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Particle swarm optimization (PSO) is an evolutionary algorithm for solving global optimization problems. PSO has a fast
convergence speed and does not require the optimization function to be diferentiable and continuous. In recent two decades, a lot
of researches have been working on improving the performance of PSO, and numerous PSO variants have been presented.
According to a recent theory, no optimization algorithm can perform better than any other algorithm on all types of optimization
problems.Tus, PSO withmixed strategies might be more efcient than pure strategy algorithms. Amixed strategy PSO algorithm
(MSPSO) which integrates fve diferent PSO variants was proposed. InMSPSO, an adaptive selection strategy is used to adjust the
probability of selecting diferent variants according to the rate of the ftness value change between ofspring generated by each
variant and the personal best position of particles to guide the selection probabilities of variants. Te rate of the ftness value
change is a more efective indicator of good strategies than the number of previous successes and failures of each variant. In order
to improve the exploitation ability of MSPSO, a Nelder–Mead variant method is proposed.Te combination of these two methods
further improves the performance of MSPSO. Te proposed algorithm is tested on CEC 2014 benchmark suites with 10 and 30
variables and CEC 2010 with 1000 variables and is also conducted to solve the hydrothermal scheduling problem. Experimental
results demonstrate that the solution accuracy of the proposed algorithm is overall better than that of comparative algorithms.

1. Introduction

In recent years, optimization algorithms are applied more
and more widely in various felds [1]. One of the most fa-
mous ones is PSO. In 1995, Kennedy and Eberhart de-
veloped particle swarm optimization (PSO) [2]. PSO as
a global optimization method is an important tool to solve
difcult optimization problems without a good problem-
specifc approach efciently. Its original inspiration comes
from birds focking behaviours. In PSO, each individual in
the population is a particle. A particle represents a potential
solution in solution space. Particles scan the search area and
converge to the optimum by fying in the space and adjusting
its fying velocity based on its personal best historical ex-
perience and the best solution in the population. PSO is
a robust stochastic optimization algorithm that is easy to
implement. Its parameter settings are negligible. On account
of its simple realization and high efciency, PSO has been

successfully applied to various real-world problems such as
wireless sensor networks [3], feature selection [4], trafc
control [5], road identifcation [6], task allocation [7], and
crowd user selection [8].

Recently, various improvements of PSO are proposed to
enhance these comprehensive performances. In this re-
search, according to a recent theory [9], this study presented
a mixed strategy PSO (MSPSO). In the theory, the hardest
problem to one evolutionary algorithm might be the easiest
for another algorithm and vice versa. Tus, the mixed
strategy PSO algorithms might be more efcient than pure
strategy PSO algorithms. Just as a company wants to run
well, it needs talents who are good at management, good at
marketing, and good at purchasing to work together. If
a company employs talents who are good at management for
all work, the company will not operate well because em-
ployees who are not good at what they do spend more time
and get worse results. Inspired by this theory, MSPSO
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integrates fve diferent PSO variants and adopts a new
probability update strategy according to the proportion of
diferences in ftness values. According to our experimental
verifcation, the probability of those variants is guided by the
rate of change of ftness value between ofspring generated
by each variant and the personal best positions of the
particles. According to the rank of the rate of change, the
variants are assigned the diferent probabilities. Using the
rate of ftness change to guide the selection probabilities of
variants could increase the probability of selecting excellent
variants than using the number of previous successes and
failures of each variant. In addition, in order to enhance the
exploitation ability of MSPSO, a local search method in-
spired by the Nelder–Mead method is proposed.

In summary, we have made the following contributions:

(1) We propose a cooperative strategy to integrate
multiple PSO operators, and the integrated algo-
rithm can achieve better generalization capability

(2) We add a local search operator to the integrated
algorithm, so that the algorithm can further obtain
better performance

(3) We also demonstrate the performance of MSPSO on
benchmark suites and real-world problem instances

Te rest of the study is organized as follows. First, related
methods are reviewed in Section 2. Second, Section 3 in-
troduces the MSPSO. Tird, Section 4 evaluates the pro-
posed MSPSO and gives the results of the experiments.
Finally, the conclusion of the study is shown in Section 5.

2. Related Work

2.1.Canonical PSO. In the optimization process, the velocity
vector Vi for the ith particle in the population is updated
using (1) given in [2] iteratively through the guidance of
pbesti and gbest.

vid � vid + c1 ∗ r1id ∗ pbestid − xid(  + c2 ∗ r2id ∗ gbestd − xid( . (1)

Acceleration parameters c1 and c2 are usually set to 2.0.
r1id and r2id are two random numbers within [0,1] for the
dth dimension of the ith particle.

To avoid the premature convergence, the authors in [10]
introduced an inertia weight ω to update the fying velocities
of particles. Te particle velocity is adjusted through the
following formula:

vid � ω∗ vid + c1 ∗ r1id ∗ pbestid − xid(  + c2 ∗ r2id ∗ gbestd − xid( . (2)

In (2), ω commonly decreases linearly from 0.9 to 0.4
with generations to balance exploration capability and ex-
ploitation capability. A large value of ω enhances the ex-
ploration capability, whereas a small value of ω encourages
the capability of convergence during the search process.

2.2. PSO Variants. To enhance the performance of PSO on
global optimization problems, a lot of researches have been
working on improving PSO algorithms, and numerous PSO
variants have been presented. Designing new strategies, new
techniques and topological structures of PSO are an im-
portant research trend. Various topologies have been sug-
gested. In PSO, the trajectory of particles is adjusted by their
own personal best positions and the best position in the
population. However, this may cause premature conver-
gence when solving multimodal functions. Because the best
particle in the population is the best solution for the whole
population, it could be a local optimum for a multimodal
function and is far away from the global optimum. Te
authors in [11] proposed a social learning PSO (SL-PSO)
which introduced social learning into PSO.Te advantage of

social learning was that individuals could learn from others
without paying for their own trials and mistakes. In SL-PSO,
each particle was updated based on any better particles in the
current population. Furthermore, to reduce parameter
settings, SL-PSO proposed a dimension-dependent pa-
rameter control method. Compared with other optimization
algorithms, SL-PSO could be implemented easily, be com-
puted efciently, and require no complicated adjustment of
the control parameters. In order to accelerate convergence
speed and improve exploitation ability, the authors in [12]
proposed prey-predator PSO (PP-PSO). PP-PSO achieved
this goal by deleting or transforming “slothful particles”
which were the particles with low velocities. It was hard for
these slothful particles to fnd the global optimum, and this
reduced the convergence speed. Furthermore, in order to
enhance population diversity, PP-PSO designed a pro-
portional-integral control parameter to control the pop-
ulation to fuctuate within a relatively stable range during the
iterative process. Te above-mentioned PSO variant algo-
rithm mainly improves the classical PSO algorithm from the
perspective of designing a new information-sharing mode
between particles and building a new particle search model.
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However, when solving some complex optimization prob-
lems, PSO and its variants are still prone to premature
convergence in the search process. Furthermore, when
trapped in the local optimum, it is difcult for particles to get
rid of this region. Terefore, in the past decades, researchers
have also tried to solve this problem by proposing various
improvement strategies based on existing PSO algorithms.

Another popular modifcation is to combine PSO with
other mathematical methods or evolutionary computation
techniques. Te authors in [13] integrated a PSO algorithm
with the sine cosine algorithm (SCA) and the Lévy fight
approach, to overcome the shortcoming that PSO tended to
fall into a local optimum. Te solution in SCA was updated
by sine and cosine functions to ensure the exploitation and
exploration capabilities. In addition, SCA used Lévy dis-
tribution which was a more efective search to produce
a randomwalk in the search space.Te combination of SCA,
Lévy fight, and PSO enhanced the exploration capability of
the original PSO and prevented being trapped in the local
minimum. In addition, the hybridization of PSO with GAs
has also been presented in [14, 15]. A hybrid PSO with bat
algorithm (BA) has been proposed in [16] for numerical
optimization problems. A communicating strategy provided
information fow between the population of PSO and the
population of BA. In this work, several best individuals in
BA replaced the worst individuals in PSO after fxed iter-
ations, and on the contrary, the fnest particles of PSO
replaced the poorer individuals of BA.

Multipopulation strategy and ensemble optimizer are
also efective methods to optimize the performance of PSO.
In order to avoid the phenomena of “oscillation” and “two
steps forward, one step back” in PSO, the authors in [17]
proposed a two-swarm learning PSO algorithm called
TSLPSO. Te algorithm hybridized two diferent learning
strategies which were dimensional learning strategy (DLS)
and comprehensive learning strategy, respectively. One of
the swarms used DLS to construct the learning exemplars.
DLS used the information of the best particle in the pop-
ulation for the local search of the particles. However, in
order to guide the global search, the other swarm used the
comprehensive learning strategy to construct the learning
exemplars. In [18], Xu et al. constructed a DMS-PSO-CLS
algorithm that combined the dynamic multiswarm particle
swarm optimizer (DMS-PSO) and a new cooperative
learning strategy (CLS). In the CLS subpopulation, in order
to learn more excellent examples, the two poor particles
updated their dimensions with the better particle which was
selected from two random subswarms using a tournament
selection strategy. By using this method, particles could
search the global optimum more easily. Te simulation
results showed that the performance of the DMS-PSO-CLS
algorithm was superior compared with other comparison
PSO variants. Te above algorithms also have their limita-
tions. For example, some hybrid algorithm frameworks
require more computing resources to execute the iterative
process of diferent algorithms, while most multipopulation
strategies cannot perform fne local search at the later stage
of the search process, so it is difcult to obtain the fnal
search results with high accuracy.

2.3. Complementary Strategy Teorem. Te authors in [19]
proposed a complementary strategy theorem. According to
this theorem, mixed strategy evolutionary algorithms might
outperform pure strategy evolutionary algorithms. One
advantage was that the overall performance of mixed
strategy evolutionary algorithms might be the same as the
best performance of pure strategy evolutionary algorithms.

Theorem 1. If a pure strategy evolutionary algorithm PS2 is
better than another pure strategy evolutionary algorithm PS1,
then for any initial population P, the expected hitting time of
mixed strategy evolutionary algorithms MS derived from PS1
and PS2 satisfes that mMS(P)≥mPS2(P) and
mMS(P) >mPS2(P) for some state P.

Theorem 2. If a pure strategy evolutionary algorithm PS2 is
equivalent to another pure strategy evolutionary algorithm
PS1, then for any initial population P, the expected hitting
time of mixed strategy evolutionary algorithm MS derived
from PS1 and PS2 satisfes that mMS(P) � mPS2(P).

Theorem 3. If a pure strategy evolutionary algorithm PS2
complements with another pure strategy evolutionary algo-
rithm PS1, then there exists a mixed strategy evolutionary
algorithm MS derived from PS1 and PS2, and its expected
hitting time satisfes that mMS(P)≤mPS2(P) for any initial
population P and mMS(P) <mPS2(P) for some initial
population P.

Theorem 4 (complementary strategy theorem). Te con-
dition that a pure strategy evolutionary algorithm PS2 is
complementary to another pure strategy evolutionary algo-
rithm PS1 is sufcient and necessary if there exists a mixed
strategy evolutionary algorithm MS derived from them such
that mMS(P)≤mPS2(P) for any initial population P and
mMS(P) <mPS2(P) for some initial population P.

Te complementary strategy theorem can be interpreted
intuitively as follows:

(1) If one pure strategy evolutionary algorithm is better
than another pure strategy evolutionary algorithm, then
the design of a mixed strategy evolutionary algorithm
with the same performance as the better pure strategy
evolutionary algorithm is impossible. So mixed strategy
evolutionary algorithms do not usually outperformpure
strategy evolutionary algorithms that they derived from.

(2) If one pure strategy evolutionary algorithm is com-
plementary to another, then the design of a mixed
strategy evolutionary algorithm better than both pure
strategy evolutionary algorithms is possible. However,
this does not mean all mixed strategy evolutionary
algorithms will outperform pure strategy evolutionary
algorithms that they derived from.

(3) Te following principle should be followed when
a better-mixed strategy evolutionary algorithm is
designed: if a pure strategy evolutionary algorithm
has a better performance than another at a state, then
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the mixed strategy evolutionary algorithm should
apply the pure strategy with a higher probability at
that state.

3. Mixed Strategy PSO

3.1. PSO Strategies. MSPSO hybridizes PSO [10], MCLPSO
[20], LIPS [21], HPSO-TVAC [22], and FDR-PSO [23] with
an adaptive selection strategy. Velocity update formulae of
these four PSO variants except PSO are given as follows.

3.1.1. MCLPSO. We proposed a modifed CLPSO
(MCLPSO) in [20] a few years ago. Compared with CLPSO,
MCLPSO could improve the convergence ability while
maintaining the population diversity. Furthermore,
MCLPSO has a better balance of exploration and exploi-
tation than CLPSO. Te updating equation of MCLPSO for
a particle velocity is given as follows:

if rand< α∗ 1 −
g − 1

Max Gen
 ,

vid � ω∗ vid − meanvd(  + c∗ rid ∗ pbestfi(d)d − xid ,

else

vid � ω∗ vid + c∗ rid ∗ pbestfi(d)d − xid ,

(3)

where g � [1, 2, . . . , Max Gen] is the current generation
number, α is an adjustment coefcient between 0 and 1,
Max Gen is the maximum number of generations, rand is
a random number within range [0, 1], meanvd is the dth
dimension of the average value of velocities in the whole
population, and pbestfi(d)d represents the dth dimension of
the best position of the particle located in a list of particles
selected randomly from the whole population, and the rest of
the parameters have the same meanings as those in (2).

Using the above equation, the velocity of MCLPSO is fast
with a high probability in the early stage of the search.
Conversely, in the later stage, the velocity is slow with a high
probability for better exploitation.

3.1.2. LIPS. LIPS used the best experiences of adjacent
particles rather than the global best experience of the
population to guide the particles to the optimum [21]. Tis
algorithm adopted the personal best position of neighbor
particles measured by Euclidean distance to adjust the
particle velocity. Te formula is given as follows:

vid � 0.7298∗ vid + ϕ∗ pnid − xid( ( ,

pni �


nsize
k�1 ϕk ∗ nbestk( /nsize


nsize
k�1 ϕk

,

ϕk ∼ U(0, 4.1/nsize),

(4)

where nbestk is the best position of the kth neighbor particle
of the ith particle, ϕk is a random number that obeys uniform

distribution within [0, 4.1/nsize], and nsize is the number of
neighbor particles.

3.1.3. HPSO-TVAC. In order to make the particles converge
quickly to the global optimum, the authors in [22] designed
a new formula for calculating velocity without using the
previous velocity. Te formula is given as follows:

vid � c1 ∗ r1id ∗ pbestid − xid(  + c2 ∗ r2id ∗ gbestd − xid( ,

(5)

where c1, r1id, c2, and r2id have the same meanings as those
in (1).

3.1.4. FDR-PSO. In order to avoid the premature conver-
gence, the authors in [23] added the position of neighbor
particle in the formula of particle velocity. Te formula is
given as follows:

vid � ω∗ vid + c1 ∗ r1id ∗ pbestid − xid( 

+ c2 ∗ r2id ∗ gbestd − xid(  + c3 ∗ r3id ∗ nbestid − xid( ,

(6)

where nbestid is the dth dimension of the best experience of
the neighbor of the ith particle which minimizes the
fneness-distance ratio (FDR), and the rest of the parameters
have the same meanings as those in (2). Te formula of
fneness-distance ratio for a minimization problem is given
as follows:

FDR �
Cost Pi(  − Cost Xi( 

Pid − Xid




, (7)

where Pi denotes the best experience of other particles in the
population except the ith particle.

3.2. Local Search. A local search method inspired from the
Nelder–Mead method is used in MSPSO, in order to im-
prove its exploitation ability. Te Nelder–Mead method is
a numerical algorithm that adapts to local landscapes [24]. It
makes down-hill search using a simplex instead of de-
rivatives. Introducing the Nelder–Mead method into
MSPSO can further improve the performance of MSPSO.

In our work, we make a modifcation of the Nel-
der–Mead method, in order to reduce time consumption.
Te number of testing points is set to 3, rather than n+ 1 (the
dimension). Te following is the detail of the method. Given
3 test points x1,x2, x3, a Nelder–Mead variant is given in
Algorithm 1. In Line 1, three individuals are sorted in the
order of the function value from low to high. In Line 2,
various xo is the centre of triangle △x1x2x3. Lines 3–22 are
used to implement the Nelder–Mead process.

3.3. Improved Adaptive Probability Adjustment Method.
In some ensemble evolutionary algorithms, the selection
probability of diferent variants is adjusted based on the
number of previous successes and failures of each variant at
a fxed iteration interval. However, the number of successes
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and failures is not a perfect indicator of a good strategy
because it cannot measure the degree of improvement of
successful ofspring generated by each variant. Tus, we use
the rate of change of ftness value between ofspring gen-
erated by each variant and the personal best position to
adjust the selection probabilities of variants. Te adaptive
probability adjustment method is given as follows.

Step 5. Initialize the probability pk of the kth PSO variant to
1/K and the change rate Crk of the kth variant as 0. In our
work, K is equal to 5.

Step 6. Generate a random number randpk. If
0≤ randpk< p1, choose the frst variant to generate an of-
spring. If 

k−1
i�1 pi ≤ randpk<

k
i�1pi, 1< k<K, choose the kth

variant to generate an ofspring. If 
k
i�1pi ≤ randpk≤ 1,

choose the Kth variant to generate an ofspring.

Step 7. If the kth variant is selected to generate an ofspring
for a particle, then the change rate is recorded as follows:

Crk �
Crk − fo − fp 

fp

, (8)

where fo and fp are the ftness of the ofspring and the
ftness of the personal best historical position of the particle,
respectively. When the ftness of the ofspring is larger than
the ftness of pbest, i.e., the ofspring is worse than the parent,
the change rate is reduced. Otherwise, the change rate is
increased.

Step 8. After lp generations, update the probability pk of
each PSO variant, and set Crk to 0. Te probability pk is
updated by the following steps:

(1) Sort the K strategies in descending order based on
Crk. Get a new sequence K′.

(2) Assign probabilities to the strategies according to
their ranking, pK′ � [0.4, 0.3, 0.15, 0.12, 0.03], i.e.,
the probability of the strategy with the largest Cr is
set to 0.4.

In this study, we use the change rate rather than the
diference between the ftness of the ofspring and the ftness
of pbest to guide the adjustment of the probability. Because
the diference cannot refect the merits and demerits of each
strategy especially when the ftness values of a strategy and
pbest are large, however, the ftness values of another strategy
and pbest are small. In this situation, the strategy with a small
diference in ftness value may be better than the strategy
with a large diference. Furthermore, we use a fxed prob-
ability distribution to assign a signifcantly larger selection
probability to a good strategy and a signifcantly smaller
selection probability to a bad strategy.

3.4. Framework of MSPSO. MSPSO integrates PSO,
MCLPSO, LIPS, HPSO-TVAC, and FDR-PSO together. It
adopts two subpopulations in the early stage and a whole
population in the later stage of the search process. In the
early stage, MSPSO adopts a subpopulation that implements
MCLPSO and a subpopulation that implements ensemble

Input: population P with three individuals.
(1) Sort the three points in the order: f(x1)≤ f(x2)≤ f(x3).
(2) Calculate xo as follows:

xo � 1/3
3
k�1xk

(3) [Refection] Compute the refected point xr � xo+ α(xo − x3). Where α is a refection coefcient. Its standard value is α� 1.
(4) if f(x1)≤ f(xr)< f(x3), then
(5) x3′� the refected point xr.
(6) else if f(xr)< f(x1) then
(7) [Expansion] Compute the expanded point xe � xo+ c(xr − xo). Where c is an expansion coefcient. Its standard value is c � 2.
(8) if f(xe)< f(xr) then
(9) x3′� the expanded point xe
(10) else
(11) x3′� the refected point xr
(12) end if
(13) else
(14) [Contraction] Compute the contracted point xc � xo+ ρ(x3 − xo). Where ρ is a contraction coefcient. Its standard values is

ρ� 1/2.
(15) if f(xc)< f(x3) then
(16) x3′� the contracted point xc
(17) else
(18) for i� 2, 3 do
(19) [Shrink] xi

′� x1 + σ(xi − x1). Where σ is a shrink coefcient. Its standard value is σ � 1/2.
(20) end for
(21) end if
(22) end if

Output: population P� {x1′, x2′, x3′}.

ALGORITHM 1: Nelder–Mead variant.
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PSO. In the later stage, the whole population implements
ensemble PSO. Furthermore, the Nelder–Mead method
variant is used in this stage to improve the exploitation
ability of MSPSO. In this way, the population diversity and
convergence ability of the algorithm can be improved in the
early stage. Its convergence ability can be improved in the
later stage. Te pseudo-code of MSPSO is given in Algo-
rithm 2. In lines 1-2, population and parameters are ini-
tialized. Lines 3–10 give the steps of the early stage of
MSPSO. In this stage, the whole population is divided into
two subpopulations, one of which is composed of μ1 in-
dividuals and the other is composed of μ − μ1 individuals.
Lines 5–7 indicate that MCLPSO is implemented in the frst
subpopulation, while lines 8–10 indicate that the ensemble
PSO is implemented in the second subpopulation. Lines
11–16 give the steps of the late stage of MSPSO. In this stage,
the whole population implements the ensemble PSO, and
then, the Nelder–Mead method variant is implemented. In
lines 17–22, the best ftness value of the current population is
obtained, and the best ftness value of the algorithm is
updated if necessary. Te framework fgure is given in
Figure 1.

4. Experiments and Results

4.1. Benchmark Functions and Comparative Algorithms.
CEC 2014 [25] benchmark functions are used to evaluate the
performance of MSPSO. Benchmark problems in CEC 2014
are developed with several novel features such as novel basic
problems, composing test problems by extracting features
dimension-wise from several problems, graded level of
linkages, rotated trap problems, and so on. In CEC 2014
benchmark suite, F1–F3 are unimodal functions, F4–F16 are
simple multimodal functions, F17–F22 are hybrid functions,
and F23–F30 are composition functions. In order to evaluate
the mean and standard deviation of solution errors, we take
thirty independent runs for each algorithm on each problem
in 10 and 30 dimensions. For 10 dimensions, each run lasts
up to 100,000 function evaluations (FES). For 30 di-
mensions, it is up to 300,000 FES per run.

Te performance of MSPSO is compared with eight
other PSO variants, which are PSO [10], CLPSO [26], LIPS
[21], HPSO-TVAC [22], FDR-PSO [23], EPSO [27],
OSC-PSO [28], and A-PSO [29]. All the selected peer al-
gorithms are proposed in the last decade. EPSO is an en-
semble PSO. OSC-PSO drives particles into oscillatory
trajectories. A-PSO introduces the nonlinear dynamic ac-
celeration coefcients, logistic map, and a modifed particle
position update approach in PSO. In order to verify the
efectiveness of all the improved strategies proposed by us,
we compareMSPSOwith the original CLPSO algorithm.Te
parameter settings of these algorithms are listed in Table 1.
Te parameter settings of MSPSO in diferent dimensions
are given in Table 2. Te high dimension of the function is
more complex compared to the low dimension of the
function, so we use a larger population size for the high
dimension of the function to maintain the diversity of the
population. Parameters limitgp, α, and β can afect the
population diversity and convergence of MSPSO. Te larger

the limitgp, the greater the probability of updating particles in
MCLPSO based on the global optimal position. Also, the
larger the α, the greater the probability of updating particle
velocities in MCLPSO based on the mean velocity of the
population. Te smaller the β, the more times ensemble PSO
is used in the whole population. Te benchmark problems
with 30 variables in CEC 2014 are more complex than those
with 10 variables. So, we use diferent parameter settings in
MSPSO for diferent dimensions.

Experimental results in the CEC 2014 suite with 10 and
30 dimensions are reported in Tables 3 and 4, respectively.
Te error is an absolute value of the diference between the
best value for 30 runs and the actual optimal value of
a specifc objective function.

Te nonparametric statistical test has become an im-
portant method to compare a group of evolutionary algo-
rithms recently [30]. In this study, theWilcoxon signed-rank
test is employed to estimate MSPSO and other PSO variants
with the signifcance level of 5%. For each algorithm, Ta-
bles 3 and 4 show the number of best/2nd best/worst
ranking, the number of average ranking, and the number of
+/�/− in the last three rows, respectively. Te algorithms are
ranked according to the mean error of each algorithm.
Symbol “+,” “�,” and “−” indicate that MSPSO is signif-
cantly better than, similar to, and worse than the compared
PSO variant, respectively.

Te simulation results on 30 functions with 10 variables
in CEC 2014 are shown in Table 3. Te results show that
MSPSO outperformed the other eight algorithms on func-
tions F2, F3, F5, F6, F13, F17, F21, F24, F25, F27, and F30.
For function F8 and F26, the mean error of MSPSO was
equal to other optimal algorithms. Specifcally, for unimodal
functions, compared with other algorithms, MSPSO gen-
erally outperformed other algorithms. It is superior or equal
to the other eight algorithms on all functions except F1. But
it ranked third on functions F1. For simple multimodal
functions, MSPSO shows the best performance on four

Start

μ1 individuals perform
MCLPSO

End

Perform ensemble PSO
and the Nelder-Mead

variant

Yes
No

other individuals
implement ensemble PSO

g>MaxGen?

Yes

No

β*MaxGen?g

Figure 1: Framework fgure of MSPSO.
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functions and a moderate performance compared with other
comparative algorithms on other functions. With regard to
hybrid functions, the performance of MSPSO ranked within
the top 4 on all functions. As for composition functions,
MSPSO shows the best performance on fve functions. And
it ranked within the top 2 on all functions except F28. For
other algorithms, EPSO and CLPSO perform well, ranking
second and third, respectively. PSO, FDR-PSO, HPSO-
TVAC, and OSC-PSO perform moderately. All of these
algorithms win on no more than 3 functions. LIPS and
A-PSO also win on a few functions, but their average ranking
is the lowest. To sum up, frst, compared with the other eight

competitors, MSPSO indicates the best overall performance
on all 30 functions in CEC 2014 with 10 variables in terms of
the number of the best and average ranking. Second, MSPSO
is signifcantly diferent from other algorithms in most of the
functions.

Te simulation results on 30 functions with 30 variables
in CEC 2014 are shown in Table 4. Te results show that
MSPSO outperformed the other eight algorithms on func-
tions F2, F3, F4, F5, F6, F7, F11, F15, F17, F20, and F27. For
function F26, the mean error of MSPSO was equal to other
optimal algorithms. Specifcally, for unimodal functions,
MSPSO generally performs better than most of the other
algorithms. Also, it is superior or equal to the other eight
algorithms on all functions except F1. Furthermore, for
simple multimodal functions, MSPSO exhibits a better
performance. Also, it is superior to EPSO in eight functions.
Regarding hybrid functions, MSPSO shows a better per-
formance compared with other comparative PSO variants.
Also, it ranked within the top 3 on all functions. As for

Input: ftness function f(x), dimension n, population size μ, subpopulation size μ1, maximum number of generation Max_Gen,
MCLPSO limit value limitgp1and limitgp2, MCLPSO adjustment coefcient α1 and α2, iterative parameter β, interval iteration lp.

(1) Generate an initial population P consisting of μ individuals at random.
(2) Set lp� 10, Crk � 0, pk � 1/5.
(3) for g � 1, 2, · · · , Max Gen do
(4) if g≤ β∗ Max Gen
(5) for i � 1, 2, · · · , μ1 do
(6) Perform MCLPSO to generate ofsprings.
(7) end for
(8) for i � μ1 + 1, μ1 + 2, · · · , μ do
(9) Using improved adaptive probability adjustment method to generate ofsprings and update the selection probability.
(10) end for
(11) else
(12) for i � 1, 2, · · · , μ do
(13) Using improved adaptive probability adjustment method to generate ofsprings and update the selection probability.
(14) end for
(15) Update the best three individuals using Algorithm 1;
(16) end if
(17) Obtain the ftness value fbest of the optimal in the population
(18) if fmin> fbest then
(19) fmin � fbest
(20) Imin � xmin
(21) end if
(22) end for

Output: the best ftness value fmin.

ALGORITHM 2: MSPSO.

Table 1: Parameter setting for 8 algorithms.

Methods ω Contraction coefcient Acceleration parameters Neighbourhood size
PSO 0.9−0.2 — c1� 2, c2� 2 —
FDR-PSO 0.9−0.2 0.729 c1� 1, c2�1, c3� 2 —

HPSO-TVAC — — c1� 2.5−0.5 —c2� 0.5–2.5
LIPS — 0.729 c� 2 3
FIPS — 0.7298 c1� c2� 2.05 —
CLPSO 0.9−0.2 — c� 1.49445 —

Table 2: Parameter setting for MSPSO.

Parameters μ1 μ limitgp1 limitgp2 α1 α2 β lp

CEC 2014 10D 9 20 0.5 0.5 1 0.9 0.9 10
CEC 2014 30D 15 40 0.5 0.5 1 0.9 0.9 10

Complexity 7
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composition functions, MSPSO shows the best performance
on two functions and a moderate performance compared
with other comparative algorithms on other functions. For
other algorithms, EPSO and CLPSO also perform well,
ranking second and third, respectively. Te rest of these
algorithms win on no more than 3 functions. Te average
ranking of A-PSO is the lowest. In summary, frst, MSPSO
also has the best overall performance compared with the
other eight competitors on all functions in CEC 2014 with 30
variables. Second, MSPSO is also signifcantly diferent from
other algorithms in most of the functions.

From Tables 3 and 4, we see that the performance of two
ensemble PSO algorithms (EPSO and MSPSO) is better than
other types of PSO algorithms. Tis result can be explained
by the theory of easy and hard ftness functions [17].
According to that theory, the hardest problem to one
evolutionary algorithm could be the easiest to another al-
gorithm. Tus, given an ensemble of diferent PSO algo-
rithms, a hard problem might be solved easily by one of
them. Of course, if a problem is hard (or easy) to all of them,
using an ensemble does not bring too much improvement.

Te convergent speed is evaluated in Figures 2–8. From
Figure 2, we can see that MSPSO obtains a better perfor-
mance than other PSO variants. Te convergent speed of
MSPSO is not fast, but its optimization accuracy is higher
than other competitors in many functions.Tis is because, in
the early stage of the search, diferent particle generation
strategies may interfere with the direction in which particles
quickly fnd good positions. However, in the later stage of
the search, diferent particle generation strategies increase
the chances of particles fnding good positions.

4.2. Application to the Hydrothermal Scheduling Problem.
Te hydrothermal scheduling problem [31] is a complex
optimization problem from the real world. Its main objective
is to schedule the power generations of the thermal and
hydro units in the system to meet the load demands, under
the premise of satisfying the constraints of the hydraulic
systems and the power system networks. In order to evaluate
the performance of hydrothermal scheduling problem in
dealing with real-world problems, we apply MSPSO to
solving this problem. In the hydrothermal scheduling
problem, decision variables are nonlinearly related to the
major operation problem of hydrothermal systems. Te
objective of the problem is to minimize the fuel cost of
thermal units for 24 hours with four hydro units in the
system, and the dimension of the problem is 96.

In order to meet load requirements during the sched-
uling period, the total fuel cost of the thermal system op-
eration is expressed by F. Te objective function is given as
follows:

MinimizeF � 
M

i�1
fi PTi( . (9)

In the previous formula, PTi is the power generation of an
equivalent thermal unit at ith interval, and fi represents the
cost function corresponding to PTi.M is the total number of

intervals considered for the short-term planning. Te cost
function fi is expressed as follows:

fi PTi(  � aiP
2
Ti + biPTi + ci + ei sin fi P

min
Ti − PTi  



.

(10)

MSPSO is compared with fve other algorithms in three
hydrothermal scheduling instances, which are CoBiDE [32],
TLBO [33], ALC-PSO [34], DNS-PSO [35], and EPSO [27].
CoBiDE incorporates the covariance matrix learning and the
bimodal distribution parameter setting into DE. TLBO
designs an optimization mechanism inspired by the efect of
the infuence of a teacher on learners. TLBO divides the
optimization process into “Teacher Phase” and “Learner
Phase.” ALC-PSO transplants the aging mechanism to PSO

1000 2000 30000 4000 5000 6000 7000
Gerneration

APSO
CLPSO
EPSO

FDR-PSO
HPSO-TVAC
LIPS

MSPSO
OPSO
PSO

0.0

2.5

5.0

7.5

10.0

12.5

15.0

lo
g 

(E
rr

or
)

Figure 2: Te results on F3 with 30 variables.
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Figure 3: Te results on F6 with 30 variables.
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to overcome the problem of premature convergence.
DNS-PSO employs a diversity-enhancing mechanism and
neighborhood search strategies in PSO to achieve a trade-of
between exploration and exploitation abilities.

Te computational results of hydrothermal scheduling
instances are shown in Table 5. From the table, MSPSO
outperformed the other fve comparative algorithms in
two instances. Tis means that MSPSO is a good alter-
native algorithm for solving the hydrothermal scheduling
problem.

4.3.Te IEEECEC2010 StandardTest Functions Set. In order
to further analyze the performance of MSPSO to solve the
large-scale global optimization problem, CEC 2010 [36] is

employed in experiments. Te performance of MSPSO is
compared with PSO [2], grey wolf optimizer (GWO) [37],
standard sine cosine algorithm (SCA) [38], and slap swarm
algorithm (SSA) [39]. All experiments are tested 30 times in
1000 dimensions. Te mean and standard deviation of all
algorithms are shown in Table 6. Te average rank and rank
are also recorded in the last two rows of Table 6. From
Table 6, it shows thatMSPSO has outperformance than other
comparative algorithms to solve the large-scale global op-
timization problems. For most CEC 2010 functions, the
MSPSO improves the accuracy by some orders of magni-
tudes. Terefore, the experimental results demonstrate that
MSPSO has a good performance in solving the large-scale
optimization problems.
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Figure 4: Te results on F9 with 30 variables.
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Figure 5: Te results on F13 with 30 variables.
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Figure 6: Te results on F15 with 30 variables.
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Figure 8: Te results on F26 with 30 variables.

Table 5: Results of the hydrothermal scheduling instances.

Problems Criteria CoBiDE TLBO ALC-PSO DNS-PSO EPSO MSPSO

Instance 1 Mean 1.10E+ 06 1.28E+ 06 1.06E+ 06 9.77E+ 05 9.42E+ 05 9.38E+ 05
Std 7.90E+ 04 8.49E+ 05 1.69E+ 05 8.38E+ 04 2.72E+ 03 2.93E+ 03

Instance 2 Mean 1.73E+ 06 1.54E+ 06 1.51E+ 06 1.41E+ 06 1.15E+ 06 1.27E+ 06
Std 1.32E+ 05 7.93E+ 05 3.27E+ 05 1.90E+ 05 1.71E+ 05 1.11E+ 05

Instance 3 Mean 1.09E+ 06 1.28E+ 06 1.20E+ 06 9.78E+ 05 9.46E+ 05 9.45E+ 05
Std 7.02E+ 04 8.49E+ 05 4.45E+ 05 8.57E+ 04 3.66E+ 03 6.32E+ 03

Table 6: Computational result of CEC 2010 with 1000 variables.

Functions Criteria PSO GWO SCA SSA MSPSO

f1 Mean 4.32E+ 10 5.69E+ 10 1.57E+ 11 6.16E+ 10 1.59E+ 10
Std 6.39E+ 09 5.44E+ 09 1.08E+ 10 5.31E+ 09 1.26E+ 09

f2 Mean 1.71E+ 04 1.35E+ 04 1.77E+ 04 1.46E+ 04 8.30E+ 03
Std 3.81E+ 02 1.64E+ 02 4.48E+ 02 2.38E+ 02 2.95E+ 02

f3 Mean 1.64E+ 01 9.37E+ 00 1.61E+ 01 1.53E+ 01 1.96E+ 01
Std 3.72E− 01 5.56E− 02 1.43E+ 00 1.041E− 01 3.88E− 02

f4 Mean 6.34E+ 13 1.32E+ 14 1.70E+ 15 7.78E+ 13 6.16E+ 12
Std 2.77E+ 13 6.96E+ 13 2.56E+ 14 1.19E+ 13 6.96E+ 11

f5 Mean 5.87E+ 08 2.51E+ 08 6.30E+ 08 3.94E+ 08 4.22E+ 08
Std 8.68E+ 07 5.12E+ 07 1.84E+ 07 6.93E+ 07 2.84E+ 07

f6 Mean 1.99E+ 07 1.28E+ 07 1.95E+ 07 1.31E+ 07 1.97E+ 07
Std 3.60E+ 05 1.92E+ 06 4.09E+ 05 7.28E+ 06 5.76E+ 04

f7 Mean 2.70E+ 11 3.91E+ 10 1.35E+ 11 3.85E+ 10 3.43E+ 08
Std 1.51E+ 11 6.54E+ 09 1.42E+ 10 9.09E+ 09 1.82E+ 08

f8 Mean 4.92E+ 14 1.39E+ 15 2.19E+ 16 1.12E+ 11 2.17E+ 08
Std 9.30E+ 14 1.76E+ 15 5.00E+ 15 2.11E+ 11 1.76E+ 08

f9 Mean 7.71E+ 10 5.31E+ 10 1.78E+ 11 6.99E+ 10 6.33E+ 08
Std 1.25E+ 10 6.91E+ 09 1.49E+ 10 7.14E+ 09 1.35E+ 08

f10 Mean 1.77E+ 04 1.34E+ 04 1.78E+ 04 1.50E+ 04 8.86E+ 03
Std 3.82E+ 02 2.56E+ 02 4.50E+ 02 1.93E+ 02 2.64E+ 02
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5. Conclusions

Te paper proposes a mixed-strategy PSO algorithm called
MSPSO. MSPSO uses the rate of ftness change which
measures the degree of improvement of successful ofspring
generated by each variant to guide selection probabilities of
variants. Compared with previous PSO algorithms which
use the number of previous successes and failures of each
variant to adjust selection probabilities, MSPSO can increase
the probability of selecting excellent variants. Furthermore,
the proposed Nelder–Mead variant method is introduced in
MSPSO to improve the exploitation ability. Te proposed
algorithm is tested on CEC 2014 benchmark suites with 10
and 30 variables. Experimental results demonstrate that
MSPSO has a better overall performance than the other eight
PSO algorithms on all problems in terms of the solution
accuracy. MSPSO is also applied to three instances of the
hydrothermal scheduling problem. Computational results
show that the MSPSO algorithm also has a good perfor-
mance in dealing with this real-world optimization problem.
MSPSO is further tested on CEC 2010 with 1000 variables.
Te experimental results show that MSPSO has a good
performance in solving large-scale optimization problems.

Our work shows a promising direction for designing ef-
fcient mixed strategy PSO algorithms; that is, the rate of ftness
change guides the selection probabilities of variants. Tus,
using the rate of ftness change to design other mixed strategy
evolutionary algorithms will be left for testing as a future work.
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