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Transition or metastasis is a main characteristic of tumor developmental processes. However, the mechanism behind the
transition and what costs involved are obscure when the tumor is exposed to a colored microscopic environment. Here,
focusing on the regulatory role of noises from its strength and correlation time on phenotypic diversity of tumors, we show
that (1) when the noise strength (NS) is fxed, extending the autocorrelation time (AT) of multiplicative noise can regulate
bidirectionally the tumor phenotype, i.e., it can promote the difusion also contribute to killing cancer cells simultaneously;
(2) AT of additive noise can reduce the occurrence probability of cancer cells, but the NS can increase this probability; (3)
the efect of the cross-correlated strength (CS) on cell phenotype is twofold, i.e., increasing CS may urge the mean frst
passage time (MFPT) of switching to the tumor state to have the minimum and maximum values but the cross-correlation
time (CT) always makes the MFPT to have a minimum value. In addition, NS can make MFPT to have a peak. Moreover, by
reconstructing the reaction network from the mesoscopic scale, we further show that AT of multiplicative noise can
increase energy consumption, and there exists a trade-of between NS and AT of additive noise. We also show that the
energy consumption is monotonically decreasing with increasing the CT but the CS can amplify the diference of this
dependence. Te overall analysis implies that tumor cells would make use of external noise to survive in fuctuating
environments.

1. Introduction

Transition or phenotypic switching is a remarkable char-
acteristic of tumors. After undergoing multistep processes
so-called invasion-metastasis cascade, the tumor achieves
metastasis and propagates from primary tumor cells to
distant organs [1–4]. Primary tumor cells frst locally invade
normal tissues surrounding them and then will proliferate
and colonize at a distant site by intravasation into and
extravasation from the systemic circulation; here, the met-
astatic cells also depend on an often-foreign cell microen-
vironment [5–7], in which environmental factors often play
critical roles in the sense of stochastic bifurcation by

regulating each biochemical step of the tumor cell devel-
opment, including mediating local invasion, cooperating
some competing endogenous, and activation of the signal
pathway. Much progress has been made in understanding
the relationship between tumor transition and environ-
mental white fuctuations (a classical framework of ther-
modynamic fuctuations or Brownian motions [8–11]).
However, the correlation between internal and external
stochastic fuctuations has a substantial time comparable to
the cell cycle (these fuctuations are always called “colored”)
[12–15], and their interplay interferes with classical ther-
modynamic equilibrium. Despite this general description,
how the process of tumor transition and metastasis is
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achieved and how much energy it costs are all elusive,
moreover, the roles of regulation from colored noise sources
in tumor development, including the interactions of AT/CT
(auto/cross-correlation time) of colored noises, remain not
fully understood.

In general, cell fate and decision are determined by
cellular phenotype defned as the number of peaks in the
steady distribution of attractors in a phase plane, and tumor
cell development will switch between these attractors in line
with stochastic bifurcation regulated by the fuctuation
microenvironment [16, 17]. In the landscape of tumor de-
velopment, the attractor may exist in a discrete form in
space, and the tumor cell fate depends on the dwell time of
each attractor, which is a main source of stochasticity or
noise [18–20]. Te classical thermodynamic balance follows
the classical Markov assumption and ubiquitous principle;
that is, the dwell time of the system in every attractor follows
exponential distribution and has no memory [21–24].
However, the results of recent biological experiments on
cancer metastasis have indicated that the long noncoding
RNA (lncRNA)MALAT1 regulates tumor diferentiation (as
evidenced by cystic and encapsulated tumor appearance) by
localizing to nuclear speckles and altering transcription
based on initial descriptions [25–27]. Te fuctuations in the
abundance of MALAT1 form an external signal to regulate
the system dwell time into a nonexponential distribution
and then alter the promoter activity, resulting in the memory
(self-autocorrelation). Tis implies that the gene expression
noise is in nature colored (i.e., the noise has nonzero cor-
relation time) [26, 28]. From the perspective of biological
function, Shahrezaei and Swain verifed that the memory
from colored noise can improve response sensitivity, by
amplifying stochasticity in coherent feedforward loops while
attenuating noise in incoherent feedforward loops [22]. Tis
means that the AT/CTmay act as a “fne-tuner” of complex
cellular systems to regulate cell phenotype and transition.
Essentially, the colored fuctuation environment breaks the
Markov assumption, leading to a non-Markovian jump
process. Deciphering efectively how the AT/CT regulates
cell phenotype switching is an important and challenging
task [29–31]. Fortunately, Novikov’s theorem provides an
excellent method to transform a complex system embedding
in a coloredmicroscopic environment into theMarkov jump
process to address the efect of the AT/CTon cell phenotypic
diversity, which is more directly efective than the stationary
generalized chemical-master equation (sgCME) [30, 32–34].
Hence, it is signifcant to study the efect of colored noise
(focusing on AT/CTregulation from the time viewpoint) on
tumor cell transition.

Essentially, the existence of AT/CT may induce the
change of dwell time of every attractor and render the jump
process between distinct attractors to produce the mo-
lecular memory, breaking the detailed balance in tumor
development. Tese transitions between metastable states
need to dissipate the free energy [35–39]. Here, free energy
is a physical concept described as the work done by the
transport of a bead from one well to the other and back,
measured by entropy production that illustrates the irre-
versibility of the jump stochastic process according to

Landauer’s principle [40–43]. Te decomposition of cir-
cumfuence is a key step for calculating entropy pro-
duction. However, in the tumor development process, AT/
CT of fuctuations originating from the abundance of
MALAT1 may have a nonzero time lag in every attractor,
rendering cycle fow decomposition difcult. Here, in-
vestigating the equivalence from the mesoscopic scale, we
propose the approximation algorithm to estimate the
equivalent switching rate among the distinct attractors by
employing the technology of a linear mapping approxi-
mation [40, 41, 44, 45]. Te advantage of this algorithm is
that we can yield directly the probability net fux of every
attractor but also obtain the entropy production rate for
a given complex multistable system [44, 45]. Terefore,
clarifying how much free energy is consumed from the
viewpoint of nonequilibrium and emphasizing the regu-
lated function of AT/CT for achieving tumor cell transition
and metastasis are important for dynamic intervention in
tumor development.

Inspired by the signifcant experiments on the lncRNA
MALAT1in lung cancer metastasis [26, 46], we introduce
a mechanistic model with a colored microenvironment
due to fuctuations in the abundance of MALAT1 to
emphasize the regulation of AT/CT on tumor transition
and metastasis. Moreover, we mainly focus on the
mechanism of how to achieve the biological function
(phase switching) and what cost is involved, beyond the
previous reports only on the stochastic resonance [47, 48].
According to the dynamic analysis in multitime scales, we
could uncover that the AT/CT and NS/CS can regulate
tumor cell dynamic evolution process determined largely
by the types of noise. For the landscape of tumor devel-
opment, amplifying the NS of additive noise can suppress
tumor cell metastasis, while enhancing the AT of multi-
plicative noise may have a dual function, that is, it can not
only induce the tumor cell switching but also promote the
killing of cancer cells; Te biological function is achieved
by mediating the stochastic bistability regime triggered by
the NS and AT.Te CS of the noises can also have a double
function, depending on positive or negative values, i.e.,
enhancing the CS (from a negative correlation to a positive
correlation) can induce the MFPTfrom the primary tumor
to the malignant tumor to have a minimum value and
a maximum value, but the CTalways has a minimum value.
More importantly, the development state of tumor cells
jumping between distinct attractors needs to dissipate
more energy with increasing the CT in a multiplicative
environment, and there exists a trade-of by regulating NS
and AT in the additive noisy environment. In addition, the
energy consumption is monotonically decreasing with
increasing CT, and the CS can promote this dependence
relationship.

Tis, then, signal sensing is the most ubiquitous process
in tumor cell development, the question of what mechanism
is behind the complex regulation, including how to induce
the phenotypic switching in a noisy environment and what
cost to consume, is all not previously known. Focusing on
these hotspots is important for elucidating the mechanism of
tumor cell metastasis and dynamic evolution.
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2. Model and Methods

2.1. Model Description. Here, considering the attack of
immune cytotoxic cells, we model the growth process of
cancerous tissue, to focus on the NS and AT/CT of the
colored stochastic fuctuations, on tumor cell development.
It is known that, due to the existence of the immune T
lymphocytes (efector cells), the development of reducing
tumor cells (target cells) may be simulated as a biochemical
process including the following reactions [49, 50]:

Normal Cells⟶A X

X⟶λ 2X

X + E0⟶
k1

E⟶
k2

E0 + P

P⟶
k3 ϕ,

(1)

where X denotes the tumor cell that proliferates spon-
taneously at a rate λ, and their local interactions with
cytotoxic cells E0 (efector cells) are illustrated by a ki-
netics parameter k1, implying the rate of binding of im-
mune cells to the complex E that subsequently dissociates
at a rate k2, refer to Figure 1. Also, this dissociation results
in a product P that represents dead or nonreplicating
tumor cells. k3 is the degradation rate of P and A is the
normal cell carnifcation coefcient. Tis simple motif,
which can be used to model many motifs in response to
various possible cell microenvironments [51–53], has been
extensively studied.

To introduce noisy sources in the above tumor-
growth model, we simply introduce the background of
the small molecule MALAT1 of the lncRNAs, the frst one
found in cancer metastasis. Tis small molecule is the
main biomarker cell in lung cancer metastases [2, 25] and
can regulate tumor diferentiation (e.g., the development
of cystic and encapsulated tumor appearance) by lo-
calizing to nuclear speckles. Recent experimental results
have indicated that in the mouse mammary tumor virus-
(MMTV-) polyomavirus middle T antigen (PyMT)
model of human luminal B breast cancer, promoter
deletion or ASO-mediated knock-down of MALAT1 can
result in the decrease of lung metastases and the elevation
of E-cadherin (supporting an epithelial phenotype).
Most cancer cells are likely kept in blood vessels com-
pared with control cells, implying that the cancer cells do
not invade distal lung sites form micrometastases, i.e.,
inefective colonization following MALAT1 knockout
[7, 46], and also implying that the tumor cell transition is
indeed due to the colored noise from fuctuations in the
MALAT1 abundance (specifcally, these fuctuations are
due to lncRNA MALAT1 localizing to nuclear speckles
and may be modeled as dichotomous noise that has been
proved to have some memory [54, 55]). Here, we try to
answer the traditional issues of whether noise is harmful
or benefcial for cell development, emphasizing how AT/
CT and NS afect the phenotype shift and metastasis of
tumor cells.

2.2. Mathematical Models. Without loss of generality, the
number of immune cells satisfes the conservative condition:
E0 + E � E1. Ten, the tumor development described by
equation (1) is essential in a series of ordinary diferential
equations (ODEs) that demonstrates the transient evolution
process of each species (for more details, refer to
Appendix A).

dX

dt
� A(N − X) + λX − k1E0X,

dE0

dt
� − k1E0X + k2 E1 − E0( 􏼁,

dP

dt
� k2 E1 − E0( 􏼁 − k3P,

(2)

where N stands for the maximum number of normal cells,
the resulting kinetics can be dimensionless directly by setting
λt⟶ t, k1X/k2⟶ x, k1P/k2⟶ z, E0/E1⟶ y, k3/λ �

a, k2/k1 � θ, k1E1/λ � β, λX(1 − θX)/N − X � A, k2/λ � c,
and equation (2) has the following equivalent forms:

dx

dt
� x(1 − θx) − βxy,

dy

dt
� c(1 − y − xy),

dz

dt
� β(1 − y) − az.

(3)

In general, the parameter β> 1 holds, meaning that the
product of the rate of efector cell binding to cancer cells, and
gives a general assumption that the total number of con-
jugate cells per unit volume is greater than the rate of cancer
cell proliferation. Terefore, we can divide the whole tumor
cell development network into three types of motif: rec-
ognition, apoptosis procedure, and apoptosis [1, 3, 4, 56],
meaning there may be a huge diference in time scale be-
tween the three processes.We also can treat the system as the
coupled of fast and slow subsystems [42, 57–61]. According
to the method of separating time scales and quasi-steady-
state approximation [31], we can yield a steady probability
distribution for biomarker protein (Figure 1(a)). Here, we
emphasize mainly the concentration of the tumor cells. Let
the second and third of (3) be equal to zero, we can easily get
the expressions of steady state y, z in terms of x. If these
expressions are substituted into the slow equation, then we
yield the following reduced system (for more details, refer to
Appendix A):

dx

dt
� x(1 − θx) − β

x

x + 1
≙f(x), (4)

where x represents the actual concentration of the tumor
cell, β is the immune rate, and θ is the constant parameter.
Obviously, this motif, coupling a positive and negative
feedback loop, would have two steady states depending on
diferent parameter values. In addition, the deterministic
potential function defned by the deterministic force f(x) in
(4) is given by
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V(x) � − 􏽚 f(x)dx

� −
x
2

2
+
θx

3

3
+ βx − β ln(x + 1),

(5)

from which we obtain two steady attractors x1 � 0 (the
extinction state of the tumor) and

x2 � xs � (1 − θ +

������������

(1 + θ)2 − 4βθ
􏽱

)/2θ> 0 (the stable state
of the tumor), and one unstable steady state
xu � (1 − θ −

������������

(1 + θ)2 − 4βθ
􏽱

)/2θ.
Of note, the system parameters are set according to the

recent experiment on lung cancer evolution [26], and the
values are listed in the note of numerical results. Using these
data, we can show that there are two stable attractors in the
given system and its potential function has double wells
(Figure 2). Tese two stable steady states correspond, re-
spectively, to the tumor cell extinction state (x1 � 0) and the
stable tumor state (x2 � 7.2659), and the unstable state

1.7341. Moreover, the system has a bistable region in the
space of parameters.

Next, we introduce a stochastic model. Of note, the
stochastic environment originating from the fuctuations in
the MALAT1 will directly infuence the tumor number and
alter the tumor’s immune rate, being the main source of
extrinsic noise. Also, this extrinsic noise may be colored
noise for the reasons stated above. Te fuctuations afecting
the immune rate β result in multidimensional noises, that is,
additive noise η(t) and multiplicative noise dx/dt �

x(1 − θx) − βx/x + 1 − x/x + 1ξ(t) + η(t), which can be
viewed as the capability for expansionary transfer of the
tumor cells. Te consideration of these factors combined
with deterministic equation (4) leads to the more complex
forms as follows:

dx

dt
� x(1 − θx) − β

x

x + 1
−

x

x + 1
ξ(t) + η(t). (6)

In equation (6), two noises are all assumed to be Gauss-
colored noises and nonzero autocorrelation, that is,

tumor tumor

Detachment

Binding

Tumor complex

immune cytotoxic
cellimmune cytotoxic

cell

Sequestration of
miRNA or protein

miRNA

miRNA target

Protein

Sequestration of
miRNA or protein

miRNA

miRNA target

Protein

(a)

Slow processes

tumor cells proliferate

Fast processes

dissociationbinding

(b)

Figure 1:Te schematic diagram of tumor development in a colored noise environment. (a) Tumor cells’ interaction with cytotoxic cells and
the formation of the proliferation complex are regulated by the lncRNAs throughout the expression process; (b) separating the tumor cell
progress into the fast and slow processes (reaction rates not shown).
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〈ξ(t)〉 � 〈η(t)〉 � 0,

c11(t, t + ∆t) � 〈ξ(t)ξ(t + ∆t)〉 �
D

τ1
exp −

|∆t|

τ1
􏼠 􏼡,

c22(t, t + ∆t) � 〈η(t)η(t + ∆t)〉 �
α
τ2

exp −
|∆t|

τ2
􏼠 􏼡,

c12(t, t + ∆t) � c21(t, t + ∆t) � 〈ξ(t)η(t + ∆t)〉

� 〈η(t)ξ(t + ∆t)〉 �
λDα
τ3

exp −
|∆t|

τ3
􏼠 􏼡.

(7)

Here, symbol 〈·〉 represents the mean or expectation, ∆t

is the time window, τ1, τ2 are AT, D, α are the NS, and λ, τ3
are CS and CT, of the corresponding noise process.

Note that equation (6) is used to describe the tumor
development as shown in Figure 1. Te existence of colored
noise embedded in tumor development impels the dwell
time in each attractor to drift from the classical Markov
assumption; that is, it is impossible to obtain directly the
stationary probability distribution by the two types of the
classical stochastic integral. Obviously, the dwell time in
each attractor of nonexponential distribution means that the
gene expression must have some so-called molecular
memory [26, 28, 30–32]. In particular, if τi⟶ 0, the colored
noise degenerates directly into the Gaussian white noise, and
we can solve the above equation by the Ito stochastic in-
tegral. In fact, analytical results were obtained for similar

cases [31, 62–64]. Here, we investigate mainly the biological
function of colored noise, i.e., the efects of this noise on
phenotypic transition and stability of tumor cells.

3. Main Results

3.1. Analytical Results: Te Steady Distribution and Its Peaks.
Generally, a cell’s phenotype may be partly refected by the
number of peaks and their steep degrees in a stationary
probability distribution. Considering the infuence of the
noisy environment on tumor cell development, we employ
Novikov’s theorem [65, 66] to transform the non-Markov
process into the approximation Fokker–Planck equation
(aFPE) to emphasize the regulation of AT on tumor phe-
notype [65, 66]. According to equations (6) and (7), we can
derive an aFPE (refer to Appendix B for derivation).

dx
dt

x1 xu
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-0.5

0

0.5

1

630 9
x
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xux1 x2

0
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V
 (x

)

1280 4
x

(b)

Figure 2: Te steady-state solution (xi) of tumor cell development (a) and the potential function (b). Te parameters are from the
experiment on lung cancer [26], and θ � 0.1 s-1copy-1 and β � 2.26 s-1copy-1. Here, x1 � 0 nm is the extinction state of the tumor cell,
x2 � 7.2659 nm represents the tumor state, and xu � 1.7341 nm is the transient state.
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z

zt
P(x, t) � −

z

zt
x(1 − θx) − β

x

x + 1
􏼔 􏼕P(x, t)

+
D

1 − τ1 f
′

xs( 􏼁 − f xs( 􏼁g1′ xs( 􏼁/g1 xs( 􏼁􏼔 􏼕

z

zx
g1(x)

z

zx
g1(x)P(x, t)

+
λ

���
Dα

√

1 − τ3 f
′

xs( 􏼁 − f xs( 􏼁g2′ xs( 􏼁/g2 xs( 􏼁􏼔 􏼕

z

zx
g1(x)

z

zx
g2(x) P(x, t)

+
α

1 − τ2 f
′

xs( 􏼁 − f xs( 􏼁g2′ xs( 􏼁/g2 xs( 􏼁􏼔 􏼕

z

zx
g2(x)

z

zx
g2(x)P(x, t)

+
λ

���
Dα

√

1 − τ3 f
′

xs( 􏼁 − f xs( 􏼁g1′ xs( 􏼁/g1 xs( 􏼁􏼔 􏼕

z

zx
g2(x)

z

zx
g1(x) P(x, t),

(8)

where g1(x) � − x/x + 1 and g2(x) � 1; f(x) � x(1 −

θx) − βx/x + 1, f′(xs) � f′(x)|x�xs
denotes the derivation

of force at the attractor xs, and it must satisfy the inequality
1 − τi[f′(xs) − f(xs)gj

′(xs)/gj(xs)]> 0 (i, j� 1, 2, 3) that
limits the ranges of the correlation times, and

f xs( 􏼁 � xs 1 − θxs( 􏼁 − β
xs

xs + 1
,

f
′

xs( 􏼁 � 1 − 2θxs( 􏼁 − β
1

xs + 1( 􏼁
2.

(9)

Equation (8) can be rewritten as

zP(x, t)

zt
� −

z

zx
A(x)P(x, t) +

z
2

zx
2 B(x)P(x, t), (10)

where

A(x) � x(1 − θx) − β
x

x + 1
+

D

1 − τ1C1

x

(x + 1)
3

− λ
���
Dα

√
C3

1
2(x + 1)

2,

(11)

B(x) �
D

1 − τ1C1

x

x + 1
􏼒 􏼓

2
− λ

���
Dα

√
C3

x

x + 1
+

α
1 − τ2C2

,

(12)

with

C1 � f
′

xs( 􏼁 −
f xs( 􏼁

xs xs + 1( 􏼁
,

C2 � f
′

xs( 􏼁,

C3 �
1

1 − τ3C1
+

1
1 − τ3C2

.

(13)

According to equations (10)–(13), the steady distribution
Pst(x) satisfying condition λ< 2/

������������������
(1 − τ1C1)(1 − τ2C2)

􏽰
C3

takes the form

Pst(x) �
N

B(x)
exp􏽚

xA x′( )

B x′( )
dx′

�
N

B
1/2

(x)
exp −

U(x)

D
􏼢 􏼣,

(14)

where N is a normalization constant and the stochastic
potential function xu is given by

U(x) � − 􏽚
x x(1 − θx) − β(x/x + 1)

1/1 − τ1C1(x/x + 1)
2

− λ
����
α/D

√
C3(x/x + 1) +(α/D)/1 − τ2C2

dx. (15)

From this equation, we can obtain the following explicit
expression of dPst(x)/dx � 0:
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U(x) �
θ 1 − τ1C1( 􏼁

3m
x
3

+
1 − τ1C1

2m
2θ − 1 −

n

m
θ􏼒 􏼓x

2

−
c1

m
1 − τ1C1( 􏼁x

+
1 − τ1C1

2m
c2 −

n

m
c1􏼒 􏼓ln x

2
+

n

m
x +

R

m

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
2c3 1 − τ1C1( 􏼁

��������
4mR − n

2
􏽰 × arctan

2mx + n
��������
4mR − n

2
􏽰 ,

(16)

where

R �
􏽥α
􏽥D

, 􏽥D �
D

1 − τ1C1
, 􏽥α �

α
1 − τ2C2

,

􏽥λ �

�����������������

1 − τ1C1( 􏼁 1 − τ2C2( 􏼁

􏽱

C3λ,

m � 1 − 􏽥λ
��
R

√
+ R, n � 2R − 􏽥λ

��
R

√
,

c1 � β − 2 + θ −
R

m
θ − 2θ − 1 −

n

m
θ􏼒 􏼓

n

m
,

c2 � β − 1 − 2θ − 1 −
n

m
θ􏼒 􏼓

R

m
,

c3 �
c1

m
R +

n

2m
c2 −

n

m
c1􏼒 􏼓.

(17)

Te stochastic potential given by equation (16) can
provide the information of stability of the corresponding
probability distribution, similar to the case of the potential of
the deterministic system described by equation (5). Here, we
are interested in understanding how colored noise can in-
duce the transition between stationary states. For the de-
terministic system described by equation (4), this induction
can be achieved by analyzing the existence of a critical point
or bifurcation point (xu) and its stability in a given pa-
rameter interval. In the stochastic case, however, the stability
of the steady distribution can be illustrated by the number of
peaks of the corresponding stochastic potential function,
obtained from the equation dPst(x)/dx � 0 [9]. Moreover,
we fnd that the bifurcation condition can also be written as
the following algebraic equation:

x(1 − θx) − β
x

x + 1
−

D

1 − τ1C1

x

(x + 1)
3 +

λ
���
Dα

√

1 − τ3C2

1
(x + 1)

2 � 0.

(18)

3.2. Tumor Phenotypic Diversity from the Interplay of AT/CT
andNS. Te tumor development process is essentially noisy
and exhibits distinct phenotypes. Recently, the results on
lncRNA MALAT1 have indicated that correlation function
AT/CT is changeable, implying that we can use this
changeable AT/CT in tumor development to achieve phe-
notypic diversity [67, 68]. In order to investigate the reg-
ulation efect of colored noise (i.e., D, α, λ, τ1, τ2, and τ3) on

state transition, we analyze the equations of probability
distributions (i.e., equations (10)–(15)). For clarity, we
distinguish three types of cases: (i) the noise is present only
in the immune rate, i.e., only multiplicative noise; (ii) only
additive noise; (iii) two kinds of noisy sources are simul-
taneously present. In Table 1, we present these three cases of
the parameter values.

3.2.1. Efect of Multiplicative Noise on State Transition.
Here, we consider that the correlated Gaussian noise ξ(t)

appears in the immune rate in equation (6), i.e., the cor-
responding stochastic equation takes the form

dx

dt
� x(1 − θx) − [β + ξ(t)]

x

x + 1
. (19)

From this equation, we can show that a small fuctuation
in the immune rate may result in a sudden transition because
of the appearance of multiplicative noise. Fixed control
parameters θ and β, changing the multiplicative noise ξ(t),
may reshape the phenotype of stationary probability dis-
tribution (equation (14)), referring to Figure 3. Tis fgure
demonstrates that the steady distribution Pst(x) that is in the
form of a function of the density of tumor cell x may change
its shape with changing the colored noise environment.
Specifcally, the probability of a stable tumor state (high
state) reduces with increasing AT (the blue to green line),
implying that increasing the ATmay help to kill the cancer
cell. Meanwhile, the probability at extinction state (low state,
i.e., x � 0) falls rapidly. In Figure 3(b), the AT has a similar
but more signifcant efect on the stationary probability
distribution when the NS increases from 0.2 to 0.7. Tis
means that a larger NS can amplify the efect of AT on cell
phenotype. In fact, comparing Figures 3(a) with 3(b), it is
obvious that the probability of the unstable attractor in-
creases gradually with increasing the AT, and the NS can
make this diference more apparent, implying that the AT is
a main factor promoting the tumor cells to difuse and the
NS accelerates the difusion. In a word, the multiplicative
noise may have a dual function in tumor cell development
when the ATand NS change; that is, it can promote directly
tumor cell difusion and also contribute to killing the tumor
cells at the same time.

From equations (18) and (19), we can show that the
extremum values of the steady distribution satisfy the fol-
lowing condition:

x(1 − θx) − β
x

x + 1
−

D

1 − τ1C1

x

(x + 1)
3 � 0. (20)

According to this equation, we plot the extremum of the
stationary probability distribution function as a function of
the immune rate β as shown in Figure 4.

After determining the extrema of the stationary distri-
bution function, we next investigate critical transition (i.e.,
fnd the tipping point at which abrupt state changes in the
tumor cell development), which can be achieved by
changing ATand NS. Figure 4 indicates that the efect of the
NS and AT on the stationary distribution is nearly opposite
[70]. Specifcally, when the AT is fxed at 0.01, increasing the
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Figure 3: Te regulation of the AT and NS as functions of the density of tumor cells on the stationary probability distribution in
a multiplicative noise environment. (a) If the NS is fxed at 0.2, the AT increases from 0.01 to 2; (b) if the NS is fxed at 0.7, the AT increases
from 0.01 to 2. Te circle line represents the stochastic simulation [69]. Te other parameter values are θ � 0.1 s− 1copy− 1 and
β � 2.26 s− 1copy− 1, which satisfy the bistable condition in Figure 2.

Table 1: Parameter values of colored noise correspond to three types of cases: case (i) only multiplicative noise, case (ii) only additive noise,
and case (iii) the mixture of multiplicative noise and additive noise.

Parameters D α λ τ1 τ2 τ3
Case (i) ≠0 �0 �0 ≠0 �0 �0
Case (ii) �0 ≠0 �0 �0 ≠0 �0
Case (iii) ≠0 ≠0 ≠0 ≠0 ≠0 ≠0
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Figure 4: Extrema of the steady distribution of the model (19) subjected to the noise only in the immune rate β, i.e., only multiplicative noise
is considered. (a) For a fxed AT τ1 � 0.01, increasing the NS from 0.2 to 2 to 4 (from red line to green line to blue line); (b) for a fxed NS
D � 2, increasing the ATfrom 0.01 to 1 to 10 (from green line to blue line to red line).Te other parameter value is θ� 0.1 s− 1copy− 1, and the
dashed line denotes an unstable attractor.
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NS from 0.2 to 2 to 4 (referring to Figure 4(a), from red line
to green line to blue line) may broaden the bistable regime
due to changes in the position of the unstable attractor (refer
to the dashed line). Tis would hint that the fact that the
regulation of the NS may be equivalent to that of positive
feedback in the case of gene expression since positive
feedback may induce bistability [30]. However, the way of
phenotype diversity by regulating AT would be diferent.
Figure 4(b) shows that when the NS is fxed at 2, the bistable
regime of the underlying system reduces with increasing the
AT from 0.01 to 1 to 10 (referring to Figure 4(b), from green
line to blue line to red line), implying that the AT may
attenuate the regulation of NS. Terefore, the AT and NS of
colored noise may have a hedge in regulating the bistable
regime of the tumor development system. Comparing
Figures 4(a) with 4(b), it is clear that the high state (tumor
state) and the low state (extinction state) are nearly un-
changed and the zero is always a stable attractor of the
system due to the structure of equation (19). Te unstable
state in tumor development is transient, implying that this
transient state may switch not only to extinction state (low
state) but also to tumor state (high state) in a given level of
probability, depending on the type of noise, and the AT and
NS may mediate the probability of achieving the tumor cell
difusion or vanishing, thus explaining why the multipli-
cative noise has a dual function in tumor cell development.

3.2.2. Efect of Additive Noise on State Transition. In contrast
to the case of multiplicative noise, we canmore directly show
the biological function of additive noise. Keeping the NS
fxed and increasing the AT reduce substantially the prob-
ability of tumor state but increase the probability of ex-
tinction state (Figure 5), implying that the regulation of AT
in an additive noisy environment may inhibit the devel-
opment of tumor cells. However, upon combining
Figures 5(a) with 5(b), it can be observed that the changing
trend of the stationary probability distribution is nearly the
same even if the NS changes from 0.2 (Figure 5(a)) to 0.7
(Figure 5(b)), and the probability of extinction state shows
a larger increase in Figure 5(a) than that is in Figure 5(b),
indicating that when the NS is small, the phenotype of the
system is more sensitive to the AT, and the NSmay attenuate
the efect of the AT.

3.2.3. Joint Efect of Multiplicative and Additive Noise on
State Transition. Here, we analyze the Langevin equation (6)
where multiplicative noise and additive noise are simulta-
neously present, i.e., Case (iii). In this case, we need to
consider the CT λ between multiplicative noise and additive
noise. Tis consideration involves feedback regulation and
nonlinear factor (see equation (6)), i.e., the tumor cell
concentration is chemically coupled to the immune rate β
[7, 46]. Moreover, in lncRNAMALAT1 regulation, the noise
of these two kinds would be not independent, so there would
exist some correlation between them [26]. In fact, the an-
alytic solution for aFPE (equations (10)–(17)) is the function
of CT (τ3) and CS (λ) between the two correlation noises
ξ(t) and η(t), as well as AT (τ1τ2) and NS (D, α) (referring to

the efective drift and difusion terms in aFPE (equations
(10)–(13)). Focusing on the regulation of CT and CS on the
stationary distribution, we plot Figure 6 to decipher how the
phenotypic switching occurs by varying CT and CS.

We observe from Figure 6 that by increasing the CS from
− 0.5 to 0.5, the probability of tumor state increases while the
probability of extinction state reduces to a smaller value if
other parameter values are all fxed, indicating that the CS
may promote the tumor cell expression (tumor state).
Hence, the positive CS means that it positively regulates the
tumor cell expression, but the negative CS means that it
promotes the tumor cell extinction (referring to Figure 6(a));
that is, the CS may be taken as an efective factor controlling
tumor development.

Te efect of the CS on cell phenotype is twofold; that is,
when the multiplicative (ξ(t)) and additive (η(t)) noise is
positively correlated (e.g., λ � 0.2, referring to Figure 6(b))
and the CT increases from 0.01 to 2 (blue to red and then to
green line), the probability of extinction state decreases to
near zero whereas the probability of high expression state
increases. Tis implies that CT is a positive factor in tumor
development since it promotes tumor transition and me-
tastasis. In contrast, the negative correlation of external
noise (i.e., CS< 0) has the opposite efect on tumor cell
development. Figure 6(c) demonstrates that with increasing
the CT, the probability of the tumor state decreases (from
the blue line to the red to the green), but the probability of
the extinction state has a signifcant increase. Combining
Figures 6(b) and 6(c) together indicates that the develop-
ment of tumor cells depends largely on the correlation of
diferent external noise sources. Tis may explain why
diferent therapeutic efects appear in the same immuno-
therapy. In addition, there may exist a trade-of between
regulating CTand CS in tumor development, and it provides
a new way to achieve cell phenotypic diversity in that CS
dynamically regulates the tumor cell phenotype.

3.3. Te Controllability of Mean First Passage Time (MFPT).
Decoding the controllability of MFPT could quantify the
efects of noises on tumor cell metastasis and transition
between alternative attractors in landscape space. Here, we
focus mainly on the regulation of AT/CT on tumor devel-
opment to decipher the biological function of noises.
According to the Krame formula, we can obtain the analytic
expression of MFPT T1,2 � Tx1⟶x2

of the system jumping
from one attractor x1,2 to another attractor x2,1 by using the
steepest descent method [71, 72], that is,

Tx1⟶x2
�

2π
�������������

V″ xu( 􏼁V″ x1( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱 exp
U xu, t( 􏼁 − U x1, t( 􏼁

M
􏼢 􏼣,

(21)

and similarly,

Tx2⟶x1
�

2π
�������������

V″ xu( 􏼁V″ x2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱 exp
U xu, t( 􏼁 − U x2, t( 􏼁

M
􏼢 􏼣,

(22)
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where V denotes the potential function defned by equation
(5) U denotes the stochastic potential function (equation
(16)), M is NS of the corresponding noise, and x1 denotes
the extinction state of tumor cell, while x2 denotes the tumor
state and xu denotes critical point that is also an equilibrium
state for tumor cell development (Figure 2). Tere exist
natural restrictions on the energy barrier height for
changeable parameters (i.e., D, α, λ, τ1, τ2, τ3), that is,
max(D, α)<∆U � |U(xu, t) − U(x1.2, t)|.

Te numeric results of MFPT between the distinct
attractors are given to exhibit the regulation of the interplay
of two noises (see the above three cases). First, we investigate

the efect of a single noise source, i.e., the system is in Case (i)
or in Case (ii), referring to Figure 7, where Figures 7(a) and
7(b) illustrate how increasing AT (τ1) and NS (D) of
multiplicative noise regulatesMFPT. Specifcally, Figure 7(a)
shows that the MFPT is monotonically decreasing with
increasing the AT and NS with the tumor cell transition to
the tumor state (x2) from the extinction state (x1). Also,
Figure 7(b) demonstrates the inverse change tendency, and
from this fgure, we clearly see that the MFPT is mono-
tonically increasing with extending AT and NS (referring to
Figure S1). Meanwhile, the change of the MFPT in an ad-
ditive noisy environment is nearly the same as the
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Figure 5: Te regulation of AT and NS as a function of the density of tumor cells on the stationary probability distribution in an additive
noise environment. (a)Te NS is fxed at α � 0.2, the AT increases from 0.01 to 2; (b) the NS is fxed at α � 0.7, the AT increases from 0.01 to
2. Te circle line represents the stochastic simulation. Te other parameters are the same as in Figure 3.
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multiplicative noise, referring to Figures 7(c) and 7(d).
Terefore, the MFPTcan be viewed as a monotonic function
of the AT and NS, implying that a noisy environment may
promote the state switching from the extinction state to the
tumor state but suppress the inverse process. In other words,
cell canceration is easier than its treatment and would need
enough cost (for example, consumption of energy) to
achieve the treatment. Furthermore, by comparing the
subplots of Figure 7, we can see that the system has a faster
response rate in the multiplicative noise case as shown in
Figures 7(a) and 7(c) than in the additive noise case as shown
in Figures 7(c) and 7(d) due to the diference in steepness of
curves, indicating that the tumor is more sensitive to
multiplicative noise than additive noise or that the multi-
plicative noise environment would more easily induce
tumor cells.

Next, we investigate the efect of two interplaying noisy
sources on the MFPT. For this, consider the system of Case
(iii). It shows that there is a signifcant diference in the
MFPTs between the single noise and Case (iii) (Figure 8).
Specifcally, MFPT illustrating the extinction state to the
tumor state is no longer a monotonic function but exhibits
diferent behaviors, refer to Figures 8(a)–8(d). Figure 8(a)
indicates that the MFPT has a peak and decreases with
decreasing the CS. In fact, if the CS (λ) is fxed, the MFPT is
frst an increasing and then a decreasing function of the NS
(D) (referring to Figures S2(a)–S2(d) for more details), i.e.,
the MFPT increases when the NS (D) is small but MFPT
decreases when the NS (D) is greater than about 0.05. Tis
maybe explains why the CS has double functions on cell
phenotype (referring to Figure 6). However, MFPT is
a monotonic increasing function of the CS (λ) with fxing
the NS (D), meaning that the negative correlation between
two noise sources can be viewed as an efective enhancer for
achieving cell tumorigenesis due to the small MFPT. In
contrast, the positive correlation between the two noise
sources can be viewed as an efective repressor for inhibiting
cell tumor generation due to the increasing MFPT.

Moreover, we consider the interplay between the CS (λ)

and the NS (α). Figure 8 shows that theMFPT has minimum
and maximum values, respectively, when the two noises are
positively correlated (e.g., when λ is approximately equal to
0.5). Furthermore, the minimum value may vanish with
decreasing the CS, referring to Figure 8(c). However, the CT
(τ3) always keeps the minimum value (referring to
Figures 8(b) and 8(d) and Figure S2 wherein more details are
shown), meaning that the time infuencing the duration of
the CT (τ3) is longer than that of infuencing the duration of
the CS (λ). As is well known, the CT is essentially a time lag
between two noisy sources (implying that the process has
memory). Terefore, the above result implies that the
memory efect may persist longer than limited stimuli. Te
combination of Figures 8(a)–8(d) indicates that the MFPT
decreases when the NS (D, α) is large enough, meaning that
the cells are easier to switch to the tumor in a large noisy
environment.

For tumor treatment, we consider the reverse switching
process of the tumor development in the complex noisy
environment, referring to Figures 8(e)–8(h). Note that

because of the interplay of the CS (λ) and the NS (D, α), the
dynamic behavior of the MFPT all depends on the CS (λ);
that is, when the correlation of both noises is positive, the
MFPT is frst an increasing and then a decreasing function of
the NS (D, α), but when the correlation is negative, the
MFPT is always a decreasing function of the NS (D, α)

(referring to Figures 8(e) and 8(g) and Figures S2(e) and
S2(g) wherein more details are provided), meaning that the
tumor development can exhibit diferent dynamic charac-
teristics, which would explain why the stationary probability
distribution has quite diferent change trends regulated by
the CS (Figures 6(b) and 6(c)). Although the absolute value
of the MFPT is less regulated by the NS (α) than by the NS
(D) (referring to Figures 8(e) and 8(g), the duration time of
the peak value is longer and the response is slower than in
the case of additive noise. Te cost of time lag for the un-
derlying system would be fatal to tumor treatment [3, 4].
Moreover, the regulation by the CT may amplify the time
diference, referring to Figures 8(f) and 8(h), which shows
that the curve of the MFPT has a maximum value but the
surface has a smaller curvature and a larger steepness than
the case of additive noise. Terefore, the tumor state
switching from a high state to a low state is more sensitive to
multiplicative noise, but whether this is a reason for treat-
ment needs to be confrmed by clinical tests [3, 53, 73].

3.4. Energy Consumption of Phase Transition Regulated by
AT/CT. To dissect the internal driving mechanism of tumor
transition or metastasis, we further investigate what is the
cost of keeping the tumor stable and whether there is a cost-
beneft relationship for tumor development. Generally,
energy consumption, measured by entropy production rate
(nonnegative value), can directly measure the degree of far
from equilibrium [40, 43]. Te nonequilibrium or irre-
versible character of the stochastic process is in two ways,
that is, by contact with heat baths at distinct temperatures
other than one heat bath or by nonconservative forces
[43, 74]. Here, the aFPE equation of the tumor system is
complex (equation (10)), and the difusive coefcient B(x) is
the function of the position of the particle, also regulated by
NS/CS and AT/CT from the fuctuations in MATLAT1
abundance. Moreover, the fuctuation of colored noise or the
existence of memory induces the system into a non-
Markovian. Te key step of decomposing the fux fow in
distinct attractors for measuring energy consumption is to
become difcult [74, 75]. Terefore, it is necessary to pro-
pose a method of an efective topology network to calculate
the fux fow in each attractor.

Te particle jumping in the phase space is essentially
mesoscopic stochastic if the interval time is enough
small. It is not suitable to use the framework of the
fuctuation-dissipation theorem; here, we directly model
this process in the form of a chemical-master equation
(CME) to calculate the fux cycle for every steady state
[76, 77]. Simply, we can compare the steady distribution
of the aFPE system (equation (14)) with the stationary
solution of the classic two states CME to reconstruct the
biochemical reaction network in mesoscopic time scale.
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In this way, we can obtain an efective topology network
for the tumor development system, and there are at least
three advantages; that is, (i) it grasps the main character
of our system, including switching between two stable
attractors, stochastic gene expression, and some regu-
lators from the environment, to obtain a very simpler

calculating form for measuring energy cost than other
results of entropy production for nonlinear FP equations,
referring to Figure 9; (ii) we can unify four diferent types
of time scales, including the force system, two types of
noises, and their interaction; (iii) we transform the non-
Markovian process into the framework of Markov
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Figure 8:Te regulation of MFPT by the interplay of the CT (CS) andNS. (a–d)Te switching from a lower state (x1) to a highly stable state
(x2), (e–h) a nearly opposite scene. (a, e) Te CS (λ) and NS (D) regulate the MFPT, where parameter values are
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process, and it is possible to quantify the regulation of the
noisy environment.

Without loss of generality, we defne the transition rate
between two stable equilibrium states to be equal to the
reciprocal of MFPTand propose a stochastic system with the
feedback loop, referring to Figure 9(a). Te topological
equivalent structure is illustrated by the following CME,
which is renewed of the system (3) on a mesoscopic scale.

zPoff(m, t)

zt
� σu E

− 1
− I􏼐 􏼑Pon(m, t) − σb(E − I)mPoff(m, t)

+ d(E − I)mPoff(m, t) + ρu E
− 1

− I􏼐 􏼑Poff(m, t),

zPon(m, t)

zt
� − σu E

− 1
− I􏼐 􏼑Pon(m, t) + σb(E − I)mPoff(m, t)

+ d(E − I)mPon(m, t) + ρb E
− 1

− I􏼐 􏼑Pon(m, t),

(23)

where Poff(m, t) and Pon(m, t) denote the two factorial
probabilities that the gene is in the corresponding states.
According to the conservative principle of probability, we
have P � P0 + P1, also given the statistical distribution of
distinct attractors. It is worth mentioning that model (23) is
indeed a Markovian process [22, 78], illustrating the particle
jumps and resides in the neighbor hall of stable attractors.

Te analytical solution of CME (23) is difcult because of
the existence of nonlinear feedback, even if some simplifed
results have been reported [22, 78]. Four sets of parameters,
transition rate, birth rate, degradation rate, and feedback
strength, are included in the mesoscopic system. Here,
applying the Magnus expansion constraint to the condi-
tional mean-feld approximation [44], we employ the linear
mapping approximation (LMA) to simplify the CME
equations (the main goal is to eliminate the efect of the
nonlinearity due to the existence of feedback term) (re-
ferring to Appendix C) and to estimate efectively the pa-
rameter values. To do so, we can obtain the equivalent
transition rate between two attractors σb � σb〈npng〉/〈ng〉

by setting the steady moment equation to zero and have

σb �
− 1 − σu + ρbσb +

���������������������������

4ρuσb 1 + σu( 􏼁 + 1 − ρbσb + σu( 􏼁
2

􏽱

2
.

(24)

Tus, equation (19) can be reduced to
zPoff(m, t)

zt
� σuPon(m, t) − σbPoff(m, t)

+ d(E − I)mPoff(m, t) + ρu E
− 1

− I􏼐 􏼑Poff(m, t),

zPon(m, t)

zt
� − σuPon(m, t)σbPoff(m, t)

+ d(E − I)mPon(m, t) + ρb E
− 1

− I􏼐 􏼑Pon(m, t),

(25)

yielding a steady distribution

P(m) �
1

m!

dm

ds
mG(s)|s�− 1, (26)

where

G(s) �
exp ρbs( 􏼁σu

σb + σu
1F1 1 + σu, σu + σb + 1, − ρb − ρu( 􏼁s( 􏼁

+
exp ρbs( 􏼁σb

σb + σu
1F1 σu, σu + σb + 1, − ρb − ρu( 􏼁s( 􏼁

≜ G0(s) + G1(s),

(27)

and G(s) � 􏽐
∞
m�0P(m)sm � 􏽐

∞
m�0Poff(n)sm + 􏽐

∞
m�0Pon

(m)sm � Goff(s) + Gon(s) is a generating function corre-
sponding to the probability distribution.

Te frst principle tells us that the equivalent network
(equation (23)) must have the same analytical solution as
that of equation (14). Equation (26) provides an efective
theoretical framework to obtain the estimated value for
parameters in the prespecifed error bound by the nonlinear
ftting [64, 65]. For the related results, one may refer to
Figure S3 in Appendix E. Numeric solutions indicate that the
ftting with the theoretical solution of equation (14) is well
and the error is controlled. Terefore, we also calculate the
factorial probabilities Poff(m, t) and Pon(m, t), illustrating
the probability the particle dwells in each attractor. In this
way, we can yield an efective Markovian jump process with
discrete phase space, labeled by i{ }.Te transition probability
of the state jumping from i to j is denoted by k(i, j), and the
stationary distribution of state i is denoted by P(i), and we
can yield directly the energy cost EP (also the entropy
production rate) as follows [40, 43]:

EP � 􏽘
i,j

P(i)k(i, j)log
k(i, j)

k(j, i)
. (28)

Substitution into the equation (26), we have

EP � 􏽘
m

Poff(m) σu log
σu

σb

+ ρu log
ρu

(m + 1)d
+ dlog

md
ρu

􏼨 􏼩

+ 􏽘
m

Pon(m) σb log
σb

σu

+ ρb log
ρb

(m + 1)d
+ dlog

md
ρb

􏼨 􏼩,

(29)

where Poff(m) and Pon(m) represent the stationary distri-
bution in two attractors (of-state and on-state), respectively.
Equation (29) gives the measure of the energy cost of
a particle jumping between two attractors in the
nonequilibrium state.

Terefore, we investigate the energetic cost of tumor
phase switching in a colored microenvironment to elucidate
how energy consumption is reshaped by noise in three
diferent cases as shown in Figure 10.

In Figure 10, we observe that by increasing the AT (τ1)of
multiplicative noise, the energy consumption increases
overall, referring to Figure 10(a). However, when the NS (D)
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reaches a threshold (about 2), the energy consumption
becomes stable. Te combination of Figures 4(b) and 10(a)
shows that the stochastic bistability region becomes smaller
and smaller with increasing AT (τ1), and correspondingly,
the energy consumption also becomes smaller and smaller,
meaning that reducing the bistable region may reduce

energy consumption and the cell would cost more energy to
keep bistability. However, the energy consumption has
a critical point corresponding to a trade-of in the additive
noisy environment, referring to Figure 10(b). Tis critical
point (the NS is about at α � 0.7) may directly afect the
energy consumption in tumor development. When the NS
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Figure 9: States switching and equivalent networks. (a) Te tumor development switches between two stable equilibrium states, extinction
state (of-state) and tumor state (on-state); (b) the corresponding CME; (c) the jumping process among the distinct states, forming
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(α) is smaller than that at the critical point, the energy
consumption becomes larger and larger with increasing the
AT (τ2). Figure 5 shows that the bimodality becomes more
and more apparent with increasing the AT (τ2) when the NS
(α) is fxed at a given level, meaning that the system assumes
more energy to achieve the phenotypic transition of the
tumor system. When the NS (α) is larger than that at the
critical point, the change tendency of energy consumption is
opposite to that in the case of small noise. Tat is, by in-
creasing the AT (τ2), energy consumption becomes smaller
and smaller and fnally tends to a stable value, referring to
Figure 10(b). Since the AT (τ2) increase may induce bi-
modality (refer to Figure 5(b)), a larger AT (τ2) may reduce
energy consumption even if the system phenotypes switch in
a larger noise environment. Tis is counterintuitive because
the existing results indicated that a system would consume
more energy in a larger noise environment [38]. Te reason
why there is such a diferent result is that tumor develop-
ment is essential to a non-Markovian process due to the AT
(τ2), that is, the AT or memory may resist extracellular
fuctuations to save energy. Also, there is indeed a trade-of
between energy consumption and a noisy environment
mediated by the AT.

Te CT (τ3) and CS (λ) between the two noises may
change the energy consumption of the tumor development
system. In fact, we have known that the positive and negative
CS (λ) can induce phenotypic switching and lead to pre-
senting a diferent change pattern, referring to Figures 6(b)
and 6(c), but the energy consumption is a decreasing
function of the CT (τ3) and has an intersection point in
which the CS (λ) is equal to zero, i.e., the noisy processes are
uncorrelated, referring to Figure 10(c). Tis means that the
CS (λ) would be an efective mechanism for regulating
energy consumption. Comparing the positive value with the
negative value of the CS (λ) shows that the energy con-
sumption has a little increase for a negative value of the CS
(λ) but has an apparent reduction for a positive value of the
CS (λ), indicating the positive CS (λ) of the two noises may
induce the system to save energy consumption. Te

combination of Figures 6(b) and 10(c) shows that the cell
phenotype may switch to the unimodal state and the
probability of tumor state dominates the stationary steady
distribution with increasing CT (τ3); that is, the positive CS
(λ) of noises promotes the tumor neoplasia at a lower energy
dissipation. However, if the CS (λ) is negative, the energy
consumption will remain at a high level because the system
recovers its bimodality, and the probability of the extinction
state will become larger and larger with increasing the CT
(τ3). Tis means that achieving the high state switching to
the extinction state is at the cost of energy consumption,
which may explain why the tumor is difcult to treat.

4. Conclusions and Discussions

Cancer transition and metastasis are essentially stochastic
and regulated by its microenvironment characterized by
extracellular noises from diferent sources. Te fuctuations
in lncRNAs would be a main noisy source of cancer de-
velopment under immune surveillance [7, 64]. Recently, by
ASO-mediated knock-down of MALAT1 in mouse mam-
mary tumor virus PyMTof human luminal B breast cancer,
Li et al. [7] confrmed that the fuctuation of lncRNA
MALAT1 is correlated with lung cancer metastases through
localizing to nuclear speckles and decreasing the elevated E-
cadherin, afecting the cells invade distal lung sites. Tere-
fore, the stochasticity of expression in MALAT1 abundance
forms a colored microenvironment. Here, we propose an
efective stochastic model of a cancer development system
attacked by immune cytotoxic cells to investigate the
mechanism of MATLAT1 marker fuctuation that regulates
tumor development in two distinct ways (from time and
space, achieving by regulating AT/CT and NS/CS), em-
phasizing cell phenotypic diversity and energy consumption.
It declares that increasing AT of multiplicative noise has
a dual biological function; that is, it can not only promote the
tumor cells to difuse but also make contributions to killing
the cancer cells, and NS can enhance this transition. Te
reason why the transition can be achieved is that the sto-
chastic bistability regime is mediated by changing the un-
stable attractor and NS may broaden the regime, meaning
that this regulation is equivalent to the positive feedback in
gene expression. While increasing AT of additive noise may
reduce the steady probability of tumor state, i.e., AT may
inhibit the tumor transition but NS of additive noise may
attenuate this transition. However, the phenotype depends
on the correlation between noises. Specifcally, when CS is
larger than zero (positive correlation), CT is a stimulus
efective for tumor development, but it may decrease the
probability of tumor metastasis if CS is negative, and there is
a hedging efect between CT and CS on cell phenotype
switching. Also, the positive CS may induce MFPT to have
a minimum value and a maximum value, and CT always
keeps a minimum value in the corresponding plane. Fur-
thermore, tumor development regulated by noise-induced
factors may consume energy to achieve cell transition and
metastasis. From the viewpoint of the mesoscopic scale, we
reconstruct the efective topology network in the form of
CME to integrate the diferent time scales in tumor
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development and calculate the energy cost. We show that
energy dissipation depends on the type of noise. Tere exists
a trade-of between phase transition and energy cost for
additive noise by regulating NS and AT in an additive noisy
environment, but extending AT of multiplicative noise may
increase efectively energy dissipation; the energy cost is
a decreasing function of CT, and the CS may amplify this
diference, depending on its sign. Tese results indicate that
the biological function of colored noises can be achieved in
time and space scenarios by changing AT/CT and NS/CS.

Equations (10)–(14) demonstrate that the molecular
memory induced by AT/CTmay violate the detailed balance
[53, 78, 79]. For the reduced system of tumor development,
there are multiple heat baths here (referring to equation
(10)), meaning the non-Markovian tumor system is drifting
by driving forces at diferent levels and its biological function
is achieved at the expense of energy [80–84]. In our model,
we can meditate AT/CT and NS/CS to regulate the whole
expression process, i.e., there is the third method to regulate
gene expressions. For more complex expression networks,
one would expect that our results here, qualitative and
model-free, such as AT, can be a “fne-tuner” for phase
switching at the cost of energy, still hold.

Moreover, we can defne an integrative function called
sensitivity index to evaluate comprehensively the regulation
efect of AT/CT and NS/CS on tumor development [85–87].
θ � μ1 ∗ 1/MFPT + μ2 ∗ 1/EP is defned, where μ1, μ2 repre-
sents the weight coefcient and satisfes the conservation
condition μ1 + μ2 � 1, and MFPT and EP are defned before,
representing the mean frst passage time and energy cost,
respectively. Obviously, the system parameters
D, α, λ, τ1, τ2, τ3 can determine directly the value sensitivity
index by the steady-state probability (Equation (14)) when the
other conditions are the same. Of note, the time scale of two
weighted indicatorsMFPTand EP has wide variations, and we
must rescale them by dividing the minimal value of every
trajectory and obtain Figure 11 (refer to Appendix D). It
indicates that the sensitivity index of every regulation pa-
rameter on the phenotypic diversity is signifcantly diferent.
Te relative fold of regulation additive noise is up to about
5.814-fold, implying the tumor system is more efective for NS
of additive noise than other noise resources (CS 1.733-fold).
Also, the efect of CTcan reach about 1.325-fold relative to AT
of additive noise (calibration as reference 1), demonstrating
that it may be an efective therapeutic schedule for tumor
treatment called coherent difraction therapy [88, 89].

Generally, gene expression may follow certain design
principles for optimal evolutionary ftness [38, 90]. One of
these constraints may be energy efciency. From the per-
spective of evolution theory, there is a trend of evolution for
genes towards resource conservation to maximize the energy
available to cells for biosyntheses, growth, and division, due
to the limited system of energy obtained [91]. Consistently,
lots of researchers have reported that the actual evolutionary
path of genes is much lower than others’ path in energy
landscapes to make more efective use of the energy obtained
[37–39]. Owing to the trade-of between dynamic regulation
and energy efciency, this may be an optimal design, that is,
the so-called minimum energy consumption principle. Of

note, here, the minimum consumption is also a relative
concept. Actually, the energy consumption is zero when the
system is detailed balance, while the energy consumption
will be positive when the system is in a nonequilibrium state.
Terefore, it is interesting to decipher whether there exists
an optimal path consuming the least energy to achieve the
same biological function in the next research.

Moreover, the relationship between the phase transition
and energy cost (as shown in Figures 4 and 10) shows that
energy consumption is mainly used for broadening the
stochastic bistability regime but for not maintaining relative
stability, and the memory may accelerate energy dissipation,
but CS may reduce energy consumption.Tese results imply
the cell always consumes energy to achieve its phenotype
adaptability, and it is also intelligent to take advantage of the
correlation of the extracellular noisy environment to save
energy dissipation. Tere may be a ftness potential land-
scape for tumor development in the above sense of the
principle of “minimization,” which is worth further
investigation.
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