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In this parper, a 4D absolute memristor Jerk chaotic system is proposed. Firstly, complex dynamics are studied by phase diagram,
Poincaré section, power spectrum, bifurcation diagram, 0-1 test, and Lyapunov exponent spectrum. Ten, the period doubling
bifurcation, degradation, and ofset boosting are revealed. For the feasibility of practical application, the analog circuit and FPGA
digital circuit are designed. Finally, a simplifed predefned time synchronization scheme is proposed; comparing with the full
control input synchronization scheme, the simplifed predefned time synchronization scheme can not only reduce the controller
inputs but also predefne the synchronization time.

1. Introduction

Nonlinear phenomena have a profound impact on the use of
math-physical methods to describe our objective world,
especially the use of chaotic theory to design and study
circuits with simple structure, easily implementation, and
complication in dynamics behavior, which is used in the
felds of weak signal detection [1, 2], image encryption [3, 4],
neural network [5–7], etc. As a new component describing
the relationship between magnetic fux and charge, mem-
ristor was frst proposed by Chua in 1971 [8]. Its rich
nonlinear behavior and malleable have been widely used in
recent years, including the design of memristor circuits with
diferent orders and the construction of circuit models
[9–12]. As a nonlinear dual-port element, memristor is
added to the classical nonlinear system, such as Chua’s
circuit [13], Lorenz system [14], and Chen’s system [15]. Te
memristor circuit composed of various classical nonlinear
circuits shows colorful and unforgettable dynamic

behaviors, including hidden attractors [16–18], hyperchaotic
behaviors [19], symmetric attractors [13], and extreme
multistability [20–23] with infnite number of coexistence
attractors. Te memristor model described by piecewise
linear function [24], quadratic nonlinear function [25], and
cubic nonlinear function [26] is a mathematical model often
used by scholars. Diferent from the previous ones, this
paper attempts to introduce a novel and interesting mag-
netic fux memristor model with absolute value function.
Tese classes of memristors have uncertain two-sided
characteristics due to its special properties, that is, it can-
not only provide more fexibility in practical engineering but
also may cause damage to the system.

Te application of chaotic sequences is an extremely
important link. In many cases, unipolar signals are often
required in practical circuit applications, but the polarity
conversion has become a thorny problem. In order to change
this situation, Li [27] proposed a chaotic amplitude control
method; by introducing a constant term into the system,
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ofset boosting can be achieved, which solves the problem of
polarity conversion of chaotic signals; meanwhile, it does not
change the dynamics of the system. Since then, many
scholars have applied this method to the proposed chaotic
systems, such as the ofset boosting control of the integer
order chaotic attractor [28, 29] and the fractional-order
chaotic attractor [30, 31]. Here, the original system is
converted into a self-replicating system, resulting in an
infnite number of attractors with extreme multistability.
Terefore, the application of chaotic system in engineering
can be greatly enriched by ofset boosting control, and the
study on ofset boosting control is becoming active
increasingly.

It can be seen from the previous description that the
multistability of memristor chaotic system brings many
advantages in engineering; however, it will also lead to some
undesirable things due to the “minor to damage” charac-
teristics of chaos. In the past, scholars have proposed dif-
ferent control schemes to achieve the synchronization of
memristor chaotic systems as follows: fnite time synchro-
nization schemes [16, 32–35]and fxed time synchronization
schemes [18, 36, 37]. In addition, these proposed syn-
chronization schemes require the same controller input
dimension as the system dimension, which makes the
controller more complex, and synchronization time cannot
be given. In order to eliminate these defects, this paper
considers introducing a simplifed predefned time syn-
chronization scheme, which synchronization time function
is easier to realize than that of these previous synchroni-
zation schemes, and fewer controllers, so as to realize the
control of “predefned” time for a class of Jerk systems with
absolute value memristor.

Based on this, the main structure of this paper is as
follows: Firstly, in Section 2, through the analog circuit
realization and numerical simulation results of the absolute
memristor, we can fnd that the absolute memristor has rich
memristor characteristics and verify the infuence of fre-
quency and voltage amplitude on the area of hysteresis loop.
Terefore, based on this, a novel 4D absolute memristor Jerk
system is proposed. In Section 3, the dynamic analysis of the
system is carried out, such as phase diagrams, Poincaré
section, Lyapunov exponent spectrum, power spectrum,
bifurcation diagram, 0-1 test, and ofset boosting, revealing
the rich dynamic behavior of the system. In Section 4, the
analog circuit and FPGA digital circuit of the system are
designed to verify the feasibility of the system. In Section 5,
a simplifed predefned time synchronization scheme is
proposed innovatively, which overcomes the shortcomings
that the synchronization time of fnite time and fxed time
synchronization schemes cannot be “predefned,” and then
compared with the full control input synchronization
scheme, the simplifed predefned time synchronization
scheme can also reduce the controller input. Finally, the
conclusion and the future work are given in the last section
of this paper.

2. Properties of Absolute Memristor Model

2.1. Equivalent Circuit and Characteristic of Absolute
Memristor. Te memristor is a dual-port circuit element
described by the equation f(φ, q) � 0; the mathematical
expression of the magnetic control memristor described by
a piecewise quadratic nonlinear function characteristic curve
is as follows:

q(φ) � αφ − 0.5βφ2sgn(φ). (1)

In equation (1), α, β are positive constants, and sgn(·) is
a symbolic function. We calculate the diferential of time t at
both ends of equation (1) at the same time, and the following
relationship holds:

i(t) � W(φ)v(t) � (α − β|φ|)v(t). (2)

Here, dq/dt � i(t), dφ/dt � v(t), W(ϕ) is the magnetron
absolute value type memristor as follows:

W(φ) �
dq(φ)

dφ
� α − β|φ|. (3)

Tat is, equation (2) is the VCR of the piecewise qua-
dratic nonlinear magnetron memristor, and the absolute
value type memristor is controlled by its internal state
variable fux ϕ(t). Te parameters are α � 1, β � 0.1 in the
equation (3), and the relationship between the driving
voltage v(t) and the current i(t) can be obtained by applying
the driving voltage v(t) at both ends of equation (3). Fur-
thermore, the absolute memristor circuit schematic diagram
shown in Figure 1 can be designed according to the circuit
theory.

According to the absolute memristor circuit schematic
Figure 1, the circuit equation shown in equation (4) can be
obtained. Moreover, the t(s) − v(t) and v(t) − i(t) curves of
the absolute memristor are further realized according to the
analog circuit simulation of the absolute memristor, as
shown in Figure 2. Te correctness of the tight hysteresis
loop of the voltage and current origin contraction of the
absolute value memristor is verifed by circuit simulation.

i(t) �
R3

R2

R8

R6
v(t) −

R3

R2

R5

R4

R8

R6
x4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌v(t). (4)

In order to further verify the correctness of the mem-
ristor characteristics realized by the analog circuit of ab-
solute memristor, the driving voltages at both ends of the
memristor are subjected to diferent excitation amplitudes
and diferent excitation frequencies.

For the absolute memristor, the infuence of the am-
plitude A and frequency F of the external excitation signal
on the area of the memristor hysteresis loop is studied.
Trough the external input voltage V, its sinusoidal function
V � A sin (2πF). It can be seen from the description in
Figure 3 that the amplitude A of the sinusoidal excitation
signal is positively correlated with the area of the hysteresis
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loop, and the frequency F is negatively correlated with the
area of the hysteresis loop.

2.2. Modeling of a Absolute Memristor Jerk Chaotic System.
In [38], there is a Jerk system, and the mathematical model is
described as follows:

_x1 � x2,

_x2 � x3,

_x3 � x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x2 − ax3 − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where a and b are the positive constant and x1, x2, and x3 are
the state variables. By introducing the new expression (2) to
the degenerate Jerk system in (5), a novel class of degenerate
chaotic Jerk system based on memristor can be described as
follows:

_x1 � x2 − b,

_x2 � W x4( 􏼁x3,

_x3 � x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x2 − ax3,

_x4 � x3

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where a and b are the positive constant and W(x4) is the
memory derivative function of the previous absolute
memristor equation (3). Te nonlinear characteristics and
dynamic behaviors of the novel memristor system (6) in-
troduced in this paper are worth studying in the following
sections.

3. Stability and Dynamics Analysis

3.1. StabilityAnalysis. Let _x1, _x2, _x3 and _x4 on the left side of
equation (6) be equal to zero. It is easy to fnd that the set of
equilibria of the system is A � ( ± b, 0, 0, 0), where b is a real
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Figure 1: Circuit diagram of absolute memristor.
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Figure 2: Absolute memristor hysteresis loop. (a) t(s) − v(t) curve; (b) v(t) − i(t) curve.
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constant. Linearize equation (6) at this set of equilibria to
obtain the Jacobian matrix of the system is as follows:

J �

0 1 0 0

0 0 −βsign x4( 􏼁 −βx3sign x4( 􏼁

sign x1( 􏼁 −1 −a 0

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Since the equilibrium is A � ( ± b, 0, 0, 0), the charac-
teristic polynomial of the system can be obtained as follows:

λ λ3 + a􏼐 􏼑 � 0. (8)

According to the Routh–Hurwitz stability condition, the
necessary and sufcient condition for the existence of roots
of equation (2) given above is a> 0. When the characteristic
roots of equation (2) are λ1 < 0, λ2 < 0, λ3 < 0, it is called
a stable node.Terefore, the system can generate chaotic and
rich dynamic behavior, and the parameter a> 0. It should be
noted that the stability of equation (6) cannot be simply
determined by equilibrium set A � ( ± b, 0, 0, 0). Terefore,
the dynamical behaviors of system (6) under other condi-
tions are further analyzed below.

3.2. Dynamical Analysis

3.2.1. Phase Trajectory, Poincaré Section and Power
Spectrum. Te parameter selection for the system is a � 0.6,
b � 1.3, α � 1, β � 0.1 and initial value is x0 � (1, 0, 0, −1).
Te chaotic phase diagrams generated by the system under
this parameter condition are shown in Figure 4. Te cor-
responding Lyapunov exponent spectrum is calculated as
[0.0587, 0, −0.0028, −0.6560]; the Wolf algorithm shows that
the system exhibits chaos.

Similarly, under the condition that the parameters of
system are consistent with the previous one, the Poincaré
section and power spectrum characteristics are described,
respectively, in Figures 5 and 6 to illustrate.

From the description in Figure 5, it is found that the
Poincaré cross section is not a closed curve but a curve with
phase diagram profle composed of dense points. Te power
spectrum in Figure 6 is found to be continuous without
obvious wave peaks. It is concluded that the system is
a chaotic system with complex dynamic behavior.

3.2.2. Bifurcation and Lyapunov Exponent Spectrum. In the
system, to set the system parameter to b � 1.3, α � 1, β � 0.1,
and x0 � (0, 0, 0, −2) is the initial value of the system. When
selecting system parameter a as system variable, the bi-
furcation diagram and Lyapunov exponent spectrum (LEs)
of state variable x1 can be obtained, as shown in Figures 7(a)
and 7(b). When the system parameter a is increasing, the
bifurcation diagram shows that the system has inverse pe-
riod doubling bifurcation when the parameters a � 0.65 and
a � 0.73, respectively. Similarly, the complex dynamic
characteristics of the system can be described according to
the Largest Lyapunov exponent (LLE). According to
Figure 7(b), when a< 0.65, LLE> 0, and when a> 0.65,
LLE � 0. In addition, the fourth value of LEs4 is always less
than zero, which is not described in Figure 7(b). Terefore,
the dynamic behavior is consistent when describing the
change of parameter a in Figure 7.

According to the 0-1 test method, the periodic state or
chaotic state of the system can be judged qualitatively under
the infuence of parameter a [39]. Tis method is mainly the
a quantitative analysis method which is used to detect
whether there is chaos in the system. When parameter
a � 0.6, the trajectory of the system on the p − s plane is
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Figure 3: Numerical simulation of absolute memristor tight hysteresis loop. (a) Diferent amplitude A values; (b) diferent frequency F

values.
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chaotic and irregular. When the parameter a � 0.8, the
trajectory of the system on the p − s plane is regular and
orderly, as shown in Figure 8. Te refected dynamic be-
havior is the same as that in Figure 7.

Considering the dynamic phenomena caused by the
change of initial value, fxed parameters are a � 0.6, b � 1.3,
α � 1, β � 0.1, and x0 � (0, x2(0), 0, −2) is the initial value of
the system, When x2(0) ∈ (0, 2) is selected, the chaotic
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Figure 4: System phase diagram. (a) x1 − x3 plane; (b) x2 − x3 plane; (c) x1 − x2 − x3 plane.
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Complexity 5



x2
x1

x 3

2

1

0

-1

-2
0

1
2

3 2
0

-2
-4

(a)

Hz

dB

40

20

0

-20

-40

-60

-80

-100
0

a=0.6

10 20 30 40

(b)

Figure 6: Power spectrum of the system. (a) x1 − x2 − x3 plane phase diagram; (b) power spectrum.
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window and periodic window appear alternately, and the
period doubling bifurcation phenomenon occurs when
x2(0) � 1.21. As it continues to increase to x2(0) � 1.48,
chaotic jump occurs and a short reverse period doubling
bifurcation occurs until the end. Te bifurcation diagram
and LEs of system x2(0) as variable are drawn in Figure 9.
Tey refect the dynamic characteristics of x2(0) as in-
dependent variable, and the two refect the same dynamic
behavior.

Furthermore, the dynamic behavior of bifurcation dia-
gram and LEs reaction is verifed according to the type of
phase diagram attractor of the system.Te values of variable
x2(0) are selected as 0.0, 1.5, and 2.0 in the system bi-
furcation diagram. Te system phase diagram-type char-
acteristics that can be drawn are shown in Figure 10.

When x4(0) is used as a system variable, other pa-
rameters remain the same as the previous one, when the
variation range of x4(0) belongs to [−3, 3]. As can be seen
from Figure 11(a), when the variable x4(0) increases, the
system enters the large-scale chaotic window from the pe-
riodic window and ends with a short periodic window at the
end. After variable x4(0) � 2.0, the system enters the pe-
riodic window from the chaotic window. Ten, there is
a jumping chaotic band when x4(0) ∈ (2.32, 2.41), which
then jump to the cycle window. Trough the LEs depicting
the change of the initial value variable x4(0) in Figure 11(b),
it is found that the result is consistent with the dynamic
phenomenon described in the bifurcation diagram in
Figure 11(a).

Similarly, when x4(0) is −3, −2.3, 0.0, the phase diagram-
type characteristics of the system is shown in Figure 12. It
can be found that when the initial value x4(0) ∈ (−3, 3)

changes, the system shows diferent characteristic types of
chaotic attractors.

3.3. Transient Chaos of the System. Te chaotic motion state
of the system has limited life, and its main dynamic feature is
that the system suddenly changes into a stable periodic
motion in a short time of chaotic state, which can be called
transient chaos [19], in order to reveal this transient chaotic
phenomenon, by setting the system parameter to a � 0.6,
b � 1.3, α � 1, β � 0.1, and x0 � (1, 1, −2, −1) is the initial
value of the system. According to the description in Fig-
ure 13, it can be found that the system is chaotic within
t< 2500s and periodic after t> 2500s. Terefore, the system
has a short time of chaotic state and then degenerates into
a periodic state.

Furthermore, the transient chaos behavior of the system
is judged according to the characteristic type of the phase
diagram. Te chaotic phase diagram and periodic phase
diagram of the system are drawn, respectively, in the time
period of t ∈ (500s − 2500s) and t ∈ (4000s − 5000s)

through Figure 14.
Transient chaos can also be described according to the

time domain waveform of LEs of the system and the time
domain waveform of state variable x1 of the system, as
shown in Figure 15. However, only the frst and second
curves are drawn in the time domain waveform of LEs, and

the third and fourth curves are always less than zero. It is
found from the LEs of the system in Figure 15(a) and the
time t domain waveform of the state variable x1 as shown in
Figure 15(b). It can be seen that the system LLE> 0 before
t< 2500s, LLE � 0 after t> 2500s. In addition, the time-
domain waveform of the system state x1 within
t ∈ (4000s, 5000s), and the system shows a periodic state in
this interval, as shown in Figure 15(b). It further shows that
the system has transient chaos.

3.4. Ofset Boosting. In the memristor chaotic system, the
position change of the attractor is changed by adding
a constant term to the uncoupled term of the system. Tis
phenomenon is a potential feature of the memristor chaotic
system, which can control the chaotic attractor of the system
through the constant term. It can be found in the system that
state variables x1 and x2 are independent uncoupled state
variables. Terefore, |x1| and x2 in the system can be
replaced by |x1 + k| and (x2 + l). We can know that k and l

are the two control parameters of the ofset boosting, and the
system can be expressed as follows:

_x1 � x2 + l( 􏼁 − b,

_x2 � α − β x4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑x3,

_x3 � x1 + k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x2 + l( 􏼁 − ax3,

_x4 � x3.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

In equation (9), the parameter is set to a � 0.6, b � 1.3,
α � 1, β � 0.1. First, only one control parameter k is changed
and parameter l � 0. Case 1: When x0 � (1, 0, 0, −1) is se-
lected as the initial value of system (9), the ofset boosting
control parameters k take the values of k � 0.0, k � 0.5 and
k � −0.5, respectively. Tough Figure 16 shows the ofset
boosting phenomenon of system (9) under the infuence of
a single control parameter k, Figure 16(a) shows that the
system phase diagrams move left and right along the x1
direction on the x1 − x2 − x3 space. Case 2: Select system (9)
initial value as x0 � (1, 1, −2, −2), and the control param-
eters are the same as those in Case 1. Figure 16(b) shows that
the system periodic phase diagrams move left and right
along the x1 direction on the x1 − x3 plane.

In order to study the ofset boosting under the infuence
of another control parameter l, here, the parameter selection
and initial value of system (9) are consistent with the pre-
vious research control parameter k. Case1: l � 0.0, l � 1.0,
l � −1.0 as shown in Figure 17(a). Case2: l � 0.0, l � 1.0, l �

−1.0 as shown in Figure 17(b). It can be seen that under the
control parameter l, the phase diagrams of system (9) move
left and right along the x2 direction.

Similarly, when studying the ofset boosting caused by
the simultaneous change of double control parameters k and
l, the selection of system (9) parameters and initial values are
consistent with the previous one. Te values of control
parameters k and l are, respectively, k � 0, l � 0.0; k � 0.5,
l � 1.0; k � −0.5, l � −1.0. It can be found from Figures 18(a)
and 18(b) that system (9) phase diagrams can translate and
enlarge in x1 − x2 − x3 space and x1 − x3 plane under the
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Figure 10: Types of the system phase diagrams with the change of the system initial value x2(0). (a) x2(0) � 0.0 is x1 − x3 plane chaotic
phase diagram; (b) x2(0) � 1.5 is x1 − x3 plane periodic 1; (c) x2(0) � 2.0 is x1 − x3 plane periodic 2.
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Figure 11: Initial value x4(0) change. (a) Bifurcation diagram; (b) LEs.
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Figure 12: Types of the system phase diagrams with the change of the system initial value x4(0). (a) x4(0) � −3 is x1 − x3 plane periodic 1;
(b) x4(0) � −2.3 is x1 − x3 plane periodic 2; (c) x4(0) � 0.0 is x1 − x3 plane chaotic phase diagram.
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Figure 13: Time domain waveform of the system in time interval t ∈ (0 − 5000 s).
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Figure 14: Phase diagrams of the system. (a) Phase diagram of x1 − x3 plane system in t ∈ (500 s − 2500 s) interval; (b) phase diagram of
x1 − x3 plane system in t ∈ (4000 s − 5000 s) interval.
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Figure 15: (a) Te time domain waveform of LEs; (b) the time domain waveform of state variable x1 in interval t ∈ (4000 s, 5000 s).
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Figure 16: System phase diagrams with single control parameter k variation. (a) Chaotic phase diagrams of system (9) on space x1 − x2 − x3;
(b) periodic phase diagrams of system (9) on plane x1 − x3.
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Figure 17: System phase diagrams with single control parameter l variation. (a) Chaotic phase diagrams of system (9) on space x1 − x2 − x3;
(b) periodic phase diagrams of system (9) on plane x2 − x3.
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Figure 18: System phase diagrams with double control parameter k and l variation. (a) Chaotic phase diagrams of system (9) on plane
x1 − x2 − x3; (b) chaotic phase diagrams of system (9) on plane x1 − x3.
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control of two parameters. It can be seen that the two pa-
rameter control of ofset boosting mainly moves in the x1
and x2 directions in the x1 − x2 plane.

4. Circuit Implementation

4.1. Analog Circuit Design. Te circuit realization of mem-
ristor chaotic systems is another method to study its dy-
namics and confrm its feasibility. Here, the analog circuit of
the system is designed, and the circuit design schematic
diagram is shown in Figure 19. During the design of the
circuit principle, the common electronic analog components
are designed based on the method of operational amplifer.
Te circuit includes 20 resistors and two absolute value
modules designed by operational amplifer. Ten, the ca-
pacitor is C1–C4, the multiplier is AD633, and the output
coefcient is 0.1. Te model of operational amplifer is
TL8012 series. Te analog circuit includes four channel
circuits, and each channel is equipped with operation am-
plifcation circuit, integral operation amplifcation circuit,
and inverse circuit. We add two absolute value circuit op-
eration modules in the frst and fourth channels of the
circuit, and the circuit output states of the four channels are
x1, x2, x3, and x4, respectively.

According to the circuit schematic diagram Figure 19
and Kirchhof voltage law, the circuit equation of the fol-
lowing system can be obtained:

dx1

dt
�

1
R2

x1 +
1

R1
V1􏼠 􏼡

R3

R4C1
,

dx2

dt
�

1
R5

x3 +
1

R6
x3 x4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡

R7

R8C2
,

dx3

dt
�

1
R11

x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

R12

R10

R9
x2 +

1
R13

R17

R16
x3􏼠 􏼡

R14

R15C3
,

dx4

dt
�

1
R18

R19

R20C4
x3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Te value of electronic components in circuit equation
(10) is shown in Figure 19, and ± 15v power supply is
adopted for all operational amplifers. As shown in Fig-
ure 20, the chaotic phase diagrams captured by the system in
the analog oscilloscope are described. Te results show that
the experimental results of the analog circuit are consistent
with the numerical simulation results of the system, which
shows the efectiveness of the analog circuit design.

4.2. FPGA Digital Circuit Implementation. Trough the
FPGA digital circuit experiment [11, 40], the chaotic phase
diagram of the system is realized on the digital oscilloscope
to illustrate the rationality of the system design. In this

paper, an FPGA based on the Xilinx XC6SLX16-2FTG256I
chip is chosen, which has the advantages of low statics,
adjustable I/O port conversion rate, abundant logic re-
sources, and large logic capacity. Tese advantages are very
helpful for realizing the actual digital circuits that implement
chaotic systems. In addition, the resource utilization of the
chip is enumerated in Table 1.

Ten, the system is discretized as shown in equation (11),

x1(δ + 1) � x2(δ) − 0.6,

x2(δ + 1) � α − β x4(δ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑x3(δ),

x3(δ + 1) � x1(δ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x2(δ) − 0.6x3(δ),

x4(δ + 1) � x3(δ).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

In addition, the FPGA digital circuit of the system is
designed, and the sampling time is 0.001. Te continuous
signal of the system can be obtained through the digital to
analog conversion module. After debugging the digital os-
cilloscope, the chaotic phase diagrams of the system can be
captured in the oscilloscope. Te chaotic phase diagrams on
the x1 − x2, x1 − x3 and x2 − x3 planes are shown in Fig-
ure 21.Terefore, the correctness of the analog circuit design
and numerical simulation results of the system can be
verifed.

5. Synchronization Scheme Design of
the System

In this paper, the simplifed predefned time synchronization
scheme is proposed, which not only reduces the controller
inputs but also knows the synchronization time.

Lemma  [41]: If the state τ is satisfed,

_τsign(τ)≤ −
π/2
Tfq

|τ|
1−q

+|τ|
1+q

􏼐 􏼑. (12)

In equation (9), Tf > 0 and 0< q< 1. If τ(0)<M andM is
bounded, then τ can converge to zero within the predefned
time Tf.

τ � 0, if t≥Tf. (13)

5.1. Predefned Time Full Control Input Synchronization.
It can be seen that the main system of the system is described
as follows:

_x1 � x2 − b,

_x2 � α − β x4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑x3,

_x3 � x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x2 − ax3,

_x4 � x3,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

Te slave system of the system is
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Figure 19: Schematic diagram of the system analog circuit implementation.
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Figure 20: Chaotic phase diagrams of the system in analog oscillograph. (a) x1 − x3 plane; (b) x2 − x3 plane.
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_x1s � x2s − b + ux1
,

_x2s � α − β x4s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3s + ux2

,

_x3s � x1s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x2s − ax2s + ux3

,

_x4s � x3s + ux4
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

where xi(i � 1s, 2s, 3s, 4s) are the status of the slave system,
ui(i � x1, x2, x3, x4) are control input.

We defne the synchronization error of the system as

ex1
� x1s − x1,

ex2
� x2s − x2,

ex3
� x3s − x3,

ex4
� x4s − x4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

Te time derivative of equation (16) is calculated as
follows:

_ex1
� _x1s − _x1,

_ex2
� _x2s − _x2,

_ex3
� _x3s − _x3,

_ex4
� _x4s − _x4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

By substituting equation (14) and equation (15) into
equation (17),we can get

_ex1
� ex2

+ ux1
,

_ex2
� α − β x4s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑xs − α − β x4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3 + ux2

,

_ex3
� x1s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ex2

− aex3
+ ux3

,

_ex4
� ex4

+ ux4
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Terefore, the controller design of the predefned time
full control input synchronization scheme is as follows:

Table 1: Te resource utilization of the chip.

Resource FF I/O LUT LUTRAM BUFG
Already used 16200 45 13000 16200 1
Available 111010 150 47800 589824 30
Utilization (%) 14.55 31.33 27.24 2.74 3.11

(a) (b)

(c) (d)

Figure 21: Implementation of FPGA digital circuit of the system.
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ux1
� −

π/2
Tfx1

qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1􏼒 􏼓sign ex1

􏼐 􏼑 − ex2
,

ux2
� −

π/2
Tfx2

qx2

ex2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx2 + ex2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx2􏼒 􏼓sign ex2

􏼐 􏼑 − α − β x4s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3s − α − β x4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3􏼐 􏼑,

ux3
� −

π/2
Tfx3

qx3

ex3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx3 + ex3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx3􏼒 􏼓sign ex3

􏼐 􏼑 − x1s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ex2

− aex3
􏼐 􏼑,

ux4
� −

π/2
Tfx4

qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4􏼒 􏼓sign ex4

􏼐 􏼑 − ex3
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where Tfi > 0 and 0< qi < 1(i � x1, x2, x3, x4).
We substitute equation (19) into equation (18) to obtain

_ex1
� −

π/2
Tfx1

qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1􏼒 􏼓sign ex1

􏼐 􏼑,

_ex2
� −

π/2
Tfx2

qx2

ex2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx2 + ex2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx2􏼒 􏼓sign ex2

􏼐 􏼑,

_ex3
� −

π/2
Tfx3

qx3

ex3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx3 + ex3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx3􏼒 􏼓sign ex3

􏼐 􏼑,

_ex4
� −

π/2
Tfx4

qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4􏼒 􏼓sign ex4

􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Terefore, considering that Lemma 1 is valid, through
equation (20), the following relationship is established:

_ex1
sign ex1

􏼐 􏼑 � −
π/2

Tfx1
qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1−qx1 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1􏼒 􏼓,

_ex2
sign ex2

􏼐 􏼑 � −
π/2

Tfx2
qx2

ex2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1−qx2 + ex2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx2􏼒 􏼓,

_ex3
sign ex3

􏼐 􏼑 � −
π/2

Tfx3
qx3

ex3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1−qx3 + ex3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx3􏼒 􏼓,

_ex4
sign ex4

􏼐 􏼑 � −
π/2

Tfx4
qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1−qx4 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

According to Lemma 1, the synchronization error ei(i �

x1, x2, x3, x4) realize synchronization within the predefned
time Tfi (i � x1, x2, x3, x4), as shown in equation (22).

ei � 0, if t≥Tfi i � x1, x2, x3, x4( 􏼁. (22)

5.2. Simplifed Predefned Time Synchronization. Te main
system of the system is equation (14), and the design of the
slave system is as follows:

_x1s � x2s − b,

_x2s � α − β x4s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3s + ux2

,

_x3s � x1s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x2s − ax3s + ux3

,

_x4s � x3s.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

Te slave system status xi(i � 1s, 2s, 3s, 4s) and ui(i �

x2, x3) are the control input.
We defne the system synchronization error as

ex1
� x1s − x1,

ex2
� x2s − x2,

ex3
� x3s − x3,

ex4
� x4s − x4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

Te time derivative of ei(i � x1, x2, x3, x4) is calculated
as follows:

_ex1
� _x1s − _x1,

_ex2
� _x2s − _x2,

_ex3
� _x3s − _x3,

_ex4
� _x4s − _x4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

Substituting equation (14) and equation (23) into
equation (25) can obtain

_ex1
� ex2

,

_ex2
� α − β x4s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3s − α − β x4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3 + ux2

,

_ex3
� x1s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ex2

− aex3
+ ux3

,

_ex4
� ex3

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

In the case of satisfying the predefned time convergence
algorithm of Lemma 1, the expected synchronization error
ej(j � x2, x3) satisfes equation (27).
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ex2
⟶ −

π/2
Tfx1

qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 sign ex1

􏼐 􏼑 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1 sign ex1

􏼐 􏼑􏼒 􏼓.

ex3
⟶ −

π/2
Tfx4

qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 sign ex4

􏼐 􏼑 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4 sign ex4

􏼐 􏼑􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

Ten, in order to satisfy (27), considering (26), the
desired value of em(m � x2, x3) can be defned as follows:

ex2d � −
π/2

Tfx1
qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 sign ex1

􏼐 􏼑 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1 sign ex1

􏼐 􏼑􏼒 􏼓,

ex3d � −
π/2

Tfx4
qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 sign ex4

􏼐 􏼑 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4 sign ex4

􏼐 􏼑􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

To satisfy (28), two new errors ejd(j � x1, x4) are defned

ex2d � ex2
− ex2d � ex2

+
π/2

Tfx1
qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 sign ex1

􏼐 􏼑 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1 sign ex1

􏼐 􏼑􏼒 􏼓,

ex3d � ex3
− ex3d � ex3

+
π/2

Tfx4
qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 sign ex4

􏼐 􏼑 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4 sign ex4

􏼐 􏼑􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

Terefore, the controller design of the simplifed pre-
defned time synchronization scheme is as follows:

ux2
� −

π/2
Tfx1

qx1

1 − qx1
􏼐 􏼑 ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− qx1 + 1 + qx1

􏼐 􏼑 ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
qx1􏼒 􏼓ex2

− α − β x4s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3s − α − β x4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3􏽨 􏽩

−
π/2

Tfx1
qx1

ex2d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 sign ex2d􏼐 􏼑 + ex2d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1 sign ex2d􏼐 􏼑􏼒 􏼓,

ux3
� −

π/2
Tfx4

qx4

1 − qx4
􏼐 􏼑 ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− qx4 + 1 + qx4

􏼐 􏼑 ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
qx4􏼒 􏼓ex3

− x1s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ex2

− aex3
􏽨 􏽩

−
π/2

Tfx4
qx4

ex3d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 sign ex3d􏼐 􏼑 + ex3d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4 sign ex3d􏼐 􏼑􏼒 􏼓

ux1
� ux4

� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

According to the proposed simplifed predefned time
synchronization scheme, if Lemma 1 is valid, the system
achieves synchronization and error ei(i � x1, x2, x3, x4)

converges to zero within the predefned time
Tfi (i � x1, x2, x3, x4).

ex1
� 0, if t≥Tx1

ex2
� 0, if t≥Tx2

ex3
� 0, if t≥Tx3

ex4
� 0, if t≥Tx4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(31)

16 Complexity



where Tx1
� Tfx1

+ Tfx1
, Tx2

� Tfx1
+ Tfx1

, Tx3
� Tfx4

+

Tfx4
and Tx4

� Tfx4
+ Tfx4

. Combining the ex2d and ex3d

functions in equation (29) and equation (26), equation (32)
is established.

_ex2d �
π/2

Tfx1
qx1

1 − qx1
􏼐 􏼑 ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− qx1 + 1 + qx1

􏼐 􏼑 ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
qx1􏼒 􏼓ex2

+ α − β x4s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑x3s − α − βx4( 􏼁x3􏽨 􏽩 + ux2

,

_ex3d �
π/2

Tfx4
qx4

1 − qx4
􏼐 􏼑 ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− qx4 + 1 + qx4

􏼐 􏼑 ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
qx4􏼒 􏼓ex3

+ x1s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ex2

− aex3
􏽨 􏽩 + ux3

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Terefore, by substituting equation (30) into equation
(32), we can get

_ex2dsign ex2d􏼐 􏼑 � −
π/2

Tfx1
qx1

ex2d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1−qx1 + ex2d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1􏼒 􏼓.

_ex3dsign ex3d􏼐 􏼑 � −
π/2

Tfx4
qx4

ex3d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1−qx3 + ex3d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(33)

According to Lemma 1, from equation (33), it can be
seen that the errors ex2d and ex3d are synchronization and

converge to zero within the predefned time Tfx1
and Tfx4

,
respectively. Terefore, it can be proved that the synchro-
nization error ei(i � x1, x2, x3, x4) achieves synchronization
and converges to zero within the predefned time
Tfi (i � x1, x2, x3, x4), but the synchronization error
ei(i � x1, x2, x3, x4) may diverge to infnity before the ex2d

and ex3d synchronization errors converge to zero.
Considering the infuence of ex2d and ex3d, it is proved in

two steps. In step 1, the proof is that the synchronization
error ei(i � x1, x2, x3, x4) is bounded before ex2d and ex3d

converge to zero. In step 2, the proof is that the synchro-
nization error ei(i � x1, x2, x3, x4) can converge to zero to
achieve synchronization before ex2d and ex3d converge to
zero.

In step 1: According to equation (33), equation (34) is
valid.

ex2d
_ex2d≤ 0,

ex3d
_ex3d≤ 0.

⎧⎪⎨

⎪⎩
(34)

Lassume there are

ex2d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ex2d(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

ex3d

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ex3d(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

⎧⎪⎨

⎪⎩
(35)

Combining equation (25) and equation (29), we can get

ex2d � _ex1
+

π/2
Tfx1

qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 sign ex1

􏼐 􏼑 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1 sign ex1

􏼐 􏼑􏼒 􏼓,

ex3d � _ex4
+

π/2
Tfx4

qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 sign ex4

􏼐 􏼑 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4 sign ex4

􏼐 􏼑􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(36)

It can be further known from equations (35) and (36).

−
π/2

Tfx1
qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 sign ex1

􏼐 􏼑 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1 sign ex1

􏼐 􏼑􏼒 􏼓 − ex2d(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ _ex1
,

≤ −
π/2

Tfx1
qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 sign ex1

􏼐 􏼑 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1 sign ex1

􏼐 􏼑􏼒 􏼓 + ex2d(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

−
π/2

Tfx4
qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 sign ex4

􏼐 􏼑 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4 sign ex4

􏼐 􏼑􏼒 􏼓 − ex3d(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ _ex4
,

≤ −
π/2

Tfx4
qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 sign ex4

􏼐 􏼑 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4 sign ex4

􏼐 􏼑􏼒 􏼓 + ex3d(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)
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So, we can conclude that

ex1
_ex1
≤ 0; if ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥
Tfx1

qx1

π/2
ex2d(0)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡

1/1+qx1

ex4
_ex4
≤ 0; if ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥
Tfx4

qx4

π/2
ex3d(0)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡

1/1+qx4

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(38)

It can be concluded that ex1
and ex4

are bounded.

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max
Tfx1

qx1

π/2
ex2d(0)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ex1
(0)􏼠 􏼡

1/1+qx1

,

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max
Tfx4

qx4

π/2
ex3d(0)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ex4
(0)􏼠 􏼡

1/1+qx4

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(39)

In step 2: From Lemma 1, ex2d(0) and ex3d(0) are
bounded, and according to equation (33), it can be
known that the error ejd(j � x1, x4) converge to zero to
achieve synchronization at the predefned time Tfx1
and Tfx4

, that is,

simplified predefined time synchronization scheme
predefined full control input synchronization scheme
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Figure 22: Te system control input. (a) ux1
; (b) ux2

; (c) ux3
; (d) ux4

.
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ex2d � 0, if t≥Tfx1
,

ex3d � 0, if t≥Tfx4
.

⎧⎪⎨

⎪⎩
(40)

Combining equation (36) and equation (39) can obtain

_ex1
� −

π/2
Tfx1

qx1

ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx1 sign ex1

􏼐 􏼑 + ex1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx1 sign ex1

􏼐 􏼑􏼒 􏼓, if t≥Tfx1
,

_ex4
� −

π/2
Tfx4

qx4

ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1− qx4 sign ex4

􏼐 􏼑 + ex4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+qx4 sign ex4

􏼐 􏼑􏼒 􏼓, if t≥Tfx4
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(41)

Step 1 shows that ex1
(Tfx1

) and ex4
(Tfx4

) are bounded.
Terefore, through Lemma 1, it can be known that ex1

� 0
and ex4

� 0 can converge to zero to achieve synchronization
at the predefned time.

simplified predefined time synchronization scheme
predefined full control input synchronization scheme
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Figure 23: Te system synchronization error. (a) ex1
; (b) ex2

; (c) ex3
; (d) ex4

.
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_ex4
� 0, if t≥Tfx4

+ Tfx4
,

_ex1
� 0, if t≥Tfx1

+ Tfx1
.

⎧⎪⎨

⎪⎩
(42)

So, we have

_ex1
� 0, if t≥Tfx1

+ Tfx1
,

_ex4
� 0, if t≥Tfx4

+ Tfx4
.

⎧⎪⎨

⎪⎩
(43)

According to equation (26) and equation (43), equation
(44) is further established.

ex2
� 0, if t≥Tfx1

+ Tfx1
,

ex3
� 0, if t≥Tfx4

+ Tfx4
.

⎧⎪⎨

⎪⎩
(44)

Trough equation (42) and equation (44), we can get

ex1
� 0, if t≥Tfx1

+ Tfx1
,

ex2
� 0, if t≥Tfx1

+ Tfx1
,

ex3
� 0, if t≥Tfx4

+ Tfx4
,

ex4
� 0, if t≥Tfx4

+ Tfx4
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(45)

5.3. Numerical Simulation of Predefned Time Synchroniza-
tion Scheme of the System. Te system parameter selection is
a � 0.6, b � 1.3, α � 1, β � 0.1 and initial value is
x0 � (1, 0, 0, −1). Figure 22 shows the controller input of the
synchronization scheme. Figure 22 shows the comparison of
two diferent control schemes, where the red line is the
simplifed predefned time synchronization scheme, and the
blue line is the predefned full time control input syn-
chronization scheme.

By comparing the simplifed predefned time synchro-
nization scheme with the predefned full control input
synchronization scheme, it is obvious that the simplifed
predefned time synchronization scheme can reduce the
controller input. It can be seen from Figure 22 that the
simplifed predefned time controller input, which only
requires the input of two controllers ux2

and ux3
, and the

input of the other two controllers ux1
and ux4

are zero.
Figure 23 shows the predefned time synchronization error
curve.

From Figure 23, it is found that the synchronization
error of the system converges to zero and realizes syn-
chronization within the predefned time. Terefore, the
rationality and applicability of the predefned time syn-
chronization control scheme are illustrated by numerical
simulation.

6. Conclusion

In this paper, a 4D absolute memristor Jerk chaotic system is
proposed. Firstly, the memristor characteristics of the
hysteresis loop change of absolute memristor are analyzed
according to the changes of frequency and amplitude, which
are verifed by analog circuit and numerical simulation.
Secondly, through the phase diagrams, Poincaré section,

power spectrum, bifurcation diagram, 0-1 test, and Lya-
punov exponent spectrum method of the system, the
complex dynamic behavior caused by the change of pa-
rameters and initial values of the system is studied. It is
found that the system has reverse period doubling bi-
furcation, chaos degradation, and ofset boosting. In addi-
tion, through the system analog circuit design and FPGA
digital circuit implementation, the phase diagrams of the
system are captured in the oscilloscope to illustrate the
feasibility of its practical application. Finally, a simplifed
predefned time synchronization scheme and a predefned
full control input synchronization scheme are proposed.
Trough numerical simulation, it can be found that the
proposed simplifed predefned time synchronization
scheme not only simplifed the input of the controllers but
also achieves system synchronization in the predefned time.
Tis paper provides a study for the dynamic analysis of
a novel Jerk memristor system, and its rich dynamic be-
haviors are displayed, providing a theoretical basis for the
following practical engineering applications. Meanwhile, we
hope that in the next work, we can use the symplectic al-
gorithm to recalculate the numerical solution and realize the
control circuit of the system expectantly.
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