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Te main aim of this study is the dynamic analysis of isotropic homogeneous beams using the method of initial functions (MIFs)
and comparison with classical beam theories and FEM. Also, this research employs the state space methodology, with a special
emphasis on isotropy, to analyse simply supported beam systems. A mathematical model for the dynamic response of beams is
constructed using themethod of initial functions.Te novelty of this study lies in its approach to dynamic analysis, where isotropic
homogeneous beams are explored without making assumptions, thus ensuring increased precision using the method of initial
functions. Importantly, the approach remains free from restrictive assumptions and relies solely on mathematical formulations,
yielding results superior to classical beam theories such as Euler–Bernoulli, Timoshenko, and Rayleigh beam theories. In this
work, the application of MIFs of various orders (4th, 6th, 8th, and 10th) to calculate natural frequencies is explored, enabling
a thorough examination of the beam’s dynamic characteristics. In addition, parameters such as normal stresses, shear stresses, and
defections in diferent directions are considered to provide a comprehensive understanding of beam behaviour. To validate the
fndings, a detailed comparison with a fnite element method (FEM) is conducted, achieving excellent agreement between the
analytical results and FEM solutions. Furthermore, the infuence of Poisson’s ratio (μ) on natural frequencies is investigated by
varying its value from 0.18 to 0.30. Te research also explores the deviation of plane stress values of the beam section from those
estimated using the FEM for the corresponding components.

1. Introduction

Every component of a structure vibrates freely. It implies
that there are a fxed number of oscillations every second.
Natural frequency is the term for the vibrations that occur
naturally when a system seeks to oscillate freely. Te system
vibrates more intensely when forced to vibrate at its natural
frequency (resonance). Tis bigger amplitude is undesirable
for the structure’s safety; hence, we must steer clear of this
system’s inherent frequency to get lesser vibrations. Tis
paper aims to forecast the structure’s intrinsic dynamic
response, in terms of natural frequency and stresses and
displacements, through a linear-free vibration analysis of
a beam on which modern design techniques are founded.

Te frst person to address dynamic stresses in the beam
structure was Timoshenko. Tomas and Abbas [1] repre-
sented a fnite element model of a Timoshenko beam with
nodal degrees of freedom. Tree fxed-hinged Timoshenko
beams excited by actual seismic motions were used by Kim
and Cha [2] to test the validity of the formulation. Later,
structures subjected to dynamic loading or seismic excita-
tions are analysed using various methods, including time
history analysis, response spectrum analysis, and frequency-
domain spectral analysis. Singh and Ghafory-Ashtiany [3]
developed a step-by-step modal time history integration
method for dynamic analysis of earthquake-induced ground
motions in nonclassically damped linear structures. Several
parameters, such as spectral displacement, peak ground
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acceleration, and absolute uniform duration, were used by
Seyedi et al. [4] to characterize the earthquake ground
motion. For the elastic response spectrum, Chopra [5]
summarised the peak response to a specifc component of
ground motion of all probable linear single-degree-of-
freedom (SDF) systems. In a simplifed form, the back-
ground of the response spectrum method was presented by
Gupta et al. [6], who worked on incremental response
spectrum analysis (IRSA). At each piecewise linear in-
cremental step, this method relies on a simple imple-
mentation of RSA. Solari and de Gaetano [7] demonstrated
a collaborative calibration and progress of response spec-
trum analysis and frequency-domain analysis, resulting in
fndings that considerably agree, despite conceptual and
operational diferences.

Baghani et al. [8] studied the free vibration of large
amplitude of tapered beams, and the governing equation is
solved by the method of the variational iteration. Natural
frequency for diferent mode shapes under diferent geo-
metrical parameters is evaluated. Babaei et al. [9] analysed
the functionally graded material beams for free vibrations.
Te support system of the beams is given over foundation of
elastic nature. Governing equations of the beam are derived
using higher-order displacement felds. Dimensionless
amplitude parameters for mode shape one are derived to
study the natural frequency of FGCP beams. Vatankhah
et al. [10] worked on the exact controllability problem based
on partial diferential equations, and further numerical
analysis was founded on the Hilbert uniqueness method and
semigroup techniques and established the correctness of the
results. Salarieh and Ghorashi [11], with the use of Ham-
ilton’s principle, analysed the cantilever beam for free vi-
bration along with torsional and planar elastic bending
deformations. Numerical analysis for diferent mode shapes
establishes the Timoshenko beam theory and is being
compared with other beam models. Jaworski and Dowell
[12] investigated cantilevered beam fexural vibration with
multiple cross-section steps. Tey compared experimental
results to various theoretical methods, extending the analysis
to diferent beam types. Alshorbagy et al. [13] discussed
dynamic characteristics of functionally graded beams, fo-
cusing on material distribution, slenderness ratios, and
boundary conditions’ impact on beam dynamics through
fnite element analysis.

Shenas et al. [14], Malekzadeh and Heydarpour [15], and
Malekzadeh et al. [16] examined the dynamic features of
triangular plates, cylindrical shells, and three-dimensional
conical shells of FGCP under a thermal environment. Tese
works are constructed upon shear deformation theory along
with the Chebyshev–Ritz technique and the principle of
Hamilton. Te elastic coefcients are used for deriving the
eigenfrequency equations, and the diferential quadrature
method (DQM) is a numerical tool that is used to calculate
geometric and frequency parameters. Pouresmaeeli et al.
[17] frst analysed double-orthotropic nanoplates which are
simply supported and fxed from all edges. Te efect of the
external medium coupled from two sides, as well as the
small-scale efect, is investigated on the basis of nonlocal
theory. Te dynamic properties of a viscoelastic nanoplate

are also investigated using the nonlocal plate theory and the
Kelvin–Voigt model. After establishing a governing equa-
tion with the help of numerical examples, the efects of
external damping on frequency are studied. Non-
dimensional frequency parameters for thick doubly curved
FGCP are analysed by Pouresmaeeli and Fazelzadeh [18]
with the use of Galerkin’s method. Te study employs
various permutations of boundary conditions and geo-
metrical constraints such as the thickness ratio and the
aspect ratio to demonstrate the correctness of the proposed
model. Te natural frequency and other vibration charac-
teristics are analysed by Mirzaei and Kiani [19] and Mal-
ekzadeh and Zarei [20] for composite plates with shell theory
of frst-order shear deformation (FSDT). Te governing
equation is solved by the eigenvalue problemwith the help of
the Ritz method, and by employing the diferential quad-
rature method (DQM), numerical results unveil the im-
portance of the volume fraction and the dispersion profle in
dynamic analysis. Kiani [21] employed the Ritz formulation
to derive the matrix illustration of the equations of motion
related to the natural frequency of FGCP skew plates.
Subsequently, parametric studies validate the volume frac-
tion’s infuence on frequency parameters. Kiani [22] also
investigated free vibration parameters of CNTRC plates
through the layers of piezoelectric. Kiani et al. [23] analysed
the natural frequency of FGCP of conical shapes with
Donnell’s theory and FSDT. To construct the shape function
of the governing equation, the Gram–Schmidt process is
used, and the numerical results are confrmed by a para-
metric investigation following convergence and comparison
studies. Yildirim [24] delves into the vibration behaviour of
functionally graded core sandwich insulation panels, me-
ticulously considering material properties and grading’s
infuence on natural frequencies. Tis study also introduces
the complementary function method (CFM) as an efcient
solution. Continuing the exploration of composite struc-
tures, Yildirim [25] investigates the free vibration charac-
teristics of composite sandwich beams, emphasizing
isotropic face sheets and an orthotropic core.Teir use of the
complementary function method in solving diferential
equations enhances precision. Shifting focus towards plate
assemblies, Liu et al. [26] introduce a spectral dynamic
stifness (SDS) model. Tis versatile approach accommo-
dates complex plate structures with diferent boundary
conditions, incorporating beam stifeners. It is validated
with ANSYS, ofering computational efciency and ro-
bustness. Extending the applications of structural vibration
analysis, Yildirim [27] harnesses artifcial neural networks to
estimate the properties of functionally graded beams. Tis
innovative approach incorporates material properties,
grading direction, and slenderness ratios, eliminating the
need for solving diferential equations or conducting time-
consuming experiments. Meanwhile, Noori and Yildirim,
[28] undertake a comprehensive investigation into the dy-
namic behaviour of pinned-pinned beams. Teir study
employs the fnite element method with well-established
software such as ANSYS and SAP2000, ofering valuable
results for both free and forced vibration responses. Stepping
into the realm of material science, Al-Zahrani et al. [29]
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explore the free vibration of plane stress strips composed of
axial and bidirectional functionally graded materials using
fnite element modelling in ANSYS. Teir research in-
vestigates the impact of material gradation and boundary
conditions on natural frequencies, ofering valuable insights
for various structural applications. Marzavan and Nasta-
sescu [30] advance the understanding of functionally graded
materials (FGMs) in structural components. Tey introduce
innovative concepts, such as the equivalent plate and
multilayer plate, and validate their methodology through
modal analysis and ANSYS simulations, providing accessible
models for dynamic calculations of FGM structures. Tan
et al. [31] also bring our attention to thin-walled box beams’
free vibration characteristics, employing fne shear de-
formation theory and high-order beam theory for dynamic
solutions. Teir validation through fnite element simula-
tions in ANSYS highlights the role of various deformation
modes in structural design, ultimately enhancing our un-
derstanding of these intricate structures.

Te method of initial functions (MIFs) is a tool for
analysing elasticity and structural mechanics. For rectan-
gular regions, Vlasov invented the MIFs. Te scientist de-
rived the fundamental relations of the method for an
isotropic continuum autonomously. Tis approach was
extended by Das and Setlur [32] to two-dimensional elas-
todynamic problems. Tey developed a method for calcu-
lating stresses and deformations with the help of Sylvester’s
theorem and the Maclaurin series. Te displacements and
stresses on one layer of an elastic beam can be used to
determine the displacements and stresses on adjacent layers.
Te MIF is exact in the results and very efcient in appli-
cations. Te MIF is ubiquitous. It applies to all conditions
and situations (static and dynamic). All kinds of structures
(monolithic, composite, and layered) under various
boundary conditions (simply supported, cantilever, and
continuous) can be analysed through it. Multiple theories
give approximate and exact solutions that can be extracted
from the MIFs. Yet, its application is mostly seen in the feld
of static analysis of the structure. It has been widely used in
varied work of static analysis of structures by Matrosov [33].
Very few researchers and scientists have used the method in
structural dynamics. To calculate the natural frequency of
a thick rectangular plate, Sundara et al. [34] employed the
method of initial functions. Results corroborate the shear
force and rotatory inertia efect in dynamic analysis. Sundara
Raja Iyengar and Raman [35] took into account the free
vibrations of arbitrary depth rectangular beams. It is an
extension of the state-space method to the elastodynamic
problem. Furthermore, they derived the MIF relation with
the help of the eigenvalue problem and the Cayley–Hamilton
theorem. Sundara Raja Iyengar et al. [36] examine the
frequencies of rectangular plates’ free vibrations with one or
more fxed edges and varying thicknesses. Celep [37] and
Celep [38] proposed a generalised version of the MIFs in
cylindrical coordinates. Tey attained the free vibration
parameters of a clamped circular plate. Goloskokov and
Matrosov [39] analysed an anisotropic body for the three-
dimensional elastodynamic problem. Based on relationships
developed with MIFs, the bending of an orthotropic plate is

considered. Te load is assumed as a trigonometric series.
Tese relationships are used to model the bending of
orthotropic plates, with the load represented as a double
trigonometric series.

Examples of sandwich plates with three layers and an
aggregate with transverse isotropy are used to demonstrate
how the method can be implemented using the MIF. When
considering end efects, it is useful to describe results as
series in Papkovich–Fadle eigenfunctions. Kovalenko et al.
[40] and Kovalenko and Shulyakovskaya [41] developed
a method for creating precise results for a half strip (rect-
angle) in the form of sequence in Papkovich–Fadle eigen-
functions based on the MIFs. To analyse reinforced concrete
brick-flled composite beams, the MIF is used by Patel et al.
[42]. For this, they devised problems based on equations of
the MIFs. Te stress block, which is employed in the limit
state design of RC beams, is used to obtain the brick re-
placement zone. Petrosyan et al. [43] used the method of
superposition to build a general solution for an orthotropic
rectangle through the MIFs employing trigonometric series
as initial functions. Patel et al. [44] analysed inflled beams
with the usage of the MIFs and compared it with the results
obtained from FEM analysis. Tey formulated the problems
based on equations of MIFs. At frst, the initial functions for
the lowermost surface of the beam are determined with the
help of the assumption of auxiliary function and boundary
conditions. Furthermore, the stresses and defections on the
other layers of the beam can be determined. Patel et al. [45]
investigated the result of changing Poisson’s ratio on the
beam’s behaviour. It has been found that Poisson’s ratio (µ)
has little or no infuence on stresses but has a considerable
impact on displacements and strains. In the study conducted
by Asutkar et al. [46], rubber aggregates are utilised in
concrete to partially replace coarse aggregates and the im-
pact on concrete properties is explored. Modifed concrete is
made of concrete that uses rubber aggregates in place of
coarse aggregates and adjusts the replacement proportion.
Using the method of starting functions, the stresses and
displacements of beams are determined. Bending theory is
compared to the MIFs for analytical results.

Matrosov et al. [47] provided a thorough assessment of
the publications dedicated to the formation and advance-
ment of the MIFs. Tey also emphasized its applicability to
diferent engineering problems. In the realm of Fourier
transforms, the MIF is considered. Te results of eigen-
functions of the boundary value problem are given as im-
proper Fourier integrals or series expansions. Te MIF for
micropolar media in plane strain conditions was also pro-
posed by Matrosov [33]. In this study, he analysed a sample
made of human bone, considering it a micropolar medium.
His research is centred on the changes in the behaviour of
“micropolar” stress-strain state components as the scale
factor changes. MIFs can be used to formulate a solution in
any defnitive realm of the relevant coordinate system. In the
present work, free vibration parameters under diferent
support conditions are investigated with the help of
mathematical formulations based on the MIFs. It is dis-
tinctive in contrast to the conventional high-order Taylor
series approach, lumped mass method, and consistent mass
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method; the present paper expands the state space method to
two-dimensional elastodynamic problems. Te preciseness
of the results has been established with the help of results
drawn from FEM. Te efect of Poisson’s ratios on the
analysis is also investigated in this work. Patel et al. [48] also
apply the method of initial functions (MIF) to analyse steel
beam behaviour under various loadings. Te MIF’s
hypothesis-free approach precisely resolves stress and strain,
comparing results with bending theory, ofering signifcant
insights.

2. Formulation of Problem

Te equations of dynamic equilibrium following the theory
of elasticity for an axially symmetric condition according to
Sundara and Raman [49] without body forces are
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Iyengar and Raman applied the state space methodology
to two-dimensional elastodynamic problems. Te following
fundamental equation is obtained by removing σx between
(1) and (2):
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Te vector-matrix diferential equation is integrated to
provide
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Te determinant’s characteristic equation related to the
matrix [Lij] can now be transcribed as
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Every square matrix, according to the Cayley–Hamilton
theorem, satisfes its characteristic equation. As a result, the
exponential matrix is written as

exp[yA] � a0I + a1A + a2A
2

+ a3A
3
. (10)

Ten, as per the characteristics of the eigenvalue of any
square matrix, if the matrix A is substituted by its own
eigenvalues, the equation must be satisfed:

exp[yη] � a0 + a1η + a2η
2

+ a3η
3
. (11)

Now, the roots obtained in equation (8) can be
substituted in equation (11), and by resolving the simulta-
neous system of equation, the values of a0, a1, a2, and a3 can
be found:
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Te transfer matrix [Lij] is produced by substituting
these values in equation (10). We get the following equation
from equation (6):
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Te expressions for the values of constants from LUU to
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3. Application to the Problem of
Dynamic Analysis

We consider an elastic body that is being loaded from
opposite directions (antisymmetric loading) while being
constrained by two parallel planes for plane stress condi-
tions. Because of the antisymmetric loading, we will choose
y� 0 serving as the plane of reference:

U0 � Y0 � 0, (15)

y � ±h on the plane,

Y � ±p(x, t)withX � 0. (16)

We obtain the following equations by deleting the
components involving U0 and Y0 in equation (13) and
meeting the boundary constraints:

Y(x, h, t) � LYVV0 + LYXX0 � p(x, t),

X(x, h, t) � LXVV0 + LXXX0 � 0.
(17)

We add an auxiliary function F(x, t) to the equation so
that

LXVF � − X0,

LXXF � V0.
(18)
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Te frst part of equation (17) leads to the diferential
equation for natural frequencies, whereas the second of
equation (17) is equally satisfed:

LYVLXXF + LYXLXVF � p(x, t). (19)

When the values of the operators are substituted, the
exact partial diferential equation is found as follows:

2α2 − ζ2􏼐 􏼑
2

ζ2c2
cos hc1 sin hc2

⎡⎢⎢⎢⎣ −
4α2 α2 − ζ2􏼐 􏼑

ζ2c1
sin hc1 cos hc2

⎤⎦F � 0. (20)

In equation (20), we expanded the trigonometric terms
while keeping terms up to h3; hence, a fourth-order dif-
ferential equation is obtained. Furthermore, sixth-, eight-,
and tenth-order diferential equations can also be obtained
by using trigonometric expansion of the terms in the
equation and keeping the expressions to the desired order:

2(1 + μ)

3
h
3α4 −

2
3

(2 + μ)h
3α2ζ2 +

7 − μ
12

h
3ζ4 + hζ2􏼢 􏼣F � 0.

(21)

In the expanded form, this will be

2(1 + μ)

3
h
3 z

4

zx
4 −

2(2 + μ)9

3G
h
3 z

4

zx
2
zt

2 +
7 − μ
12

h
3 9

G
􏼒 􏼓

2 z
4

zt
4 +

h9

G

z
2

zt
2􏼢 􏼣F � 0. (22)

To satisfy governing diferential equation (19) and the
beam’s boundary conditions, the auxiliary function F is
chosen. Te necessary initial functions are provided by
equation (18):

F1 � A sin
nπx

L
cosωt. (23)

In order to solve various problems and determine
stresses and displacements, these functions were also en-
gaged in Das and Setlur [32] and Patel et al. [44]:

2(1 + μ)h
3

3
z
4

zx
4 A sin

nπx

L
cosωt􏼒 􏼓 −

2
3

(2 + μ)h
3
A

z
2

zx
2 sin

πx

L

ρ
G

z
2

zt
2 cosωt +

(7 − μ)h
3

12
ρ2

G
2

d
4

dt
4􏼢

× A sin
πx

L
cosωt +

hρ
G

z
2

zt
2 A sin

πx

L
cosωt􏼣 � 0,

(24)

2(1 + μ)h
3
A

3
cosωt ×

π4

L
4 sin

πx

L
􏼒 􏼓 −

2
3

(2 + μ)h
3
A −

π2

L
2􏼠 􏼡 sin

πx

L
􏼒 􏼓

ρ
G

× − ω2
· cosωt􏼐 􏼑􏼢

+
(7 − μ)h

3ρ2 × Aω4

12G
2 sin

πx

L
cosωt −

hρAω2

G
sin

πx

L
cosωt􏼣 � 0,

(25)

2(1 + μ)h
3
A

3
π4

L
4 sin

πx

L
􏼒 􏼓 cosωt −

2
3

(2 + μ)h
3
A

π2

L
2􏼠 􏼡

ρ
G
ω2

􏼒 􏼓 sin
πx

L
cosωt􏼒 􏼓􏼢

+
(7 − μ)h

3ρ2 × Aω4

12G
2 sin

πx

L
cosωt −

hρAω2

G
sin

πx

L
cosωt􏼣 � 0,

(26)

(7 − μ)h
3ρA

12G
2􏼨 􏼩ω4

−
2(2 + μ)h

3
Aπ2ρ

3L
2
G

−
ρhA

G
􏼨 􏼩ω2

+
2(1 + μ)h

3
Aπ4

3L
4􏼨 􏼩􏼢 􏼣sin

πx

L
cosωt � 0, (27)

(7 − μ)h
3ρ

12G
2􏼨 􏼩ω4

−
2(2 + μ)h

3π2ρ
3L

2
G

−
ρh

G
􏼨 􏼩ω2

+
2(1 + μ)h

3π4

3L
4􏼨 􏼩􏼢 􏼣sin

πx

L
cosωt � 0. (28)
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Solving this system, the natural frequency can be found.

4. Dynamic Analysis of an Isotropic
Homogeneous Beam

Let us consider an isotropic homogeneous steel beam, the
dimensions of the beam are chosen as follows:

Depth of beam (2h)� 800mm and length of beam (L)�

4000mm
We consider the following material characteristics:
For steel,
Elasticity modulus E� 200000MPa
0.3 is the Poisson’s ratio (µ)

Te simply supported beam’s boundary conditions are
given as u � 0, v � 0 at x � 0 and v � 0 at x � L.

Te auxiliary function is chosen to precisely satisfy the
boundary criteria. On the upper surface of the beam, a load
of 25N/mm is applied uniformly.

Equation (23) yields the value of the auxiliary function F
as

F1 � A sin
πx

L
cosωt for n � 1. (29)

Equation (18) is used to obtain initial functions and with
the help of equation (29), the defection values and stresses
for various depths of beam section are then obtained.

4.1. Poisson’s Ratio. Poisson’s ratio is a material property
that describes how a material deforms in response to an
applied load. It relates the strain in the direction perpen-
dicular to the applied load to the strain in the direction of the
load. Poisson’s ratio is typically expressed as a dimensionless
number. In many structural and mechanical systems, the
natural frequency can be infuenced by the material prop-
erties of the structure, including Poisson’s ratio. When
Poisson’s ratio changes, it can afect the stifness and mass
distribution of the structure, which, in turn, can infuence its
natural frequency.

Table 1 presents Poisson’s ratio (μ) values for various
materials, including structural steel, limestone, and concrete.
Poisson’s ratio is an important material property afecting
the response of materials to applied loads. Natural fre-
quencies of beams made from these materials were calcu-
lated using equation (24), incorporating Poisson’s ratio
values from Table 1 as parameters.

Te analysis reveals dependency between the natural
frequency of the beams and Poisson’s ratio. As Poisson’s
ratio increases, the natural frequency of the beams also
increases, indicating a direct relationship. Te impact of
Poisson’s ratio on natural frequency becomes more
pronounced when considering a higher number of mode
shapes or higher-frequency modes. Tis observation
aligns with the phenomenon where complex and localized
mode shapes are more sensitive to material properties.
Tese fndings have practical implications for structural
engineering and design, highlighting the importance of

considering how changes in material properties, such as
Poisson’s ratio, afect the dynamic behaviour of struc-
tures. Tis awareness is especially crucial when dealing
with complex mode shapes or analysing structures for
specifc performance criteria.

4.2. FEMAnalysis. Te 3D modelling of the beam is carried
out in ANSYS 2019 R2 Design Modeler. Te SOLID186
element is used to model the beam. Tere are 20 nodes that
make up this element, and each one has three degrees of
freedom (translational x, y, and z directions). Te beam
comprises 25603 elements and 148536 nodes. Structural
steel is taken as the material with Poisson’s ratio of 0.3;
various material characteristics, such as density (⍴) and
Young’s modulus (E), are assigned from engineering data
sources in ANSYS. Material is considered homogeneous and
isotropic for plane stress; the thickness is taken as 100mm.
For meshing, adaptive sizing is used along with an element
size of 50mm. Resolution is kept at 7 with fast transition,
and smoothing is kept at medium. Maximum refnement
loops are 2, and MAPDL-elapsed time is 9 seconds. Te
beam is designed for simply supported boundary conditions,
and on the upper surface of the beam, an evenly distributed
load of 25N/mm is applied. Working out the problem with
the help of the SOLVE command, the results in tabulated
form can be obtained.Te analysis approves the validation of
the results. Figures 1–8 show the meshing of the beam,
normal stresses for the beam, shear stresses for the beam,
total deformations for the beam, directional deformations
for the beam X axis, directional deformations for the beam Y
axis, natural frequency referring to mode shape 1, and
natural frequency referring to mode shape 25 obtained by
ANSYS 2019 R2 Design Modeler.

5. Results and Discussion

Variation of shear stresses, normal stresses, total de-
formation, and natural frequency for isotropic homoge-
neous beams are shown in Figures 9–13.

Solving equation (28), along with equation (13), a beam
element can be analysed along with all the parameters such
as normal stresses and shear stresses. Figure 9 and Figure 10
show numerical examples. Te problem parameters are
L� 4000mm, 2h� 800m, ρ� 7850 kg/m3, E� 200000MPa,
and µ� 0.3; in Figure 2, the shear stress curve is plotted using
the relation obtained from (13). Tis fgure shows the
gradual increment in shear stress along the depth until it
reaches the beam midpoint, and then, it decreases along the
depth. Te results obtained from MIFs and FEM are rep-
resented with diferent colours and are comparable. Te
results obtained throughMIFs have a maximum deviation of

Table 1: Poisson’s ratio values for various materials.

Materials Structural steel Limestone Concrete
Poisson’s ratio (μ) 0.3 0.22 0.18
Modulus of elasticity
(E) 200000MPa 37845MPa 30000MPa
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Figure 1: Meshing for the beam.
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Figure 2: Normal stresses for the beam.
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Figure 3: Shear stresses for the beam.
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Figure 4: Total deformations for the beam.
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Figure 5: Directional deformations for the beam X axis.
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Figure 6: Directional deformations for the beam Y axis.

10 Complexity



0.00

500.00

1000.00 (mm)

1.0616 Max
0.94365
0.82569
0.70773
0.58978
0.47182
0.35387
0.23591
0.11796
0 Min

Y

XZ

Figure 7: Natural frequency pertains to mode shape 1.
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Figure 8: Natural frequency pertains to mode shape 25.
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0.17% and show the same patterns as those obtained
through FEM.

In Figure 10, the normal stress curve is plotted using the
relation obtained from equation (13). It clearly shows that
the stress is maximum at the beam top and bottom; it de-
creases towards the middepth of the beam. Te results
obtained fromMIFs and FEM are represented with diferent
colours and are comparable. Te results obtained through
MIFs have a maximum deviation of 0.48% and show the
same patterns as those obtained through FEM.

In Table 2, a detailed comparison of results of normal
stresses calculated from classical theories such as
Euler–Bernoulli beam theory, Timoshenko beam theory,
and Rayleigh beam theory with MIF is given.

In Table 3, a detailed comparison of results of shear
stresses calculated from classical theories such as
Euler–Bernoulli beam theory, Timoshenko beam theory,
and Rayleigh beam theory with MIF is given.

In Figure 11, the total deformation curve is plotted using
the relation obtained from (13). Tis fgure clearly shows the
gradual increment in total deformation along the depth until
it reaches a depth of 300mm, and then, it decreases along the
depth. Te results obtained from MIFs and FEM are rep-
resented with diferent colours and are comparable. Te
results obtained throughMIFs have a maximum deviation of
0.43% and show the same patterns as those obtained
through FEM.

In Table 4, a detailed comparison of results of defections
calculated from classical theories such as Euler–Bernoulli
beam theory, Timoshenko beam theory, and Rayleigh beam
theory with MIF is given.

Figure 12 visually illustrates the relationship between
Poisson’s ratio and natural frequency, providing a clear
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Figure 9: Comparison of MIFs and FEM for shear stresses (MPa).
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Figure 10: Comparison of MIFs and FEM for normal stress (MPa).
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representation of how changes in Poisson’s ratio afect the
natural frequency of the beams. To strengthen the research,
we consider discussing the underlying mechanisms behind
the dependence of natural frequency on Poisson’s ratio,
along with drawing conclusions from these fndings and
discussing their relevance to structural design and material
selection.

It is important to clarify that the parametric study was
conducted by varying the values of the modulus of elasticity
in accordance with the materials listed in Table 1. Tis
approach was adopted to ensure that the analysis accurately
refects the material-specifc characteristics of the beams
under consideration.

Te entire parametric study is closely related to, and
based on, the equation derived from the method of initial
functions. Tis equation served as the foundational
framework for the analysis, allowing for the systematic

exploration of how changes in the modulus of elasticity and
Poisson’s ratio as specifed for each material in Table 1
impact the natural frequencies of the beams.

To strengthen the argument and provide transparency
in the study methodology, the values of modulus of elas-
ticity corresponding to the materials listed in Table 1 have
been included in the same table. Tis inclusion serves to
explicitly link the variations in modulus of elasticity to the
materials used in the analysis. By adjusting the modulus of
elasticity based on the specifc material properties listed in
Table 1 and applying the equation from the method of
initial functions, we aimed to capture the real-world be-
haviour of the beams more accurately. As a result, the
parametric study accounts for the inherent material-
dependent variations, contributing to a more compre-
hensive and realistic analysis of the natural frequencies of
the beams.
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Figure 13: Natural frequency (Hz) results from MIFs and FEM.

Table 2: Comparison of normal stresses at diferent locations of simply supported beams subjected to uniformly distributed loads for
diferent beam theories (μ � 0.3).

Teories
Normal stresses at diferent locations

0 100 200 300 400 500 600 700 800
Euler–Bernoulli beam theory − 5.370624 − 3.993948 − 2.645622 − 1.316574 − 0.006804 1.330182 2.634282 3.990546 5.353614
Timoshenko beam theory − 5.271168 − 3.919986 − 2.596629 − 1.292193 − 0.006678 1.305549 2.585499 3.916647 5.254473
Rayleigh beam theory − 5.171712 − 3.846024 − 2.547636 − 1.267812 − 0.006552 1.280916 2.536716 3.842748 5.155332
MIF 8th order − 5.072256 − 3.772062 − 2.498643 − 1.243431 − 0.006426 1.256283 2.487933 3.768849 5.056191
MIF 10th order − 4.972800 − 3.698100 − 2.449650 − 1.219050 − 0.006300 1.231650 2.439150 3.694950 4.957050
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Tis approach ensures that the research accounts for the
infuence of material properties, including Poisson’s ratio
and modulus of elasticity, on the natural frequencies and
strengthens the validity and relevance of the fndings to
practical engineering scenarios.

Te initial functions can be determined with the help of
equations (17) and (18), and after determining the values of
X0 and V0, the stresses and displacements are determined.
By solving the system of equations (24)–(28), the natural
frequency can also be determined. In Figure 13, the natural
frequency with respect to diferent mode shapes is calculated
through the relation obtained in (24). Tis fgure shows the
closeness of results of natural frequencies obtained from two
diferent approaches. Tese results are in complete agree-
ment and are represented with diferent colours. Te results

obtained through MIFs have a minimum deviation of
− 0.16% and a maximum deviation of 0.94% and follow the
same patterns as those obtained through FEM.

Table 5 shows the values of natural frequencies obtained
from diferent order MIF theories. Tese orders of MIF
theories are determined by keeping the diferent powers of h
in the trigonometric expansion in equation (20). However,
the precision of the theory increases with the order of MIF
theory; this is more applicable in structures with higher
dimensions, such as deep beams. Tis method is particularly
of interest where ordinary theories, such as Euler–Bernoulli
beam theory, Timoshenko beam theory, and Rayleigh beam
theory, fail to give accurate results. Another advantage of
using this theory is that it does not depend on any as-
sumption; it is entirely dependent on symbolic mathematics.

Table 4: Comparison of defections at diferent locations of simply supported beams subjected to uniformly distributed loads for diferent
beam theories (μ � 0.3).

Teories
Total deformation at diferent locations

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Euler–Bernoulli beam
theory 0.153 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.153 0.153 0.153 0.152 0.152

Timoshenko beam theory 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.15 0.15 0.15 0.15 0.149
Rayleigh beam theory 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.147 0.147 0.147 0.146
MIF 8th order 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.144 0.144 0.144 0.144
MIF 10th order 0.142 0.142 0.142 0.142 0.142 0.143 0.143 0.142 0.142 0.142 0.142 0.142 0.142 0.141 0.141 0.141

Table 5: Values of natural frequency by 4th, 6th, 8th, and 10th order MIF theories.

Serial no. No. of
mode shapes

4th order
MIF

6th order
MIF

8th order
MIF

10th order
MIF

1 1 13.516 13.584 13.614 13.625
2 2 31.898 32.057 32.038 32.155
3 3 47.227 47.463 47.381 47.608
4 4 85.105 85.530 85.586 85.791
5 5 95.970 96.450 96.144 96.744
6 6 114.973 115.548 115.211 115.900
7 7 162.599 163.412 163.668 163.910
8 8 183.143 184.059 183.617 184.620
9 9 205.622 206.650 205.915 207.280
10 10 290.954 292.408 292.232 293.300
11 11 310.645 312.198 311.077 313.150
12 12 310.724 312.278 312.639 313.230
13 13 421.421 423.529 423.572 424.820
14 14 427.284 429.421 428.556 430.730
15 15 467.371 469.708 470.207 471.140
16 16 548.447 551.189 549.857 552.870
17 17 577.592 580.480 581.836 582.250
18 18 663.122 666.438 666.053 668.470
19 19 665.007 668.332 667.177 670.370
20 20 682.635 686.048 687.038 688.140
21 21 745.895 749.624 750.628 751.910
22 22 765.100 768.925 770.657 771.270
23 23 830.254 834.406 840.656 836.950
24 24 834.599 838.772 842.357 841.330
25 25 921.360 925.966 928.763 928.790
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Its fundamental structure is according to elasticity theory. It
also uses the condition of plane stress with the amalgamation
of the equations used in the above theory and condition.
With symbolic mathematics, we reached the above-
mentioned results.

6. Conclusions

Tis research work is concluded as follows:

(1) As symbolic mathematics progresses, the compe-
tences of MIFs inscribed in the space of diferent
mathematical transforms are substantially improved.
Continued advancements in symbolic mathematics
and their integration with MIFs can lead to even
more powerful tools for dynamic analysis.

(2) Dynamic behaviour of the beam is investigated using
the MIFs. Te advantage of MIF is that it does not
require any assumptions about the location of the
neutral axis; also, the analysis is not restricted up to
a certain extreme elastic limit of a material.

(3) When compared with classical theories such as
Euler–Bernoulli beam theory, Timoshenko beam
theory, and Rayleigh beam theory, MIF produces
conceptually precise and exact values of results.

(4) An exact solution to the problem is obtained. Te
higher-order analysis tends to give a precise result
which is verifed by the fourth-, sixth-, eight-, and
tenth-order MIF theories.

(5) When compared with natural frequency results, it is
found that there is a maximum deviation of 0.94%
and a minimum deviation of − 0.16%.

(6) Poisson’s ratio (µ) considerably afects natural fre-
quency, and the value of natural frequency drops as
Poisson’s ratio decreases.

(7) Variation in normal stresses is almost negligible.
Variation of the displacement values (v) is nearly
linear across the depth, and its value is greater in the
case of MIFs. In both theories, the variation in results
of shear stress across the depth is almost nonexistent.

(8) Future work holds the promise of expanding these
fndings into diverse materials, structural applica-
tions, and analytical methods, thereby contributing
to more efcient and precise dynamic analysis in
engineering and other felds.

Nomenclature

u: Defection in x direction
v: Defection in y direction
E: Elasticity modulus
G: Shear modulus
A: Area of cross section
L: Length of the beam
2h: Depth of the beam
σx: Bending stress
τyx: Shear stress
ρ: Density

σy: Normal stress
μ: Poisson’s ratio
η: Eigenvalue of square matrix
ω: Natural frequency of harmonic vibration
FEM: Finite element method
MIFs: Method of initial functions
DQM: Diferential quadrature method
CFM: Complementary function method
FGCP: Functionally graded composite panels
FSDT: First-order shear deformation shell theory
CNTRC: Carbon nanotube-reinforced composite plates.
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darstvennyĭ universitet,” in Proceedings of the International
Conference “Stability and Control Processes” in Memory of V.I.
Zubov (SCP): SCP-BDO-2015, Institute of Electrical and
Electronics Engineers. Russia North-West Section, Institute of
Electrical and Electronics Engineers, and International
Workshop, Saint-Petersburg, Russia, October, 2015.

[44] R. Patel, S. K. Dubey, and K. K. Pathak, “Efect of elastic
properties on the behaviour of beams,” International Journal
of Structural Engineering, vol. 5, no. 1, pp. 43–53, 2014.

[45] R. Patel, S. K. Dubey, and K. K. Pathak, “Analysis of inflled
beams using method of initial functions and comparison with
FEM,” Engineering Science and Technology, an International
Journal, vol. 17, no. 3, pp. 158–164, 2014.

[46] P. Asutkar, S. B. Shinde, and R. Patel, “Study on the behaviour
of rubber aggregates concrete beams using analytical ap-
proach,” Engineering Science and Technology, an International
Journal, vol. 20, no. 1, pp. 151–159, 2017.

[47] A. V. Matrosov, M. D. Kovalenko, I. V. Menshova, and
A. P. Kerzhaev, “Method of initial functions and integral
Fourier transform in some problems of the theory of elas-
ticity,” Zeitschrift Fur Angewandte Mathematik Und Physik,
vol. 71, no. 1, p. 24, 2020.

[48] R. Patel, S. K. Dubey, and K. K. Pathak, Proceedings of the
Indian Structural Steel Conference 2020 (Vol. 1), Springer,
Berlin, Germany, 2023.

[49] K. T. Sundara Raja Iyengar and P. V. Raman, “Free vibration
of rectangular beams of arbitrary depth,” Acta Mechanica,
vol. 32, no. 4, pp. 249–259, 1979.

18 Complexity




