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A self-organizing complex-network modeling method, probabilistic Boolean networks, is presented as a model-based diagnostic
system for detecting and isolating diferent types of faults, failures, andmodes of operation in which a network of intelligent power
routers is deployed over a standard power test case: theWestern System Coordinating Council 9 Bus System. Such a system allows
designers and engineering professionals to make educated decisions pertaining to the design of smart-grid systems endowed with
intelligent power routers. Tere is a recurrent necessity to design reliable and fault-tolerant smart power systems, maintaining
adequate operation and adherence to performance specifcations, while keeping costs at the minimum. Tis diagnostics system
will help achieve such goals: better design through thorough analysis of the conditions that lead to a fault on a smart grid, proper
detection of these faults, and isolation of the respective assets.

1. Introduction

Complex-adaptive systems (CAS) are systems that are
composed of diferent smaller elements that are inter-
connected [1], because the etymology of the word complex
derives from the Latin word, complexus, past participle of
complecti, which means interwoven, threaded, or inter-
connected.Terefore, a complex system cannot be separated
or fragmented because the interactions between the com-
ponents give rise to new or emergent information or be-
havior. Individual parts have their specifc functions, and
emerging from these interactions is what makes the
diference.

One of these mechanisms, used widely in bioinformatics
and biomedical engineering, is Kaufman N-K or Boolean
networks (BN). A Kaufman BN is a discrete collection of
Boolean variables represented as nodes on the network,
where each of these variables has a Boolean function as-
sociated with it.Tese networks have discrete time and states
and were postulated by Dr. Stuart Kaufman in the late 1960s
with the purpose of modeling gene regulatory networks [2].
Tere are several variations from the N-K to random
Boolean networks, autonomous Boolean networks, de-
terministic asynchronous random Boolean networks, etc.
One of their main features or characteristics is their dy-
namics and the fact that they will sooner or later fall into
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a steady or cyclical state, called attractor. Tese represent the
behavior of the network in the long run, or its steady state.
Tey can be a single repeating state or a set of states that
repeat. Since these networks are deterministic, there is only
one Boolean function per node, so they cannot model
probabilistic behavior. Tere are extensions to the BN, such
as Shumlevich and Dougherty’s Probabilistic Boolean
Networks (PBN) [3] or Dorigo’s much earlier interpretation
of the same concept [4]. Tese allow modeling the proba-
bilistic behavior that BN’s are incapable of. In this study, we
utilize Shmulevich’s model. Tese networks are a probabi-
listic extension of the Kaufman networks, where there is
also a collection of nodes/variables, but instead of possessing
only one Boolean Function per variable, there can be 1 or
more, that are selected with a probabilistic weight.Terefore,
a PBN can be thought of as a tree of several constituent
Kaufman networks that are chosen probabilistically. A
complete description of these PBNs is available in [3]. We
have been studying the use of PBNs outside the gene reg-
ulatory network modeling, its main feld of application, and
have been using these networks to model other phenomena,
such as industrial machines [5], reliability-driven process
design [6], preventive maintenance [7], and intelligent
power routers (IPR) [8].Tis study continues the application
of PBN modeling of smart-grid systems, taking advantage of
the characteristics and advantages that these complex net-
works possess to model a power network endowed with
intelligent power routers [9] in a standard test system, the
Western Systems Coordinating Council (WSCC) 9 Bus
model. We will present how a PBN smart-grid model can be
used for fault detection and isolation (FDI) [10], a scheme
where the main idea is to efcaciously ascertain faults and
scrupulously isolate them from a failed or defective asset or
component in the quickest time possible. Tis enables
a signifcant reduction of diagnosis time or the general
downtime of the system to upsurge its availability, reducing
the downtime of a system with complicated maintenance
and vital importance to modern society.

2. Materials and Methods

PBNs have been used for reinforcement learning on an
intelligent power router model [8], and to perform fault
detection and isolation on an IPR [11]. In this last study,
a model of the IPR was done with a PBN, which enabled it to
detect faults in the device’s components and isolate the faulty
asset. Te stochastic nature of the PBN model allowed for
a prognosis on when a particular asset would present a fault.

We have established a PBN model of the WSCC 9-Bus
System, a test case representing a system with nine buses and
three generation sources, serving three loads, as shown in
Figure 1.

In this diagram, an approximation of an equivalent
power system for the purposes of testing (easy to control),
there are 9 buses, 3 two-winding power transformers, 3
generators (163MW, 334MW, and 85MW), 6 lines, and 3
loads (166MW, 100MW, and 165MW), with base kV levels
of 13.8, 16.5, 18, and 230 kV. Te FDI method described in
[10] was adapted in this study, in which models are

established for the normal operation of the system and for
each of the faults it exhibits, as shown in Figure 2.

Tis is done by using the self-organizing characteristics
that PBNmodeling provides, where the steady-state tenue of
the system is achieved through attractor states, and these
relate to the fault conditions and the operating modes of the
modeled device or system. In this case, an IPR is placed on
each of the buses to intelligently manage the network, and
a PBN model of each of the IPRs is developed, along with
models for the other components of the system, such as the
system’s loads. Te model was constructed using the PRISM
Model Checker [13].

Te way this model is constructed and its semantics are
very similar to the one presented in [8]. Te failure modes
and operation of the model is characterized and through
model checking property verifcation in PRISM permits the
analysis of the state of the components of the test case system
and the relevancy of which assets correlate to the diferent
faults. Each of the assets is a PBN, and the overall test system
is also a PBN. Te PBN that describes the IPRs is presented
in [8] along with the IPR components, their failure mode
classifcation and state, the PBN’s Boolean predictor func-
tions, and the selection probability for each. Te PBN
modeling method presented here and in previous studies is
fexible and scalable. A description of this method is shown
in Figure 3.

Te normal operation and failure modes presented
herein are based on the reliability assessment of the IPR
device performed and the failure modes expressed in [8, 9],
and they are based on each component’s mean time between
failures (MTBF) and based on a design failure mode and
efects analysis (DFMA) performed on the device. Tus, the
model can detect single and multiple faults for the entire test
system and for each IPR involved. Tis model is relatively
large in terms of the number of states it can assume, which is
7.4×1023 states, 5.9×1025 transitions, and 4.62×1025
choices, with a reachability of 279 nodes. It has a transition
matrix of 60,533 nodes and 10 terminal nodes. It takes
13.37minutes to build this model in PRISM.

Te diferent experiments that are presented in this study
were conducted in PRISM using Property Verifcation in
Probabilistic Computational Tree Logic (PCTL) [13]. Tis
allows the determination of the maximum probability of
occurrence of the diferent states of the failure modes in
which the diferent assets in the test system can be. We are
able to perform in this manner detection, diagnosis, and
isolation of assets in failure or fault conditions.

To perform FDI, there needs to be a model for every fault
condition and for the system’s normal operation. In our case,
the model for the normal operation of the device is shown in
Figure 4.

Te normal operation module contains the main IPR
components and the failure probability of each of them
based on the IPR’s specifcations. For the IPR, a probabilistic
Boolean network model was established using PRISM, as
shown in Figure 5.

Te IPR PBN module contains the IPR’s main components
(nodes) and the predictor functions. We also classify each of the
states in which the IPR can be, so we can determine the failure
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modes of the device. Based on the state of each of the com-
ponents, after the application of the predictors, the state of the
IPR is determined. Te model for each fault condition, which is
based on the IPR’s description and reliability analysis, is handled
in PRISM as shown in Figure 6.

Recalling the IPR’s reliability analysis from [11], the
device can be in 12 diferent states, and these states can be
reduced to 4 classifcations: two types of faults, a catastrophic
failure, and the normal operation. Based on the condition of
the IPR’s components, per the analysis in [9], we classify the
IPR’s states into these categories, therefore representing the
operation modes.

3. Results and Discussion

Quantitative validation of the model and property verif-
cation experiments were performed with PRISM.Te system
is a collection of IPRs interconnected like the WSCC 9-bus
model, and each IPR is modeled as a 4-node PBN as per
[8, 11]. Te experiments that were conducted have a PBN
representing each IPR, and its main components, the
breakers, software, and router, are considered the model’s
nodes. Te state of each of the components combined
represents the overall state of each of the IPRs, which is
represented in Table 1.

u Process

Model-Normal
Operation

Fault
Detection–

r0

r1 rn···

··· ···

···

ŷ
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Figure 2: Fault detection and isolation methodology [10].
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Figure 1: Western system coordinating council 9-bus model [12].
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Te relationships between the components are captured
in the Boolean Predictors Functions, which are shown on
Table 2.

Tese predictors are based on the physical relationships
between components and the IPR’s reliability analysis
[8, 9, 11]. In all of our experiments and the fgures that
represent them, time is expressed in hours (h). We per-
formed property verifcation and maximum probability of
occurrence experiments on the operational modes to verify
the model’s ftness to emulate the device dynamics. For FDI,
a model of each of the fault conditions is created, along with
a model of the normal operation of the device. Figure 4
presents the model of the normal operation of the device.

Detection and isolation: the model can accurately detect
those IPR categories that represent faults or failure, as those
presented in Table 1. From an initial state, the PBN can select
an appropriate context or sub-BN, and given the dynamics
of these complex networks, it will select one of the attractor

states of the constituent BNs.Te attractors in these contexts
represent the steady states and one of the categories in which
the devices will be.Tese methods have been previously used
to assess faults and failures in manufacturing processes and
machines [5–8, 11]. As discussed in the previous section, the
IPR’s PBN model in PRISM contains the fault conditions
and operating modes that were identifed in [11] along with
the predictor functions, and after their application, the state
of the IPR is evaluated and a determination of the test system
as a whole is made (an evaluation of the state of all IPRs on
the network), and we are able to detect all failure modes and
isolate the components causing them.Tis permits detection
and isolation of an IPR’s component faults, faults in indi-
vidual IPRs, multiple component faults in an IPR, com-
ponent fault in multiple IPRs, and multiple IPR faults. As
a frst test, we present the maximum probability of occur-
rence of the failure of any IPR within the test system, as
shown in Figure 7.

Characterization of PBNs for the System

Divide the 
system into
key
components
(genes/nodes/
machines)

Determine the predictors
for each machine/node
according to the logical
relationships between
nodes and their
functions/failure modes

Determine the
probality of
selection for each
prediction for each
node

Model Checking of PBN

System is modeled
as a Markov
Decision
Process (MDP)

The behavior of the
model is analyzed
with model checking
through property
verification using
PCTL

Construct the
transition matrix
starting from an
initial state
and apply the
predictors to
determine the
subsequent states

Build
constituent
networks
based on the
transition
matrix

Determine
attractors
based on
constituent
networks

Figure 3: Method for modeling assets and/or systems as PBNs [5].

Figure 4: Model for the IPR’s normal operation.
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In Figure 8, the maximum probability of the occurrence
of a type-1 fault on any of the IPRs of the test system is
presented.

Figure 9 showcases the maximum probability of the
occurrence of a type-2 fault on any of the IPRs of the test
system.

In Figure 10, we present the maximum probability of the
occurrence of a failure in IPR1 of the test system.

In Figure 11, the maximum probability of the occurrence
of a simultaneous failure in IPR1 and IPR2 is presented.

PRISM can place labels that can be used to highlight
specifc or sets of states that can be used to diagnose
faults, be they single or multiple. Te labels point out
specifc states or sets of states, which in turn can be used
to distinguish between single and multiple faults. In these

experiments, whenever the PBN model is used and one of
the constituent Boolean networks is chosen, PRISM labels
provide a mechanism for fltering the fault conditions
that may be occurring, be they failures, faults, or the
normal operation of the system. All of the failure modes
possible in the IPR, according to what was identifed in
[9], that are caused by the device’s components are
modeled, allowing the determination of the device’s fu-
ture state. We can distinguish specifc fault, or combi-
nations of faults, and through the use of PRISM’s
property verifcation in PCTL, labels produce a time
prognosis, or when a fault is expected to happen. Using
simulations in PRISM, we can produce graphs such as the
ones in Figures 12–16, which show the detection and
isolation of diferent faults and failures.

Figure 5: Model for the IPR’s probabilistic Boolean network.

Figure 6: Model for the IPR’s fault condition.
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Table 2: Boolean predictor functions and their probability of occurrence for the IPR PBNs.

Component Predictor Selection probability
Software x1(t + 1) � x1(t) 1

Router x (t + 1) � x1(t)∧ x (t) 0.9611
x (t + 1) � x1(t)∨ x (t) 0.0389

Main breaker x3(t + 1) � x1(t)∧ x3(t) 0.9611
x3(t + 1) � x1(t)∨ x3(t) 0.0389

Secondary breaker x4(t + 1) � x1(t)∧ x4(t) 0.9611
x4(t + 1) � x1(t)∨ x4(t) 0.0389

Te signifcance of the values is determined by the scientists behind the study and we are asking you to keep them in bold.
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Figure 12 presents a detection and isolation example of
the diagnostic system across one year of operation. In it, we
can see single and multiple faults/failures of the IPRs.

In Figure 13 can detect and diagnose, because of the state
of the device, the failure modes of IPR1 in one year.

We are able to do the same for two IPRs, and we can see
single and multiple IPR faults. Figure 14 presents this for
IPRs 1 and 2.

Since each IPR can be in 12 diferent states and those
states in 4 classifcations, the states of the IPR have been
labeled in PRISM from 0 to 11 and this means that they can
be individually identifed, per IPR. We are also able to detect
specifc component failures and faults for each IPR on the

test system. Figures 15 and 16 present software failures and
failures of the routers connected to the loads (5, 6 and 8) in
all IPRs, respectively, after a year of operation.

4. Discussion

Tis diagnosis system is based on a probabilistic Boolean
network model of the WSCC 9 bus test system with in-
telligent power routers using the PRISMmodel checker. Te
experiments that can be performed in this software allow for
the calculation of the maximum probability of occurrence of
the diferent failure modes of all the IPRs and their respective
components. We are also able to detect and isolate faults and

1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65

M
ax

im
um

 p
ro

ba
bi

lit
y

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0 50 100 150 200 250 300 350 400 450
time

500 550 600 650 700 750 800 850 900 950 1,000 1,050 1,100 1,150 1,200 1,250 1,300 1,350
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failures based on the FDI approach, where we have produced
a model for the normal operation of the test system within
PRISM and a model for each of the failure modes. With this
information, we can simulate the modeled system over time.
We have performed simulations based on periods of
8760 hours, or a year of operation. We are able to diagnose,
detect, and isolate failure modes, as well as have a prognosis
on when these will occur based on the simulations per-
formed. Tis can be tuned to specifc IPR components, to
simultaneous faults in diferent IPR components, to faults in

single IPRs, to faults in multiple IPRs, etc. With the model,
we can formulate with PCTL in PRISM questions relative to
the failure probability of a component and simulate (be it in
hours, years, days, minutes, etc.) the system’s performance.
Tis simulation produces the state of many components,
which can be used further to predict component-level faults
as well as device- and system-wide faults. Te modeling
environment allows us to identify these components and
devices individually and isolate the diferent fault conditions
to the respective component or device. Tis provides
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a comprehensive tool to predict, diagnose, detect, and isolate
faults and failures in a smart grid. Tis provides designers
and engineers with a method of designing more robust and
resilient smart power systems.

5. Conclusions

We presented a diagnostics system for smart-grid systems
using intelligent power routers based on a complex systems
technique, PBNs, that is able to diagnose, detect, and isolate
single and multiple faults and failures, from the component
to the device level. In the future, we would like to imbue this
system with control techniques based on the PBNs self-
organization characteristics and use these to guide the
evolution of the system away from fault conditions.
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versity of México’s Postdoctoral Fellowship.Tis project was
self-funded.

References

[1] M. De Domenico, C. Camargo, C. Gershenson et al., Com-
plexity Explained: A Grassroot Collaborative Initiative To
Create a Set of Essential Concepts of Complex Systems,
2019,https://complexityexplained.github.io/.

[2] S. A. Kaufman, “Metabolic stability and epigenesis in ran-
domly constructed genetic nets,” Journal of Teoretical Bi-
ology, vol. 22, pp. 437–467, 1969.

[3] I. Shmulevich and E. R. Dougherty, Probabilistic Boolean
Networks: Modeling and Control of Gene Regulatory Networks,
SIAM, Philadelphia, PA, 2008.

[4] M. Dorigo, “Learning by probabilistic boolean networks,” in
Proceedings of World Congress on Computational Intelli-
gence-IEEE International Conference on Neural Networks,
Orlando, FL, USA, July 1994.

[5] P. J. Rivera Torres, E. I. Serrano Mercado, and L. E. Anido
Rifón, “Probabilistic boolean network modeling of an in-
dustrial machine,” Journal of Intelligent Manufacturing,
vol. 29, pp. 875–890, 2018.

[6] P. J. Rivera Torres, E. I. Serrano Mercado, and L. E. Anido
Rifón, “Probabilistic Boolean Network modeling and model
checking as an approach for DFMEA for manufacturing
systems,” Journal of Intelligent Manufacturing, vol. 29,
pp. 1393–1413, 2018.

[7] P. J. Rivera Torres, E. I. Serrano Mercado, O. Llanes Santiago,
and L. E. Anido Rifón, “Modeling preventive maintenance of
manufacturing processes with probabilistic boolean networks
with interventions,” Journal of Intelligent Manufacturing,
vol. 29, pp. 1941–1952, 2018.

[8] P. J. Rivera Torres, C. Gershenson Garćıa, M. F. Sánchez Puig,
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