⟦v.right⟧. Tus, determining the next evaluation node
during each iteration depends on the outcome of the secure
comparison and the MUX computation.

From the shared index idx, the parities invokeF to share
AT[idx]. v.threshold, v.left, v.right, v, and v.cLabel are then
updated correspondingly. Besides, v.cLabel is stored in ⟦rst⟧

where the fnal classifcation label will stay in. Note that we
encode a self-loop for each leaf node, and thus ⟦rst⟧ will
always hold a correct classifcation label once the evaluation
reaches a leaf node. Moreover, it is easy to hide length
information: S0 and S1 just run d iterations of evaluation. In
the end, S0 sends ⟦rst⟧0 to S1, and S1 recovers rst as clas-
sifcation result. Te protocol runs in O(d) iterations with d

secure comparison and MUX operations. If the comparison
protocol is used over Xand a function secret sharing pro-
tocol is used over AT.

(1) function EVALDNODE (D, ⟦x⟧)
(2) for each v ∈ D do
(3) ⟦b⟧⟵⟦[xv.Index ≥ v.threshold]⟧
(4) ⟦v.right.cmp⟧⟵⟦b⟧
(5) ⟦v.left.cmp⟧⟵⟦1 − b⟧

ALGORITHM 2: Te decision bit computation.

(1) function FINALIZE (L)
(2) ⟦result⟦⟵⟦0⟧
(3) for each v ∈L do
(4) ⟦result⟧⟵⟦result⟧⊕(⟦v.cmp⟧ ⊙ ⟦v.cLabel⟧)
(5) return ⟦result⟧

ALGORITHM 3: Finalizing.

(1) function EVALPATHS (D,L)
(2) let Q be a queue3
(3) Q.enqueue(root)
(4) while Q.empty � false do
(5) v⟵Q.dequeue()

(6) ⟦v.left.cmp⟧⟵⟦v.left.cmp⟧ ⊙ ⟦v.cmp⟧
(7) ⟦v.right.cmp⟧⟵⟦v.right.cmp⟧ ⊙ ⟦v.cmp⟧
(8) if v.left ∈ D then
(9) Q.enqueue(v.left)
(10) if v.right ∈ D then
(11) Q.enqueue(v.right)

ALGORITHM 1: Aggregating decision bits.

(1) function COMPARE (⟦x⟧, ⟦y⟧)
(2) Si generate ⟦r⟧0 using PRFs with seed.
(3) Si samples r ∈ Zzn and sends ⟦r⟧1 � r − ⟦r⟧0 to S1−i

(4) Si evaluates (k0, k1)⟵Genr,1 and sends ki to Si

(5) Si sends ⟦y⟧i − ⟦x⟧i + ⟦r⟧i to S1−i, and
(6) Si evaluates ⟦x⟧i⟵Evalr,1(i, ki, y − x + r)

(7) Return ⟦z⟧

ALGORITHM 4: Secure comparison.

Complexity 7

Lemma 8 (Correctness). Assuming the evaluation correct-
ness of the underlying FSS scheme and our Eval algorithm,
then the above construction is a dual-server private decision
tree classifcation protocol, outputting the correct
classifcation label.

Proof. Based on the correctness of FSS and Eval, the cos tl is
equal to 0 if and only if v.cmp is equal to 0; then the cor-
responding result satisfes that resultl � rl1 × 0+

llabel � llabel. □

Lemma 9 (security). Te algorithm Compare(⟦x⟧, ⟦y⟧)
securely realizes the functionality FCompare, assuming the
existence of secure protocols for FSS procedures.

Proof. We prove the security of Compare(⟦x⟧, ⟦y⟧). Si

receives no private information of S1−i, i ∈ 0, 1{ }, and hence
this protocol is trivially secure against “curious but honest”
adversary. Now, we prove the security against corruption of
Si, S1−i, i ∈ 0, 1{ }, when server receives ⟦b⟧1−i � ⟦y⟧1−i

−⟦x⟧1−i + ⟦r⟧1−i and ki. Given the security of PRFs, ⟦r⟧1−i is
a random value unknown to Si. Tus, the distribution of
⟦b⟧1−i is uniformly random from the view of Si. Ten given
the security of FSS, the information learned by Si can be
perfectly simulated. Hence, our protocol is trivially secure
against “curious but honest” corruption of Si. □

12. Security Analysis

We now present a formal security proof of our secure two-
party decision tree classifcation protocol described in this
section. We show that the protocol satisfes computational
semihonest security by proving the existence of probabilistic

polynomial-time (PPT) simulators whose output is com-
putationally indistinguishable from the real view of each
party during the protocol execution.

Let VIEW0(x0, x1) denote the view of party S0 during an
execution of the protocol on inputs (x0, x1), consisting of its
input x1, internal random coins r1, and received messages.
Similarly, VIEW1(x0, x1) denotes the view of party S1. We
construct the following PPT simulators (Algorithms 5
and 6).

We now show that the output of each simulator is
computationally indistinguishable from the real view.

Theorem 10. Te secure two-party decision tree classifcation
protocol satisfes computational semihonest security. Formally:

Sim0 x0, f x0, x1(􏼁(􏼁 ≈ VIEW0 x0, x1(􏼁,

Sim1 x1, f x0, x1(􏼁(􏼁 ≈ VIEW1 x0, x1(􏼁.
(2)

Te SETUP message and PRF randomness r0
′ generated

by Sim1 are identically distributed as in the real protocol
execution. Te simulated transcript consists of

(1) Encrypted inputs computed on x0, x1
′

(2) FSS keys generated independently of inputs
(3) Encrypted outputs that encrypt results from x0, x1

′

Tese are all computationally indistinguishable from the
real transcript due to the IND-CPA security of the encryption
scheme and the security of the FSS scheme. Terefore,
Sim0(x0, f(x0, x1)) ≈ VIEW0(x0, x1). By a similar argu-
ment, we can show Sim1(x1, f(x0, x1)) ≈ VIEW1(x0, x1).
Since PPTsimulators Sim0 and Sim1 exist where the output is
computationally indistinguishable from the real view of each

Figure 1: Secure two-party decision tree classifcation.

8 Complexity

party, this proves that the protocol satisfes computational
semihonest security.

Tis security proof demonstrates that our protocol
protects the privacy of each party’s inputs and decision tree
model during the secure two-party computation. By sim-
ulating the views using arbitrary inputs, we have shown that
the views leak no additional information beyond the
intended output. Terefore, our protocol provides provable
security guarantees for practical applications requiring
privacy-preserving decision tree classifcation.

13. Experiment

We present experimental results evaluating the performance
of our secure two-party decision tree classifcation protocol
on the MNIST dataset [54]. Specifcally, we analyze the
impact on accuracy of varying the number of training
epochs. We also benchmark the runtime of training and
inference under diferent model confgurations. Finally, we
compare our approach to prior frameworks from related
works regarding efciency and accuracy.

14. Experimental Setup

In our study, we implement the secure two-party decision
tree training algorithm in Python. To facilitate commu-
nication between parties, we utilize the communication
backend of the Porthos framework in EzPC [55]. We
employ a pseudorandom function (PRF) based on the
block cipher AES using the OpenSSL-AES library [56, 57].
At the same time, the fully homomorphic secret sharing
(FSS) schemes are implemented using the LibFSS library.
Te implementation is executed on two terminals with
Intel(R) Core(R) CPU i7-6700 running the Ubuntu 18.4
operating system and 16 GB of RAM, with each terminal
representing a party (S0 and S1). Te reported commu-
nication overhead includes the communication between
the two parties, while the runtime incorporates the
computational costs of local computation within each
entity and the communication latency between them. For
experiments conducted over a local area network (LAN),

we assume a bandwidth of 2 Gbps and an echo latency of
0.3ms. We use secret-sharing protocols over the ring Z264
following existing works [23, 58]. We encode the inputs
using a fxed-point representation with a precision of
20 bits.

Our implementation demonstrates the practical viability
of secure two-party decision tree training for data analysis
applications prioritising privacy. By leveraging commonly
available resources such as Python and the Porthos
framework in EzPC, we provide a simple yet efective so-
lution that can be quickly adopted for particular data
analysis tasks. In summary, our study presents an efcient
and practical approach to implementing secure two-party
decision tree training, providing insights into designing
secure data analysis systems for real-world applications.

In this section, we give the accuracy of secure two-party
decision classifcation. Our study aims to evaluate the ef-
fectiveness of secure two-party decision tree classifcation by
conducting several epochs of training on a decision tree
classifer. Specifcally, we perform 5, 10, and 15 epochs of
training on the model and record the corresponding ac-
curacies obtained in each case.

Upon analyzing the results, we present the fndings in
Table 2. Due to space constraints, we only report the
plaintext training results and the corresponding secure
training results. Te table shows that the trend in secure
training accuracy is similar to that of plaintext training
accuracy, with no discernible fuctuations. Furthermore, the
diference between the accuracy obtained from secure and
plaintext training is approximately ± 0.05%. Tese results
suggest that the secure two-party decision tree classifcation
method efectively achieves high accuracy while preserving
data privacy. To sum up, the experimental results demon-
strate that secure two-party decision tree classifcation can
achieve performance comparable to plaintext training, with
only a negligible diference in accuracy, making it an up-
and-coming method for secure data analysis.

In our study, we investigate the impact of varying the
number of training data and the maximum tree depth on the
communication overhead of secure two-party decision tree
classifcation. Firstly, we examine the relationship between

(1) Generate random coins r0
′ for PRF evaluation

(2) Generate SETUP message to FSS functionality F

(3) Run protocol execution locally on inputs (x0, x1
′), outputting f(x0, x1)

(4) Use r0
′ as randomness and arbitrary x1

′ as input
(5) Output view (x0, r0

′ , simulated transcript)

ALGORITHM 5: Simulator sim0.

(1) Generate random coins r0
′ for PRF evaluation

(2) Generate SETUP message to FSS functionality F

(3) Run protocol execution locally on inputs (x0, x1
′), outputting f(x0, x1)

(4) Use r0
′ as randomness and arbitrary x1

′ as input

ALGORITHM 6: Simulator sim1.

Complexity 9

the number of training samples and the communication
cost. Figure 2 shows that as the number of training samples
increases, both the cost of data and communication grow
roughly linearly. Tis result can be attributed to the secure
two-party decision tree training phase requiring more
multiplication operations to compute the impurity gain with
a more signifcant number of training samples. Secondly, we
explore the impact of varying the maximum tree depth on
the communication overhead. As the well-trained tree tends
towards a complete binary tree, approximately 2h − 1 in-
ternal nodes are constructed for a given depth d. Terefore,
as shown in Figure 3, the communication overhead increases
logarithmically with the tree depth. Tis result is because
deeper trees require more computation and excellent
communication between parties.

Our results show that the communication overhead is
infuenced by critical factors such as the number of training
samples and the maximum tree depth. As such, it is essential
to carefully consider these factors when designing secure
two-party decision tree classifcation systems to ensure
optimal performance while maintaining data privacy. In
conclusion, our study highlights the need for efcient and
secure methods for decision tree classifcation, especially
in situations where data privacy is of utmost importance.

Te study [59] presents an initial GPU-based imple-
mentation of function secret sharing, although further op-
timizations could reduce the memory footprint of
cryptographic keys by approximately 50% to match theo-
retical minimum bounds. Moreover, the marginal divide

between LAN and WAN runtimes intimates that compu-
tational overhead supersedes communication for sufciently
extensive networks. Tus, optimizing GPU-centric calcu-
lations profers the potential to enhance overall efciencies
of inference and training paradigms markedly.

15. Discussion

We have demonstrated the utility of function secret sharing
for private training and evaluation of decision trees.
Compared to related works, our protocols are highly
competitive and achieve negligible failure rates for ML
applications.

Numerous opportunities remain to improve perfor-
mance further and expand the applicability of private ML via
function secret sharing. Running experiments at 16 bit
precision versus 32 bit could be another promising im-
provement, as major ML frameworks now support 16 bit
encoding on CPU. Reducing key sizes, leveraging lower
precision, and GPU optimizations can help overcome
scaling bottlenecks. Testing new model architectures and
data modalities will be essential to gauge general viability.
Overall, there is tremendous promise in employing function
secret sharing primitives to enable practical secure com-
putation for diverse machine learning pipelines.

Moreover, a core technical challenge in applying ho-
momorphic encryption (HE) to secure machine learning is
managing the noise growth inherent in lattice-based cryp-
tosystems. Our scheme introduces randomness into the
ciphertext to ensure security when applying HE. However,
each subsequent homomorphic operation (addition or
multiplication) also accumulates and amplifes this noise.
Excessive noise during HE evaluation inhibits correct de-
cryption and reduces arithmetic fdelity. In the context of
secure decision tree protocols, imprecise calculations may
propagate errors when calculating attribute thresholds and
reduce model accuracy. While multiplication noise worsens
exponentially, even repeated additions can produce
considerable noise.

We employ techniques, including optimized circuitry,
modular design, and regular ciphertext refresh, to suppress
noise. However, some accuracy loss may still occur for deep

Table 2: Te performance of secure two-party decision tree
classifcation.

Epoch Ours Plaintext

Accuracy
5 78.41% 75.13%
10 75.19% 75.56%
15 75.37% 75.94%

Time (h)
5 0.24 0.09
10 0.47 0.17
15 0.73 0.29

0

500

1000

1500

2000

2500

3000

C
om

m
un

ic
at

io
n

(M
B)

800040003000 5000 70006000
Number of training data

Plaintext
Ours

Figure 2: Communication: training data.

54 762 3
Maxium tree depth

0

2500

5000

7500

10000

12500

15000

17500

20000

C
om

m
un

ic
at

io
n

(M
B)

Plaintext
Ours

Figure 3: Communication: tree depth.

10 Complexity

trees and large datasets. We will empirically quantify the
potential degradation in accuracy due to noise in future
work. Analyzing the impact on accurate data will better
reveal the actual impact. If noise-induced inaccuracies prove
unacceptable, an alternative, homomorphic encryption
scheme with slower noise growth is a better choice. How-
ever, these usually require more computational overhead.
Developing robust protocols for large amounts of noise
remains an open problem when applying HE to machine
learning.

Te inherent stochasticity of lattice-based HE afects
model accuracy when noise accumulates across multiple
operations. While this paper mitigates noise growth through
multiple strategies, more empirical analysis is needed to
determine the extent of this problem in practice. Managing
noise persistence remains an active research challenge in
building efcient and accurate protocols for the secure
computation of encrypted data. We have demonstrated the
utility of function secret sharing in private training and
evaluation of decision trees. Our protocol is highly com-
petitive compared to related work and sufers a negligible
failure rate for machine learning applications.

16. Conclusions

In conclusion, our research has introduced a two-party
secure decision tree classifcation protocol that ofers low
communication and computational costs and minimal client
interaction. Our approach enhances the practical imple-
mentation of the solution by improving the multiplication
depth of the tree evaluation circuit and the efciency of the
underlying general FSS solution. Notably, we have utilized
a unique approach of adding relatively small amounts of
blurring noise by each participant in threshold decryption,
resulting in a considerable reduction in the overall com-
putational cost and ciphertext size of FSS. Together, our
contributions have enabled the application of our protocol
with a lower computational overhead while maintaining
a higher level of security.

Data Availability

No underlying data were collected or produced in this study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China under grant no. 12171114.

References

[1] H. W. Ian, E. F. Rank, and M. Hall, “Data mining: practical
machine learning tools and techniques,” Annals of Physics,
vol. 54, no. 2, 2011.

[2] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion
attacks that exploit confdence information and basic

countermeasures,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pp. 1322–1333, Denver, CO, USA, October 2015.

[3] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction apis,” in
Proceedings of the USENIX security symposium, vol. 16,
pp. 601–618, Santa Clara, CA, USA, August 2016.

[4] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A
methodology for formalizing model-inversion attacks,” in
Proceedings of the 2016 IEEE 29th Computer Security Foun-
dations Symposium (CSF), pp. 355–370, IEEE, Lisbon, Por-
tugal, June 2016.

[5] R. Cramer, I. Damgård, and B. Jesper, “Multiparty compu-
tation from threshold homomorphic encryption,” in Ad-
vances in Cryptology—EUROCRYPT 2001: International
Conference on the Teory and Application of Cryptographic
Techniques Innsbruck, vol. 20, pp. 280–300, Springer, Berlin,
Germany, 2001.

[6] O. Goldreich, Foundations of Cryptography: Volume 2, Basic
Applications, Cambridge University Press, Cambridge, UK,
2009.

[7] A. C. Yao, “Protocols for secure computations,” in Proceedings
of the 23rd Annual Symposium on Foundations of Computer
Science (SFCS 1982), pp. 160–164, IEEE, Washington, DC,
USA, November 1982.

[8] L. Chang, S. Xiao, K. Nayak, Y. Huang, and E. Shi, “Oblivm:
a programming framework for secure computation,” in
Proceedings of the 2015 IEEE Symposium on Security and
Privacy, pp. 359–376, IEEE,Washington, DC, USA,May 2015.

[9] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, and
H. Veith, “Cbmc-gc: an ansi c compiler for secure two-party
computations æ,” in Compiler Construction: 23rd In-
ternational Conference, CC 2014, Held as Part of the European
Joint Conferences on Teory and Practice of Software, ETAPS
2014,vol. 8409, p. 244, Springer, Berlin, Germany, 2014.

[10] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi,
and T. Schneider, “Secure evaluation of private linear
branching programs with medical applications,” in Pro-
ceedings of the Computer Security–ESORICS 2009: 14th Eu-
ropean Symposium on Research in Computer Security, vol. 14,
pp. 424–439, SaintMalo, France, September 2009.

[11] R. Bost, A. P. Raluca, S. Tu, and S. Goldwasser, Machine
Learning Classifcation over Encrypted Data, Cryptology
ePrint Archive, London, UK, 2014.

[12] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel,
“Privacy-preserving remote diagnostics,” in Proceedings of the
14th ACM Conference on Computer and Communications
Security, pp. 498–507, Lisbon, Portugal, October 2007.

[13] M. Joye and F. Salehi, “Private yet efcient decision tree
evaluation,” in Proceedings of the Data and Applications Se-
curity and Privacy XXXII: 32nd Annual IFIP WG 11.3 Con-
ference, DBSec 2018, vol. 32, pp. 243–259, Bergamo, Italy, July
2018.

[14] Á. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schneider,
“Sok: modular and efcient private decision tree evaluation,”
Proceedings on Privacy Enhancing Technologies, vol. 2019,
no. 2, pp. 187–208, 2019.

[15] R. K. H. Tai, J. P. K.Ma, Y. Zhao, and S.M. Sherman, “Privacy-
preserving decision trees evaluation via linear functions,” in
Proceedings of the Computer Security– ESORICS 2017: 22nd
European Symposium on Research in Computer Security,
vol. 22, pp. 494–512, Oslo, Norway, September 2017.

[16] A. Tueno, F. Kerschbaum, and S. Katzenbeisser, “Private
evaluation of decision trees using sublinear cost,” Proceedings

Complexity 11

on Privacy Enhancing Technologies, vol. 2019, no. 1,
pp. 266–286, 2019.

[17] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, Privately
Evaluating Decision Trees and Random Forests, Cryptology
ePrint Archive, London, UK, 2015.

[18] G. Bhase and R. S. Mangrulkar, “An access control system
using visual cryptography and steganography,” in Proceedings
of the 2018 14th international conference on information
processing (ICINPRO), pp. 1–6, Bengaluru, India, December
2018.

[19] P. V. Chavan and R. S. Mangrulkar, “Encrypting informative
color image using color visual cryptography,” in Proceedings
of the 2010 3rd International Conference on Emerging Trends
in Engineering and Technology, pp. 277–281, Goa, India,
November 2010.

[20] M. De Cock, R. Dowsley, C. Horst et al., “Efcient and private
scoring of decision trees, support vector machines and logistic
regression models based on pre-computation,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 16, no. 2,
pp. 217–230, 2019.

[21] W.-J. Lu, J.-J. Zhou, and J. Sakuma, “Noninteractive and
output expressive private comparison from homomorphic
encryption,” in Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, pp. 67–74, Incheon,
Korea, June 2018.

[22] C. Chen, J. Zhou, L. Wang et al., “When homomorphic
encryption marries secret sharing: secure large-scale sparse
logistic regression and applications in risk control,” in Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 2652–2662, Washington, DC,
USA, August 2021.

[23] P. Mohassel and Y. Zhang, “Secureml: a system for scalable
privacy-preserving machine learning,” in Proceedings of the
2017 IEEE symposium on security and privacy (SP), pp. 19–38,
IEEE, San Jose, CA, USA, May 2017.

[24] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori,
T. Schneider, and F. K. Chameleon, “A hybrid secure com-
putation framework for machine learning applications,” in
Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pp. 707–721, Incheon, Korea,
October 2018.

[25] N. A. Mohammad and S. Kana, “Private evaluation of a de-
cision tree based on secret sharing,” in International Con-
ference on Information Security and Cryptology, pp. 171–194,
Springer, Berlin, Germany, 2022.

[26] G.Takur, S. Nayak, and R. Mangrulkar, “Maldexa-a malware
detection system using xgboost on amazon web services,” in
Proceedings of the 2021 International Conference on Innovative
Computing, Intelligent Communication and Smart Electrical
Systems (ICSES), pp. 1–10, IEEE, Delhi, India, October 2021.

[27] E. Boyle, N. Gilboa, and I. Yuval, “Function secret sharing,” in
Proceedings of the Advances in Cryptology-EUROCRYPT 2015:
34th Annual International Conference on the Teory and
Applications of Cryptographic Techniques, pp. 337–367, Sofa,
Bulgaria, April 2015.

[28] E. Boyle, N. Gilboa, and I. Yuval, “Secure computation with
pre-processing via function secret sharing,” in Proceedings of
the Teory of Cryptography: 17th International Conference,
TCC 2019, vol. 17, pp. 341–371, Nuremberg, Germany, De-
cember 2019.

[29] V. Kolesnikov and T. Schneider, “A practical universal circuit
construction and secure evaluation of private functions,” in
Financial Cryptography, vol. 5143, pp. 83–97, Springer, Berlin,
Germany, 2008.

[30] P. Mohassel, S. Sadeghian, and N. P. Smart, “Actively secure
private function evaluation,” in Proceedings of the Advances in
Cryptology–ASIACRYPT 2014: 20th International Conference
on the Teory and Application of Cryptology and Information
Security, pp. 486–505, Kaoshiung, Taiwan, December 2014.

[31] B. Michael, G. Shaf, andW. Avi, “Completeness theorems for
non-cryptographic fault-tolerant distributed computation,”
in Providing Sound Foundations for Cryptography: On the
Work of Shaf Goldwasser and Silvio Micali, pp. 351–371,
Springer, Berlin, Germany, 2019.

[32] D. Chaum, C. Claude, and I. Damgard, “Multiparty un-
conditionally secure protocols,” in Proceedings of the twentieth
annual ACM symposium on Teory of computing, pp. 11–19,
Kaoshiung, Taiwan, February 1988.

[33] M. Keller, E. Orsini, and P. Scholl, “Mascot: faster malicious
arithmetic secure computation with oblivious transfer,” in
Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 830–842, Vienna,
Austria, October 2016.

[34] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in
Proceedings of the Advances in Cryptology– CRYPTO 2012:
32nd Annual Cryptology Conference, pp. 643–662, Santa
Barbara, CA, USA, August 2012.

[35] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and
N. P. Smart, “Practical covertly secure mpc for dishonest
majority–or: breaking the spdz limits,” in Proceedings of the
Computer Security–ESORICS 2013: 18th European Symposium
on Research in Computer Security, vol. 18, pp. 1–18, Egham,
UK, September 2013.

[36] I. Damgård, M. Geisler, and M. Krøigaard, “Efcient and
secure comparison for on-line auctions,” in Proceedings of the
Information Security and Privacy: 12th Australasian Confer-
ence, vol. 12, pp. 416–430, Townsville, Australia, July 2007.

[37] D. Beaver, “Commodity-based cryptography,” in Proceedings
of the 29th Annual ACM Symposium onTeory of Computing,
pp. 446–455, New York, NY, USA, December 1997.

[38] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled)
fully homomorphic encryption without bootstrapping,” ACM
Transactions on Computation Teory (TOCT), vol. 6, no. 3,
pp. 1–36, 2014.

[39] A. Cutler, D. R. Cutler, and J. R. Stevens, Random forests.
Ensemble machine learning: methods and applications,
Springer, Berlin, Germany, 2012.

[40] E. Boyle, N. Chandran, N. Gilboa et al., “Function secret
sharing for mixed-mode and fxed-point secure computa-
tion,” in Proceedings of the Advances in Cryptology–EUR-
OCRYPT 2021: 40th Annual International Conference on the
Teory and Applications of Cryptographic Techniques,
pp. 871–900, Zagreb, Croatia, October 2021.

[41] T. Ryfel, P. Toloniat, D. Pointcheval, and F. Bach, “Ariann:
low-interaction privacypreserving deep learning via function
secret sharing,” Proceedings on Privacy Enhancing Technolo-
gies, vol. 2022, no. 1, pp. 291–316, 2022.

[42] H. Chen, H. Li, Y. Wang, M. Hao, G. Xu, and T. Zhang,
“Privdt: an efcient two-party cryptographic framework for
vertical decision trees,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 1006–1021, 2023.

[43] C.-C. Y. Andrew, “How to generate and exchange secrets,” in
Proceedings of the 27th Annual Symposium on Foundations of
Computer Science (SFCS 1986), pp. 162–167,Washington, DC,
USA, October 1986.

12 Complexity

[44] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct
random functions,” Journal of the ACM, vol. 33, no. 4,
pp. 792–807, 1986.

[45] J. Doerner and A. Shelat, “Scaling oram for secure compu-
tation,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 523–535,
Dallas, TX, USA, June 2017.

[46] A. Tueno, Y. Boev, and F. Kerschbaum, “Non-interactive
private decision tree evaluation,” in Proceedings of the Data
and Applications Security and Privacy XXXIV: 34th Annual
IFIP WG 11.3 Conference, DB-Sec 2020, vol. 34, pp. 174–194,
Regensburg, Germany, June 2020.

[47] M. C. Martin, J. D. HaoChen, S. Goldwasser et al., “Homo-
morphic encryption standard,” Protecting privacy through
homomorphic encryption, Cryptology ePrint Archive, vol. 62,
p. 31, London, UK, 2021.

[48] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene,
“Faster fully homomorphic encryption: bootstrapping in less
than 0.1 seconds,” in Proceedings of the Advances in Cryp-
tology–ASIACRYPT 2016: 22nd International Conference on
the Teory and Application of Cryptology and Information
Security, pp. 3–33, Hanoi, Vietnam, December 2016.

[49] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“Faster packed homomorphic operations and efcient circuit
bootstrapping for tfhe,” in Proceedings of the Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference
on the Teory and Applications of Cryptology and Information
Security, pp. 377–408, Hong Kong, China, December 2017.

[50] I. Chillotti, N. Gama, M. Georgieva, andM. Izabachène, “Tfhe:
fast fully homomorphic encryption over the torus,” Journal of
Cryptology, vol. 33, no. 1, pp. 34–91, 2020.

[51] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, Tfhe:
Fast Fully Homomorphic Encryption Library, Springer, Berlin,
Germany, 2019.

[52] N. P. Smart and F. Vercauteren, “Fully homomorphic simd
operations,” Designs, Codes and Cryptography, vol. 71, no. 1,
pp. 57–81, 2014.

[53] E. Boyle, N. Gilboa, and I. Yuval, “Function secret sharing:
improvements and extensions,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, pp. 1292–1303, Vienna, Austria, October 2016.

[54] Y. LeCun, L. Bottou, Y. Bengio, and P. Hafner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[55] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and
S. Tripathi, “Ezpc: programmable and efcient secure two-
party computation for machine learning,” in Proceedings of
the 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 496–511, Stockholm, Sweden, June 2019.

[56] E. A. Young, J. Tim, and R. S. Engelschall, “Openssl. World
wide web,” 2001, http://www.openssl.org/.

[57] E. Cronin, S. Jamin, T. Malkin, and P. McDaniel, “On the
performance, feasibility, and use of forward-secure signa-
tures,” in Proceedings of the 10th ACM Conference on Com-
puter and Communications Security, pp. 131–144,
Washington, DC, USA, October 2003.

[58] S. Adams, C. Choudhary, M. De Cock et al., “Privacypre-
serving training of tree ensembles over continuous data,”
Proceedings on Privacy Enhancing Technologies, vol. 2022,
no. 2, pp. 205–226, 2022.

[59] T. Ryfel, P. Toloniat, D. Pointcheval, and F. Bach, “Ariann:
low-interaction privacypreserving deep learning via function
secret sharing,” 2020, https://arxiv.org/abs/2006.04593.

Complexity 13

http://www.openssl.org/
https://arxiv.org/abs/2006.04593

