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In recent times, studies on discrete nonlinear systems received much attention among researchers because of their potential ap-
plications in real-world problems. In this study, we conducted an in-depth exploration into the stability of synchronization within
discrete nonlinear systems, specifcally focusing on the Hindmarsh–Rose map, the Chialvo neuron model, and the Lorenz map. Our
methodology revolved around the utilization of the master stability function approach. We systematically examined all conceivable
coupling confgurations for each model to ascertain the stability of synchronization manifolds. Te outcomes underscored that only
distinct coupling schemes manifest stable synchronization manifolds, while others do not exhibit this trait. Furthermore, a com-
prehensive analysis of the master stability function’s behavior was performed across a diverse range of coupling strengths (σ) and
system parameters. Tese fndings greatly enhance our understanding of network dynamics, as discrete-time dynamical systems
adeptly replicate the dynamics of continuous-time models, ofering signifcant reductions in computational complexity.

1. Introduction

Most of the natural processes around are modeled as
complex networks. Understanding the collective behaviors
of complex networks has attracted researchers from diferent
disciplines over the past decades. In particular, synchroni-
zation is one of the vital collective behavior of the complex
network of systems which is observed in many areas of
research, ranging from neuroscience to social systems [1–8].
Synchronization occurs when the systems in a network
behave collectively and have the same dynamics upon the
proper coupling strength. Simultaneously, complex net-
works have been studied by many researchers because of
their wide applicability in modeling the dynamics of social

networks, epidemics spread such as COVID-19, neuronal
networks, prey-predator dynamics, and human brain net-
works [9]. Te synchronization phenomenon has been
studied in complex networks in various aspects [10]. For
instance, synchronization in complex networks was studied
by Arenas et al. in [11]. Coombes and Tul studied the
synchrony in networks of coupled nonsmooth dynamical
systems [12]. Complex networks with long-range in-
teractions were considered by Rakshit et al., and we found
studies on the synchronization in [13]. A detailed study on
the network synchronization of various neuron models with
the inclusion of electromagnetic fux was investigated in
[14]. A detailed study of the synchronization of time-varying
networks was also found in [15]. Te literature on
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synchronization is huge, and one may refer to
[1, 3, 4, 6, 8, 10, 16–22] and references therein. Recently,
several studies have dealt with the synchronization of
complex networks with higher-order interactions [23–30].

To investigate the synchronization in complex networks,
the master stability function (MSF) is one of the funda-
mental tools in the nonlinear dynamics literature. We defne
MSF as the largest transverse Lyapunov exponent of the
synchronization manifold. Te condition for the occurrence
of synchronization is that the value of MSF at certain pa-
rameters should be negative. Pecora and Carroll introduced
this in the year 1998 to analyze the synchronization in
identical networks [31]. Te generic behavior of master
stability functions in coupled nonlinear dynamical systems
was studied in [32]. Te MSF of stochastically coupled
chaotic maps was studied by Porfri [33]. In the multivar-
iable coupled oscillators, the synchronization stability has
been analyzed using MSF formalism in [34]. Later, the re-
search on the MSF for synchronization stability became
a vibrant topic and extended to complex networks with
diferent topologies and structures. For more details, one can
refer to [23, 35–39].

In general, the systems/networks are modeled as either
continuous-time or discrete-time dynamical systems to
understand their dynamics. In the present work, we aim to
study networks of discrete systems since various real-life
problems, such as neurodynamics and population dynamics,
can be modeled as discrete dynamical systems. Most of the
studies have given attention to the MSF of continuous
dynamical systems. Very few studies in the literature have
focused on the synchronization of discrete systems by using
MSF. Sun and Cao analyzed the complete synchronization of
coupled Rulkov neuron networks with the help of MSF [40].
In [41], the authors have investigated the complete syn-
chronization of a coupled chaotic Aihara neuron network
with electrical synapses. In this series, we would like to
investigate the synchronization stability of networks of three
diferent discrete maps using the MSF formalism. In this
work, we study the stability of synchronization in networks
of coupled discrete maps. We consider three diferent maps:
the Hindmarsh–Rose map, the Chialvo neuron model, and
the Lorenz map. We investigate the stability of synchroni-
zation for all possible coupling confgurations in each sys-
tem. We also fnd that marginally synchronized states can
exist in networks of coupled maps. Tese states are not fully
synchronized, but they are still stable. Interestingly, the
Lorenz map exhibits multiple zero crossings and is found to
belong to the Γ4 class.

Our study provides a better understanding of the sta-
bility of the synchronization manifold of networks of
coupled maps. Tis information is important for un-
derstanding the dynamics of complex networks and for
designing networks that can be used for applications such as
secure communication and distributed computing. Also,
understanding the synchronization dynamics of networks of
maps is important in the study of complex network theory,
as these discrete-time dynamical systems efciently replicate
the dynamics of continuous-time models with reduced
computational efort.

Te structure of the article is as follows: in Section 2, we
present the theory of discrete MSF. Te synchronization of
the discrete HR neuron model is analyzed in Section 3. In
Section 4, we discuss the MSF studies of another network of
neurons, namely the discrete Chialvo neuron model. An-
other important model, namely the Lorenz map and its
synchronization stability through MSF, is presented in
Section 5. Finally, we give a summary and conclusion in
Section 6.

2. Background

A general model of a discrete nonlinear diference equation
is given by

x(k + 1) � F(x(k)). (1)

In [32], the authors have proposed a master stability
function approach to understand the synchronizability of
a network of N coupled oscillators for continuous-time
systems. We rewrite the same procedure for discrete-time
systems in the following way [42]. With the coupling matrix
C (Laplacian matrix) and the coupling function H(x), the
coupled systems of N maps can be modeled as follows:

xi(k + 1) � F xi(k)( 􏼁 − ρ 􏽘

N

m�1
CimH xm(k)( 􏼁, i � 1, 2, · · · , N,

(2)

where xi(k) denotes n-dimensional state vector of the ith

system at discrete-time k, (� 0, 1, 2, · · ·).
If the connection exists between the nodes i and m, then

the coupling matrix Cim has the value 1, otherwise 0. Te
Laplacian matrix should be 􏽐

N
m−1Cim � 0 for any value of m

in order to have the solution of equation (2) as the syn-
chronized states x1(k) � x2(k) � · · · � xN(k) � s(k). Here,
s(k) is the synchronized solution of the isolated system (1)
(solution means a fxed point, a periodic orbit, or even
a chaotic orbit of the uncoupled system).

xi(k) � si(k) + yi(k). (3)

From the master stability equation,

yl(k + 1) � DF(s(k)) − ρ 􏽘

N

m�1
ClmDH(s(k))⎛⎝ ⎞⎠yl(k). (4)

We analyze the stability of equation (2) at the syn-
chronized state s(k). Here, yl(k) is the variation about the
synchronized state s(k). Te terms DF(s(k)) and DH(s(k))

defne the Jacobian matrix for the velocity functions F(x(k))

and coupling function H(x(k)) evaluated on the synchro-
nization manifold s(k). Signifcance of velocity function
F(x(k)) and coupling function H(x(k)) can be found in
[32]. In [35], the authors have derived a new method by
using a block diagonalized coupling function with the help
of the matrix Q, which is constructed from the eigenvectors
of the Laplacian matrix C, and the diference equation in (4)
is changed to
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z(k) � Q
− 1

y(k),

zl(k + 1) � (DF(s(k)) − σDH(s(k)))zl(k).
(5)

where σ is the coupling strength and is denoted by ρλl where
λl corresponds to the eigenvalue of the Laplacian matrix Clm.
Te well-known Lyapunov and Floquet methods of MSF
calculations need complex computations and longer simu-
lation time; hence, as in [35], the error-basedmethod is used.
Te coupled map network model defned by (5) is nu-
merically solved, and the state variable (z) should be close to
zero or unbounded, and the logarithm of these ends is used
as the master stability function (MSF) of the coupled discrete
network.Temaster stability function (ψ) is calculated from
the largest Lyapunov exponent from the equation (5). If the
MSF (ψ) is negative, then the stability of the synchronized
state can be determined by small disturbance, which
eventually will diminish exponentially so that the syn-
chronous solution is stable. Te synchronous solution be-
comes unstable, and the largest Lyapunov exponent is
positive. Tis is because a tiny perturbation from the syn-
chronous state will lead to trajectories that diverge from the
state. As a function of coupling strength, the MSF may cross
zero several times. Depending on the number of crossings,
the class or the classifcation of MSF is defned. Class Γ0 is
characterized by the absence of any fnite zero crossings and
is always in a positive state. Tis means that the network
never allows synchronization to occur. Similarly, class Γt
exhibits a single fnite zero crossing, signifying that once the
network achieves synchronization, and it remains in that
synchronized state. On the other hand, class Γ2 displays two
fnite zero crossings. In this class, there exists a fnite range of
coupling parameters where network synchronization can
occur. However, as soon as the MSF becomes positive, the
network desynchronizes. Likewise, classes Γ3 and Γ4 depend
on the number of times MSF crosses the zero axis. To show
the efectiveness of the proposed discrete MSF, we have
chosen the discrete HR model [43, 44], the discrete Chialvo
model [45], and the Lorenz map [46]. We use MATLAB to
solve the network of oscillators with k � 20000 and after
removing enough transient.

3. Case A: Discrete Hindmarsh–Rose
Model (HR)

Te three-dimensional HR map proposed in [44] is defned
by the following diference equations:

x(k + 1) � x(k) + δ y(k) − ax(k)
3

+ bx(k)
2

− z(k) + I􏼐 􏼑,

y(k + 1) � y(k) + δ c − dx(k)
2

− y(k)􏼐 􏼑,

z(k + 1) � z(k) + δ(r(s(x(k) + 1.6) − z(k))).

(6)

Here, x(k), y(k), and z(k) denote the system variables,
and we have used the parameters as defned in [44]. Te
parameters δ and k are defned as integration step size and
discrete-time (k � 1, 2, 3, · · ·), respectively. Te other system
parameters take the following values: a � 1, b � 3, c � 1,

d � 5, s � 4, r � 0.006, and I � 3.3. Studies on various as-
pects of the Hindmarsh–Rose model in the continuous case
are discussed in [28, 47–49]. Synchronization stability of the
continuous-time Hindmarsh–Rose has been reported for
various choices of coupling schemes [32]. However, a de-
tailed understanding of the stability of synchronization of
the discrete-time Hindmarsh–Rose model is not fully re-
ported in the literature. In order to understand the stability
of the synchronization, we write the Jacobian matrix of the
discrete HR map (6) as follows:

J �

1 + δ −3ax
2
(k) + 2bx(k)􏼐 􏼑 δ −δ

−2δdx(k) 1 − δ 0

δrs 0 1 − δr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

By using the error-based MSF model (5) and the Jaco-
bian matrix (7), the new variational equation of the coupled
discrete HR model is derived as follows:

z1(k + 1)

z2(k + 1)

z3(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 + δm − σ δ −δ

−2δdx(k) 1 − δ 0

δrs 0 1 − δr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z1(k)

z2(k)

z3(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where m � (−3ax2(k) + 2bx(k)). Te above model is
a representation of x − x coupling scheme. Depending on
the variables coupled, the model (8) has nine diferent
coupling matrices whose master stability function plots are
shown in Figure 1. In the x − x coupling scheme, the MSF
crosses zero and enters into synchronization region at σ �

0.04311 which is marked in blue color in Figure 1(a). Te
discrete HR neuron model shows a longer range of coupling
strength in the synchronized region. Further increasing the
coupling strength, the MSF crosses zero to the positive
region at the coupling strength σ � 2.619 which is marked in
red color in the same fgure. Te x − x coupling scheme is
categorized into Γ2 with two fnite crossing points. Te MSF
for the coupling scheme x − y is presented in Figure 1(b).
From this fgure, we observed the MSF crosses zero and
entered the synchronized region at the value of σ � 0.08919.
It remains in the synchronized regime only for a short range
of coupling strength σ up to σ � 0.1225. When σ is increased
beyond 0.1225, the MSF again crosses zero to the positive
region. Tough the x − y coupling has a short parameter
range of synchronization, this coupling scheme also falls
under the category of Γ2 with two fnite crossing points. As
far as the x − z coupling scheme is concerned, the MSF
reaches zero at the value of σ � 0.03117, and it entered back
to the positive region without going further into the negative
region. Here, the HR neurons are marginally synchronized
at the σ has the value σ � 0.03117. In the case of marginally
synchronization, the network has some degree of syn-
chronization among the components, and it is not strong
enough to ensure complete or perfect synchronization. Tis
is marked in green color in Figure 1(c).

Likewise, when a couple of other possible pairs of var-
iables, MSF crosses zero value two times when we opted for
the y − y coupling scheme. At σ � 0.03148 (blue color), the
MSF moves to a negative region and the synchronization
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manifold of the coupled systems is stable while MSF moves
back to the positive value for σ greater than 1.917 (red color),
and hence, the synchronizationmanifold is unstable which is
shown in Figure 1(e). Te y − y coupling scheme falls under
the category of Γ2 with two fnite crossing points. Te rest of
the combinations of the coupling schemes discussed in
Figures 1(d) and 1(f)–1(i) show that the synchronization
manifold of the coupled discrete HR neurons remains un-
stable for any given value of the σ. All these coupling
schemes come under the category Γ0 since there are no fnite
crossing points.

Similar to the parameter σ, the parameter I shows
a signifcant efect on the stability of the synchronization
manifold. To check the efect of I, we have plotted Fig-
ure 2, which shows the efect of MSF versus the external

current I and the coupling strength σ for the coupling
scheme x − x. Colors in the image plot clearly show how
the regime of synchronization and unsynchronization
stability changes with respect to the parameters σ and I. In
particular, the sky blue color regime indicates the syn-
chronization of HR neurons, and green, yellow, and pink
colors indicate the unsynchronized part of the HR
neurons.

Next, we would like to analyze another neuron model,
namely the discrete Chialvo neuron model.

4. Discrete Chialvo Neuron Model

Te mathematical model of the Chialvo neuron [50] is
defned as follows:
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Figure 1: MSF of the nine diferent coupling schemes for discrete HR neuron model (6). (a–c) depict ψ over σ for the coupling schemes
x − x, x − y, and x − z, respectively. Likewise, for the coupling schemes y − x, y − y, and y − z, ψ versus σ are plotted as 2D plots in (d–f).
Te response of ψ versus σ for the other coupling schemes z − x, z − y, and z − z is displayed in (g–i).
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x(k + 1) � x(k)
2
e

(y(k)− x(k))
+ k1 + px(k)tanh(z(k)),

y(k + 1) � ay(k) − bx(k) + c,

z(k + 1) � z(k) + εx(k).

(9)

Variables x(k), y(k), and z(k) defne the activation
variable, recovery variable, and magnetic fux across the
neuron membrane, respectively. Constant bias is defned by
the parameter k1, and it has the value k1 � 0.03. Te di-
mensionless parameters used in (9) are defned as
a � 0.88, b � 0.18, c � 0.28, ε � 0.01, p � 0.01. For more
details, studies related to Chialvo neurons are found in
[51, 52]. To the best of our knowledge, the stability of the
synchronization for the discrete-time Chialvo neurons has
not been reported in the literature. Studies have been
conducted to understand the synchronization dynamics of
the Chialvo neurons not on the stability of synchronization
[53]. We write the Jacobian matrix of the model (9) as
follows:

J �

f1 f2 f3

−b a 0

ε 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

where the expressions f1, f2, and f3 take the form

f1 � −x
2
(k)e

y(k)− x(k)
+ 2x(k)e

y(k)− x(k)

+ p tanh(z(k)),
(11)

f2 � x
2
(k)e

y(k)− x(k)
, (12)

f3 � px(k) 1 − tanh z(k)
2

􏼐 􏼑. (13)

An error-based equation can be derived using (9) and
(10), as well as the new variational equation of the Chialvo
neuron model, which is derived for the x − x coupling as
follows:

z1(k + 1)

z2(k + 1)

z3(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

f1 − σ f2 f3

−b a 0

ε 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z1(k)

z2(k)

z3(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

where σ is the coupling term for the x − x coupling con-
fguration. For the numerical analysis, we considered all nine
possible combinations of the coupling schemes as we did in
the previous case. From Figure 3, we observe that the sta-
bility of the synchronization manifold of coupled Chialvo
neurons map happens only for two coupling schemes,
namely x − x and y − y. Both the coupling schemes belong
to the class Γ2 with two fnite crossing points. Te syn-
chronization manifold stability sustains a wide range of
coupling strengths σ. In the frst-coupling scheme (x − x),
the MSF reaches zero at σ � 0.1116 (blue color) and enters
into the synchronized region. Te MSF sustains in the zero
for a wide range from σ � 0.1116 to σ � 2.043. As we in-
crease coupling strength σ > 2.043, it moves to a positive
(unsynchronized) region (red color) which is given in
Figure 3(a). Likewise, for the y − y coupling scheme, as we
increase the coupling strength, the MSF becomes zero from
the positive region at σ � 0.09985 (blue color). Te MSF
remains zero for a wide range of coupling strength and
enters into an unsynchronized region at the σ value 1.882
(red color) which is shown in Figure 3(e). For x − y cou-
pling, the value of ψ reaches zero at σ � 0.0241, and the
Chialvo neurons are marginally synchronized which is
marked as green color in Figure 3(b). Other coupling
combinations such as x − z, y − x, y − z, and z − z show
positive MSF value (ψ) of the coupling parameter range
from 0 to 3. Some of the coupling combinations, such as
z − x and z − y, show almost no change in the MSF as we
change the coupling parameter σ. It means that the coupling
parameter does not infuence the stability of the synchro-
nization manifold. All the other coupling schemes (x − z,
y − x, y − z, and z − z) show no stable synchronization
manifold so they belong to class Γ0 with no fnite crossing
point. Te dashed line shows the zero value of the MSF,
which is the separation of synchronized and unsynchronized
regimes.

To show the stability of the synchronization manifold of
the system with various parameter regimes, we have plotted
the MSF as a function of the parameter k1 and coupling
strength σ. Te image plot shows the efect of MSF versus the
parameters k1 and σ for the x − x coupling scheme is
presented in Figure 4. From the image plot, we have seen that
the coupling strength ranges from 0 to 5, and the parameter
k1 ranges from 0 to 0.2, and the system remains in the
unsynchronized region.
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Figure 3: Te response of MSF versus coupling strength σ for diferent coupling schemes is discussed here. For the coupling schemes x − x,
x − y, and x − z, the efect of MSF versus the coupling strength σ is depicted in (a–c). Likewise, for the coupling schemes y − x, y − y, and
y − z, ψ over σ is presented in (d–f). Te outcome of ψ versus σ is shown as 2D plots (g–i) for the coupling schemes z − x, z − y, and z − z.
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Figure 4: Image plot for the MSF analysis ψ versus the system parameter k1 and the coupling strength σ.
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5. Lorenz Map

Temathematical model for a Lorenz map can be written as
[46] follows:

x(k + 1) � (1 + ab)x(k) − bx(k)y(k),

y(k + 1) � (1 − b)y(k) + bx(k)
2
.

(15)

Te system parameters are denoted as a and b. Followed
by the introduction of the Lorenz map in [46], its syn-
chronization dynamics and stability of the synchronization
have not been studied in the literature. Te Jacobian matrix
associated with (15) can be written as follows:

J �
1 + ab − by(k) −bx(k)

2bx(k) 1 − b
􏼢 􏼣. (16)

We derive the error-based equation by using (15) and
(16), and it takes the following form:

z1(k + 1)

z2(k + 1)
􏼢 􏼣 �

1 + ab − by(k) − σ −bx(k)

2bx(k) 1 − b
􏼢 􏼣

z1(k)

z2(k)
􏼢 􏼣,

(17)

where σ represents the coupling strength. Te above rep-
resentation is given for the x − x coupling scheme.

For the x − x coupling, initially, the MSF becomes stable
at σ � 1.188, while increasing the coupling parameter, the

synchronization stability breaks, and the MSF becomes
positive (synchronization manifold is unstable) at σ � 2.144.
Te unstable synchronizationmanifold becomes stable again
σ � 2.315. However, the synchronization stability breaks
again when we increase the coupling strength to σ � 2.436.
We plotted all these transitions of MSF in Figure 5(a). As we
can see that the zero crossing happens four times, it comes
under the class of Γ4. When the MSF crosses zero for the frst
time at σ � 1.188, the synchronization stays for the longer
range of coupling strength up to σ and reaches the value
σ � 2.144. Once the MSF enters the positive region, it re-
mains there for only a short range of σ value, and it ap-
proaches the negative region at σ � 2.315. Likewise, after
a short range of σ value, the MSF crosses zero at σ � 2.436
and becomes unstable (positive value). Figure 5, we observed
that for all other types of coupling such as x − y, y − y, and
y − x, the MSF of the systems becomes unstable. Te syn-
chronization stability of the map does not occur, that is, MSF
does not cross the zero value, and hence, all these coupling
schemes belong to class Γ0 since there is no zero crossing.

To show the behavior of the MSF over a wide range of
parameters, we have plotted MSF versus coupling strength σ
and the system parameters a and b which are shown in
Figure 6. Figure 6(a) depicts the MSF of the coupled map as
a function of coupling strength σ and the system parameter b

for the x − x coupling scheme. We can see an island of the
regime of negative values of MSF which is marked in blue
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Figure 5: (a, b) MSF analysis for the coupling schemes x − x and x − y of Lorenz map. Likewise, for the other two coupling schemes y − x

and y − y, ψ versus σ are plotted in (c, d).
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color, where the system has synchronization stability. Te
unsynchronized regimes are marked with yellow and red
colors.Te image plot of MSF versus the coupling strength σ
and the other system parameter a for the range 0 to 1.25 is
plotted in Figure 6(b). Te blue, green, yellow, and green
regions indicate the synchronized state whereas pink and
pinkish blue indicate the unsynchronized region. Te en-
larged view of Figure 6(b) for the range of system parameter
a from 0.6 to 1.25 is shown in Figure 6(c). Te plot of MSF
between the parameters σ and a shows a wide range of stable
synchronization manifolds.

6. Conclusion

In this study, we analyzed the stability of synchronization
in discrete complex networks. Specifcally, we considered
three diferent types of discrete networks: the Hind-
marsh–Rose neuron model, the Chialvo neuron model,

and the Lorenz map. For the HR neuron model, we ex-
amined nine diferent coupling confgurations to analyze
the synchronization stability among the discrete neurons.
Our analysis revealed that discrete HR neurons exhibited
synchrony in only four coupling schemes. Similarly, for
the Chialvo neuron model, we observed synchronization
occurring in three specifc coupling schemes. In the case
of the Lorenz map, synchronization stability was found
exclusively in the x − x coupling scheme. We also pre-
sented image plots for all the considered discrete non-
linear models, providing a visual representation of their
dynamics. Across all three maps, we observed that the x −

x coupling schemes demonstrated a longer range of
synchronization stability compared to other coupling
schemes. To investigate synchronization stability, we
utilized a variety of analytical and numerical methods,
including linear stability analysis and numerical
simulations.
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Figure 6: Image plot of the MSF (ψ) as a function of (a) coupling strength σ and the system parameter b and (b) coupling strength σ and the
system parameter a. An enlarged view of (b) is displayed in (c) for the range a ∈ (0.6, 1.3) and σ ∈ (1, 3).
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Our fndings indicated that the stability of synchroni-
zation depends on several factors, such as the type of map,
the strength of coupling, and the network topology. Fur-
thermore, we discovered the existence of marginally syn-
chronized states in networks of coupled maps. Although
these states are not fully synchronized, they remain stable.
Tese results contribute valuable insights into the stability of
synchronization in networks of coupled maps. Un-
derstanding these dynamics is crucial for designing networks
applicable in felds such as secure communication and
distributed computing. Given the emergence of new dy-
namics, such as marginal synchronization and multiple zero
crossings of MSF (master stability function), it would be
intriguing to explore these behaviors in fractional-order
discrete complex networks. In particular, investigating the
impact of fractional order on synchronization stability using
MSF analysis holds promise for further exploration.
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[8] A. López-González, J. Meda Campaña, E. Hernández
Mart́ınez, and P. P. Contro, “Multi robot distance based

formation using Parallel Genetic Algorithm,” Applied Soft
Computing, vol. 86, Article ID 105929, 2020.

[9] E. Estrada, Te Structure of Complex Networks: Teory and
Applications, Oxford University Press, Oxford, UK, 2012.

[10] S. Boccaletti, A. N. Pisarchik, C. I. Del Genio, and A. Amann,
Synchronization: From Coupled Systems to Complex Networks,
Cambridge University Press, Cambridge, UK, 2018.

[11] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, and
C. Zhou, “Synchronization in complex networks,” Physics
Reports, vol. 469, no. 3, pp. 93–153, 2008.

[12] S. Coombes and R. Tul, “Synchrony in networks of coupled
non-smooth dynamical systems: extending the master sta-
bility function,” European Journal of Applied Mathematics,
vol. 27, no. 6, pp. 904–922, 2016.

[13] S. Rakshit, S. Majhi, and D. Ghosh, “Synchronization in
complex networks with long-range interactions,” Journal of
Physics A: Mathematical and Teoretical, vol. 53, no. 15,
Article ID 154002, 2020.

[14] K. Rajagopal, S. Jafari, A. Karthikeyan, and A. Srinivasan,
“Efect of magnetic induction on the synchronizability of
coupled neuron network,” Chaos, vol. 31, no. 8, Article ID
83115, 2021.

[15] D. Ghosh, M. Frasca, A. Rizzo et al., “Te synchronized
dynamics of time-varying networks,” Physics Reports, vol. 949,
pp. 1–63, 2022.

[16] S. Majhi and D. Ghosh, “Synchronization of moving oscil-
lators in three dimensional space,” Chaos, vol. 27, no. 5,
Article ID 53115, 2017.

[17] C.W.Wu, Synchronization in Complex Networks of Nonlinear
Dynamical Systems, World Scientifc, Singapore, 2007.

[18] P. S. Swathy, S. Sabarathinam, K. Suresh, and
K.Tamilmaran, “Chaos synchronization and transmission of
information in coupled SC-CNN-based canonical Chua’s
circuit,” Nonlinear Dynamics, vol. 78, no. 2, pp. 1033–1047,
2014.

[19] V. Varshney, S. Kumarasamy, A. Mishra, B. Biswal, and
A. Prasad, “Traveling of extreme events in network of counter-
rotating nonlinear oscillators,” Chaos, vol. 31, no. 9, Article ID
93136, 2021.

[20] H. S. Chiang, M. Y. Chen, and Y. J. Huang, “Wavelet-based
EEG processing for epilepsy detection using fuzzy entropy
and associative petri net,” IEEE Access, vol. 7, pp. 103255–
103262, 2019.

[21] D. M. Vargas, “Superpixels extraction by an Intuitionistic
fuzzy clustering algorithm,” Journal of Applied Research and
Technology, vol. 19, no. 2, pp. 140–152, 2021.

[22] S. Kumarasamy, A. Srinivasan, M. Ramasamy, and
K. Rajagopal, “Strange nonchaotic dynamics in a discrete
FitzHugh–Nagumo neuron model with sigmoidal recovery
variable,” Chaos, vol. 32, no. 7, Article ID 73106, 2022.

[23] L. V. Gambuzza, F. Di Patti, L. Gallo et al., “Stability of
synchronization in simplicial complexes,” Nature Commu-
nications, vol. 12, no. 1, pp. 1255–1313, 2021.

[24] M. S. Anwar and D. Ghosh, “Intralayer and interlayer syn-
chronization in multiplex network with higher-order in-
teractions,” Chaos, vol. 32, no. 3, Article ID 33125, 2022.

[25] P. S. Skardal and A. Arenas, “Higher order interactions in
complex networks of phase oscillators promote abrupt syn-
chronization switching,” Communications Physics, vol. 3,
no. 1, pp. 218–226, 2020.

[26] Y. Zhang, M. Lucas, and F. Battiston, “Do higher-order
interactions promote synchronization?” 2022, https://www.
researchgate.net/publication/359079670_Do_higher-order_
interactions_promote_synchronization.

Complexity 9

https://www.researchgate.net/publication/359079670_Do_higher-order_interactions_promote_synchronization
https://www.researchgate.net/publication/359079670_Do_higher-order_interactions_promote_synchronization
https://www.researchgate.net/publication/359079670_Do_higher-order_interactions_promote_synchronization


[27] F. Battiston, E. Amico, A. Barrat et al., “Te physics of higher-
order interactions in complex systems,” Nature Physics,
vol. 17, no. 10, pp. 1093–1098, 2021.

[28] F. Parastesh, M. Mehrabbeik, K. Rajagopal, S. Jafari, and
M. Perc, “Synchronization in Hindmarsh–Rose neurons
subject to higher-order interactions,” Chaos, vol. 32, no. 1,
Article ID 13125, 2022.

[29] F. Battiston, G. Cencetti, I. Iacopini et al., “Networks beyond
pairwise interactions: structure and dynamics,” Physics Re-
ports, vol. 874, pp. 1–92, 2020.

[30] M. Ramasamy, S. Devarajan, S. Kumarasamy, and
K. Rajagopal, “Efect of higher-order interactions on syn-
chronization of neuron models with electromagnetic in-
duction,” Applied Mathematics and Computation, vol. 434,
Article ID 127447, 2022.

[31] L. M. Pecora and T. L. Carroll, “Master stability functions for
synchronized coupled systems,” Physical Review Letters,
vol. 80, no. 10, pp. 2109–2112, 1998.

[32] L. Huang, Q. Chen, Y. C. Lai, and L. M. Pecora, “Generic
behavior of master-stability functions in coupled nonlinear
dynamical systems,” Physical Review A, vol. 80, no. 3, Article
ID 36204, 2009.

[33] M. Porfri, “A master stability function for stochastically
coupled chaotic maps,” EPL, vol. 96, no. 4, Article ID 40014,
2011.

[34] R. Sevilla-Escoboza, R. Gutierrez, G. Huerta-Cuellar et al.,
“Enhancing the stability of the synchronization of multi-
variable coupled oscillators,” Physical Review A, vol. 92, no. 3,
Article ID 32804, 2015.

[35] S. Panahi and S. Jafari, “A fast technique for calculating master
stability function,” International Journal of Modern Physics B,
vol. 34, no. 5, Article ID 2050024, 2020.

[36] F. Sorrentino and M. Porfri, “Analysis of parameter mis-
matches in the master stability function for network syn-
chronization,” EPL, vol. 93, no. 5, Article ID 50002, 2011.

[37] J. Ramadoss, K. Rajagopal, H. Natiq, and I. Hussain, “Te
linearity of the master stability function,” Europhysics Letters,
vol. 139, no. 1, Article ID 12002, 2022.
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