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Te game of chess is the most widely examined game in the feld of artifcial intelligence and machine learning. In this work, we
propose a new method for obtaining the evaluation of a chess position without using tree search and examining each candidate
move separately, like a chess engine does. Instead of exploring the search tree in order to look several moves ahead, we propose to
use the much faster and less computationally demanding estimations of a properly trained neural network. Such an approach
ofers the beneft of having an estimation for the position evaluation in a matter of milliseconds, while the time needed by a chess
engine may be several orders of magnitude longer. Te proposed approach introduces models based on the radial basis function
(RBF) neural network architecture trained with the fuzzy means algorithm, in conjunction with a novel set of input features;
diferent methods of network training are also examined and compared, involving the multilayer perceptron (MLP) and
convolutional neural network (CNN) architectures and a diferent set of input features. All methods were based upon a new
dataset, which was developed in the context of this work, derived by a collection of over 1500 top-level chess games. A Java
application was developed for processing the games and extracting certain features from the arising positions in order to construct
the dataset, which contained data from over 80,000 positions. Various networks were trained and tested as we considered diferent
variations of each method regarding input variable confgurations and dataset fltering. Ultimately, the results indicated that the
proposed approach was the best in performance.Te models produced with the proposed approach are suitable for integration in
model-based decision-making frameworks, e.g., model predictive control (MPC) schemes, which could form the basis for a fully-
fedged chess-playing software.

1. Introduction

Chess is an immensely interesting and entertaining game.
Te intellectual challenge it ofers resembles the one in
puzzles and also involves strategic and tactical thinking
which fascinates players and fans of the game throughout the
ages. As computers evolved and the feld of software en-
gineering came to be, chess acquired a form of computer
application in addition to its previous board game form. It
was only a matter of time before the idea of a computer
player was conceived and implemented, and in the year
1996, the frst “Man vs Machine” match, between the chess
world champions at the time, Garry Kasparov and IBM’s
Deep Blue, took place [1].

Although Kasparov did win that match, the contin-
uous improvement of computers in terms of processing
power and the use of sophisticated and more suitable to
the problem search algorithms have resulted in a huge
rise of the capabilities of chess engines. Nowadays, even
top-level grandmasters use chess engines for their
tournament preparation and overall training. Advance-
ments in the felds of artifcial intelligence and machine
learning have led to new ideas about engines, like chess-
playing agents with no coding of any chess rules in them
whatsoever and enhancements on the position evaluation
algorithms with the aid of neural networks replacing, for
example, the heuristic function used in a tree search
algorithm [2–4].
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Many demonstrations of ideas involving the game of
chess and machine learning currently exist. One work is
based on the optimization of the handcrafted evaluation
function using evolutionary algorithms for tuning the
function parameters with a strategy named dynamic
boundary strategy [5]. A similar approach on the subject has
been to represent the individuals in the population as virtual
players, each of them using diferent, fxed parameters for
their evaluation function. Tese players compete for ad-
vancing to the next generation of the algorithm, not to each
other but are ranked using real top-level games [6]. Another
example of the use of evolutionary algorithm, in conjunction
with artifcial neural networks, has been a program that
learned to play the game by playing against itself [7].

Te use of artifcial neural networks has also been very
common in researches in this domain. Neural networks are
structures that resemble the human brain in its principle of
operation [8]. Tis means that their functionality is to store
experiential knowledge acquired from data in their envi-
ronment through a learning process and use it to respond in
similar circumstances. More specifcally, they are mathe-
matical tools that can imitate the behavior of a system, that is
approximate a function, without having any source of in-
formation about it other than its input and output.

In the case of DeepChess [3], a neural network is trained
to evaluate positions using millions of games without in-
cluding any other chess-related knowledge, such as the rules
of the game. KnightCap also used a neural network along
with custom-made attack and defence tables and piece
weights [9]. Another case is NeuroChess [10], a chess-
playing program that relies on neural networks and hand-
crafted features for evaluating positions, trained to predict
game results. Te use of neural networks is taken one step
further by Girafe [11], a chess program that acquired chess
knowledge by self-play, which utilizes them not only to tune
the evaluation function parameters but also to perform
pattern recognition and feature extraction. Pattern recog-
nition has also appeared in a research involving multilayer
perceptrons (MLPs) and convolutional neural networks
(CNNs) in order to evaluate positions by using look-ahead
algorithms as little as possible [12]. Probably, the most
impressive, however, is the famous AlphaZero [13] which,
having no knowledge besides game rules and training solely
by self-play for 24 hours, managed to defeat the world
champion engines in the games of Chess, Shogi, and Go.

Tere are several other works that employ ANN to
various chess modeling tasks. For example, in [2], the po-
tential of CNN models in predicting moves in chess is ex-
amined; three layered CNN models are used to make move
predictions, attesting the efectiveness of the proposed ap-
proach. In [14], various machine learning approaches such
as regression and Naive Bayes classifers are used for pre-
dicting chess game results. In [4], MLP and CNNs of pre-
determined sizes are tested in various chess modeling
approaches, as for example chess position evaluations and
moves classifcation; the experimental results showed the
superiority of MLP models, despite chessboard represen-
tation methods, such as bitmap and algebraic input. In [15],
a deep neural network paired with a look-ahead algorithm

for evaluation function is presented. Te proposed moves
yielded by the proposed method were compared against
those proposed by Stockfsh; the model was able to predict
moves of equal strength to those of Stockfsh of over 80% in
all the sample positions. In [16], an approach based on CNN
models with a limited look ahead for chess game playing is
proposed. Te study found that the proposed method can
efectively identify tactical patterns in games and yielded
promising results when tested against the Stockfsh com-
puter engine.

Another machine learning paradigm that has met great
success in chess is reinforcement learning (RL) [17]. Te
basic idea behind RL is that an agent fnds the optimal
solution of a problem through trial and error procedures and
a reward and punishment framework; for example, in [18],
a No-Go algorithm based on reinforcement learning using
CNN to evaluate legal chess moves is proposed. In [19],
a Chinese chess game algorithm is proposed based on re-
inforcement learning; a self-play learning model is con-
structed by combining deep CNNs and Monte Carlo search
tree algorithm to simulate chess moves. In [20], an LSTM
model is built examining various chessboard representation
methods in order to check which one is more relevant for the
neural network training process. In [21], a supervised agent
is trained using game records, where the performance of the
agent is increased through self-play with the on-policy re-
inforcement learning algorithm, without search and without
making assumptions about the true game state.

Many of the aforementioned publications rely on neural
networks for various purposes regarding the game of chess,
focusing mainly on the architectures of CNNs and MLPs.
While the contribution of these works is of great importance
in the feld of chess modeling, they are based on standard
ANN architectures and well-known training algorithms that
may come with certain limitations when applied to high-
dimensional data sets. For instance, determining critical
network parameters like the network size is implemented
using tedious search procedures, based usually on exhaustive
search both for hidden layers and number of nodes in each
layer, which may be computational impractical; as a result,
suboptimal network sizes may be selected. Tat means
further improvement could be achieved by implementing
diferent ANN architectures and novel training algorithms,
so that an improved model in terms of modeling accuracy
and computational efciency is yielded.

A promising candidate architecture for an alternative
modeling approach could involve the radial basis function
networks (RBFs) [8]. RBF networks consist of a single
hidden layer exhibiting several signifcant properties such as
universal approximation, robustness, and good generaliza-
tion, and as a result, they represent a very competitive
choice, for example, over MLPs, in terms of structure,
training process, and optimization for modeling nonlinear
systems; it is because of their simple structure that RBF
networks come with several important advantages regarding
shorter training speed and increased modeling efciency
[22]. A recent work that employs RBF networks in chess
modeling framework is presented in [23], where a simple
RBF network is used to approximate Q-learning function
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used Chinese chess evaluation through a continues self-
learning procedure. Te results of the experimental work
seem to be very promising; however, a more optimized RBF
network would improve the performance. However, notably,
and to the best of the authors’ knowledge, RBF neural
network architecture has not been used in evaluating po-
sitions within the standard game of chess.

To this end, in this work, the benefts of RBF networks
are exploited in order to build a robust and efective model
for evaluating chess positions at an acceptable computa-
tional cost. More specifcally, our goal is to approximate the
absolute evaluation score of a chess position basedmerely on
neural network estimations, avoiding any kind of tree search
that chess engines rely on [24]. Te advantages of the RBF
neural network architecture are exploited in order to achieve
maximum accuracy in estimating the evaluation of a chess
position to an acceptable degree, without looking into
specifc moves or exploring the tree search. Te network
center parameters are determined through the fuzzy means
(FM) algorithm, which has been applied successfully to
various applications oferingmodels with increased accuracy
[25], whereas the linear weights can be optimally determined
through linear least squares. More specifcally, the proposed
approach ofers (i) variable network sizes and fexible
parameter selection, where the size of the model is de-
termined based on the efcient FM algorithm, and (ii)
a reduced number of algorithmic parameters, as the
proposed approach uses only one parameter that needs to
be tuned; thus, the method is able to handle large amount
of data and multiple inputs that could afect the evaluation
score of a chess position in shorter training times. An-
other important contribution of this work is the in-
troduction of a new set of chess position features, free of
domain specifc knowledge, and any kind of assisting
structures, such as lookup tables, derived from a custom-
made Java application by processing thousand games in
the Stockfsh engine [26]. Te proposed neural network
model and the selected set of features provide estimations
for several moves ahead in a much shorter timeframe than
a chess engine would need to achieve the same result,
eventually yielding a method able to produce highly ac-
curate models for chess position evaluations.

Te rest of this paper is structured as follows: Section 2
gives an introduction to chess engines, the derivation of the
proposed set of features as well as a description of the process
for extracting the network training data. Section 3 gives
a description of the RBF network architecture and the fuzzy
means training algorithm. Section 4 describes the experi-
mental procedure in detail, where the modeling results are
presented and discussed. Te paper concludes by outlining
the advantages of the proposed approach and setting di-
rections for future work.

2. Chess Dataset Creation

2.1. Chess Engines. Chess engines evaluate a given position
internally in the form of some kind of representation. Some
of the most popular chess engines are Stockfsh, Komodo,
Houdini, and Rybka [27]. Chess engines in general are able

not only to provide an evaluation of the position but also to
suggest continuations of moves that they consider the
strongest. As for the representation of the position, there are
many formats to describe a specifc position of a game, most
popular of which are the “Portable Game Notation” (PGN)
and the “Forsyth-Edwards Notation” (FEN). PGN is actually
plain text in a standardized format, developed by Steven
J. Edwards, and readable by both humans and software,
which is used to record moves and related data of a chess
game. An example of a PGN can be seen in Figure 1. It is
divided into two segments, the former of which contains the
game information. Te latter segment of the PGN format
contains the move text, i.e., the moves of the game, in
“Standard Algebraic Notation” (SAN). On the other hand,
FEN is used to describe a specifc position of a game. Its
purpose is to encapsulate all the information needed in order
to resume a game from a given position. It was initially
developed by David Forsyth and later Steven J. Edwards
extended it so that it would be usable by chess software.
Figure 2 depicts an example of FEN representation which, as
it can be seen, it is a single line of text that consists of
a specifc number of felds, including piece placement, active
color, and other important information, separated by spaces.

Chess engines search the best move by looking ahead at
various sequences of moves and evaluating the arising po-
sitions, since in general such a result cannot be concluded
from the static information of a position. Te calculation of
the evaluation value that represents which side is better and
by howmuch is a complicated process that each chess engine
implements in its own way, but all of them share the same
general approach, a tree search. In the case of chess, which is
a two-player game that belongs to the family of zero-sum,
the algorithm usually applied for searching the tree is the
MinMax algorithm. Specifcally, in chess, an enhancement of
the MinMax algorithm is used, called alpha-beta algorithm
or alpha-beta pruning [28].

Every chess engine implementation has its own logic of
what features are taken into consideration and how they are
weighted, giving more or less importance to each one.
Moreover, the evaluation function itself difers not only in its
defnition but also in the way that it is determined, which
may be from chess experience and collective knowledge of
top-level grand masters, processing of chess game databases,
use of machine learning techniques or, most probably,
a combination of these. So, what a chess engine actually
returns as the evaluation of the current position is in fact the
static evaluation of a future position that is reached after
optimal moves are played for both sides. How far in the
future in terms of moves this position is, largely depends on
computational power and available time combined with the
complexity of the arising positions as more computation
time is needed to evaluate each of them. Tis means that the
value that comes up is always an approximation of the actual
evaluation of the position. If it was possible to process any
position to the very end, the outcome of the search would
indicate win, draw, or loss with absolute certainty. Tis is
actually the case with positions closer to the end of the game;
the engine returns the number of moves until mate instead
of an evaluation, or the value of zero indicating a drawn
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position, provided that the best moves are played for
both sides.

In any case, the value that is ultimately produced by the
evaluation function is the result of a computation involving
the position features. Features are value representations
related to the actual pieces on the chess board as a means of
quantifying aspects like their absolute or relative value, their
location, mobility or their interaction with other pieces,
either being as simple as a check or more complex, based on
specifc patterns. Te actual method of calculating each one
is also a matter of specifc engine implementation, but
a general rule is that specifc weights are assigned based on
the calculated values which difer according to the game
phase, mainly betweenmiddle game (mg) and endgame (eg).
It should be pointed out that since each feature is calculated
for each player, it is the diference between the respective
counterparts that make an impact on the total evaluation.
Depending on its nature, each feature can be considered as
a component of a group that represents a more abstract chess
concept. Te most notable among such concepts are ma-
terial, mobility, king safety, pawn structure, and piece-
specifc patterns.

Material seems the most concrete and easily quantifable
concept. A predetermined value is assigned to each type of
piece for its existence on the board, regardless of any po-
sitional aspects. Such a value is the absolute material value of
a piece. When it comes to more experienced players and

chess engines, a more subtle idea is also taken into account.
Additionally, to its absolute value, each piece is also assigned
a relative value depending on its placement on the board. In
essence, the relative value of a piece could be considered as
a bonus or penalty to its absolute value. Engines implement
this idea by utilizing specifc structures known as piece-
square tables (PSQT). Tis is a collection of arrays that
consists of an array for each piece type which matches each
combination of ranks and fles (squares) to a positive or
negative score. Tese tables are usually created and tuned by
humans, based on chess experience and knowledge and are
most probably diferent for each phase of the game.

Mobility is related to the available legal moves for each
side. Tis could be simply considered as the sum of the legal
moves for each player, and it is defnitely valid for a human
player to do so. In case of chess engines, however, the
calculation is a little more sophisticated. More specifcally,
each piece type is given a bonus or penalty based the number
of legal moves at its disposal, with the assistance of structures
similar to piece-square tables that contain this correspon-
dence of values. Tese structures are also handcrafted and
vary among engine implementations, and they also difer
according the phases of the game. Te sum of the bonuses/
penalties for all the pieces on the board for each side is the
value that is actually used as mobility. Diferent imple-
mentations apply various rules to what they count as legal
moves like including moves that are not technically legal.

King safety is the most complex of all the evaluation
concepts. It is composed from many features regarding
specifc setups of defending and attacking pieces relative to
the position of the king. Te actual components used to
measure king safety are not the same across engines, but they
more or less follow the same patterns. Ultimately, a weighted
total of all the diferent features provide the main evaluation
function with a value for king safety. As is the case for all
features, the weight values have to be predefned in some way
and defnitely vary according to the game phase.

Pawn structure is another important factor in the po-
sition evaluation. By defnition, pawn structure is a term
used to describe the position of all pawns regardless of the
placement of other pieces but including the relative place-
ment of other pawns. Features in this category represent the

Figure 1: PGN example.

r1bqkbnr/pppp1ppp/2n5/4p3/2B1P3/5N2/PPPP1PPP/RNBQK2R b KQkq -3 3

Figure 2: FEN example.
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state of each individual pawn such as doubled, isolated, and
blocked. In a more generalized sense though, there are some
features that consider more pieces relatively to the examined
pawn in specifc manners like setups that make it
a weak pawn.

Piece-specifc patterns include a wide variety of features
regarding the placement of pieces in specifc circumstances,
relatively to other pieces and pawn structure. Tese features
are measured by number of occurrences on the board and
weighted accordingly.

2.2. Input Feature Selection. In this work, the proposed set of
features is derived using the Stockfsh chess engine. Stockfsh
[26] is an open-source engine, licensed under the GPL v3.0
and compatible with the UCI protocol. Te UCI protocol
specifcation [29], as described by Stefan Meyer-Kahlen,
defnes valid commands for communicating with a chess
engine, and the expected responses sent from the engine
back to the caller. Stockfsh was developed by Tord Romstad,
Marco Costalba, Joona Kiiski, and Gary Linscott, and it is
one of the strongest chess engines in the world as of 2018.
Stockfsh relies on certain feature and function components
in order to evaluate chess positions using a heuristic
function.Tese components are briefy presented in Tables 1
and 2.

2.3.DataExtraction. A prerequisite for the network training
is of course the creation of the training dataset.Te output of
the network, as already mentioned, will be the position
evaluation score, and in order to complete the formation of
the training dataset, the input variables need to be de-
termined. Two conceptually diferent groups of input var-
iables were chosen.Te frst group consists of a certain set of
static features of a chess position that describes the position
at its current state, and indeed, the only required knowledge
for deriving them is the current arrangement on the board,
e.g., in the form of a FEN. Te second group of inputs refers
to the dynamic nature of the position. Tese are actually
evaluations of the position from the chess engine, but at
much less depth of search than the evaluation score we are
trying to predict. Tese values act as a supplement to the
feature inputs so that the temporary circumstances on the
board, like the absence of a piece in a position occurring in-
between a piece exchange sequence, are not misinterpreted
by the network as equivalent to positions were such cir-
cumstances are permanent, e.g., a position with actual
material imbalance, as would the sole consideration of the
static features indicate.

Te creation of such a dataset requires the imple-
mentation of a processing application that would extract the
necessary information from a large number of chess posi-
tions and store it in a database in order to be used in the
procedure that would execute the training of the neural
network. Such an application was developed using the Java
programming language, and the database was created and
managed, via select and insert queries in the Java code, using
the SQL database. Te operation of the game processing
application is displayed as a fow diagram in Figure 3. First,

a collection of chess games provided to the application in the
form of PGN fles are processed one by one; each PGN fle is
processed in order to extract the move sequence of the
particular game. An internal board representation is created
at the initial position, and the specifc moves are performed
on the board one by one. Te current position FEN is
checked for existence in the database. If it is found, the
process proceeds with the next move. Te features are
computed for the current position. Te phase of the current
position is checked. If it is not middlegame, the position is
ignored, and the process proceeds with the next move. Te
current position is analyzed by a chess engine, and the
evaluation scores, both those used as supplementary inputs
and the actual target, are calculated. Te features and
evaluation scores along with the corresponding FEN of the
current position are stored in the database. Arising positions
are processed sequentially in this manner until the current
game is over, and the procedure is repeated until every PGN
has been processed.

Elaborating a bit more on the aforementioned pro-
cedure, a large collection of games of top players (1514 in
number) was retrieved from online chess databases (https://
www.chessgames.com/, https://www.365chess.com/) and
was provided to the application. It should be noted that this
number of games was not collected and processed in a single
run, but rather in an iterative process where the database
increased incrementally, and networks were trained using
the respective datasets, gradually improving performance.

As mentioned, the chess engine that was used is the
open-source Stockfsh engine, version 10. Tis led to the
decision of deriving our proposed set of position features
used as training inputs to the neural network from the same
features that Stockfsh relies on. What Stockfsh considers as
a single feature may actually be composed of some other
subcalculations of simpler patterns. Moreover, while these
simpler patterns are calculated separately for the black and
white side, it is in most cases the diference between the two
respective values that is used in the calculation. In addition
to these, Stockfsh calculates a few intermediate, cumulative
values, and helper values that fnally combine, along with the
features, into one master value (referred to as “main eval-
uation”) that is actually the static evaluation of the position.
Every calculated value involved in this process, regardless of
being simple or complex, a meaningful feature or an in-
termediate value, is described in the online documentation
of the engine. Te documentation provides snippets of code
in the Javascript programming language about each one of
them which, although not directly usable in our case, have
provided an insight about the manner each particular value
is calculated and from this knowledge came the imple-
mentation in Java code for our processing application.

Regarding the network training dataset, our approach in
constructing the proposed set of features, even though many
are just linear combinations of others, was to consider the
values of every feature and function described in Tables 1
and 2, respectively, as well as the respective values for either
side, as a separate position feature. Tis aims to maximize
the possibility of the neural network discovering patterns in
the feature dataset that relates to the resulting evaluation that
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may be overlooked in case of only using the aggregate values.
Tis resulted in a total of 194 input variables.

Another important decision that has been made is to
perform the training of the network with data extracted only
from chess middlegame positions. Tis is because the
middlegame is the most complicated phase of a chess game
where strategy is formed, and there are usually not all but
also not too few pieces on the board, and therefore, the
network has the best opportunity to detect patterns that
emerge from the features describing these positions and
associate them with the evaluation. Apart from that, the
other two phases of the game, the opening and the endgame,
are usually handled by the engine using other means in
addition to the tree search. In the former case, the vast
opening theory that already exists in chess literature is
utilized by the engines with what are called “opening books”
that may guide the search accordingly. In the latter case, the
endgame, there is a very good chance that no tree search is
performed at all, and an endgame tablebase is typically used
instead. An endgame table base is an enormous database that
contains every possible chess endgame position from a point
on, already analyzed to the end, providing the outcome, the
number of moves to reach it with best play in cases of a win
or lose, and the best move in the position. As from the year
2012, tablebases contain every endgame position that in-
cludes up to seven pieces. In this sense, the concept of an
evaluation score is no longer valid as it is delegated to a value
of zero in case of a draw, or the number of moves to reach
a win or loss in the respective cases.

Stockfsh, and hence our processing application, dis-
tinguishes among the diferent phases of the game using the
phase parameter which is also used in the main evaluation
formula. Te phase parameter depends on the nonpawn
material on the board and takes values from 128 to 0, where
128 corresponds to the opening, 0 to the endgame, and any
value in between to the middlegame. As mentioned, a po-
sition is analyzed by the engine and ultimately stored in the
database only in case it is a middlegame position.

After a position has been identifed as a middlegame
position, it is analyzed by the chess engine so that the
supplementary low-depth evaluations as well as the target
evaluation score can be extracted. Stockfsh is allowed to
analyze a position for exactly 165 seconds (2.75minutes) and
reach as much depth as possible in this timeframe. Of course,
since the time is fxed, the achieved depth depends on the
processing power of the computer the engine runs on, which
in this case uses an Intel Core i7-4779quad-core at 3.40GHz
and 8GB of RAM, and the confguration of the engine itself.
Te important points of the confguration in our case in-
clude occupying 3 computational threads per engine in-
stance, a hash table of 1024MB, and using analysis mode
with a multiple PV of two, which means analyzing the two
best lines instead of one in order to prevent the engine from
possibly overlooking a better branch in the search tree due to
its default behavior of applyingmore pruning on the nonbest
branches.

Under these circumstances, and depending on the
complexity of each position, the engine reaches at a depth of

Start Get next
PGN

Extract next
FEN

Yes Yes

Yes

Yes

No No

No

No
Is the position in

the database?
Compute position

features

End
Is there

another PGN?
Is there a

next move?

Is the position a
middlegame?

Calculate evaluation
(Stockfish)

Store position in
the database

Figure 3: Game processing application fow diagram.

Table 2: Stockfsh evaluation functions and helpers.

Main evaluation General cumulative evaluation
Middle-game evaluation Cumulative evaluation for the middle game
Endgame evaluation Cumulative evaluation for the endgame
Scale factor Scaling coefcient for the endgame evaluation

Phase Weight value based on the nonpawn material on the board, indicating the phase of
the game (opening, middle game, endgame)

Tempo Bonus for having the turn to move
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around 28 plies, i.e., half moves (individual moves played by
either side), as opposed to what chess defnes as a full
move which consists of two plies, one byWhite and one by
Black. Regarding the evaluations used as inputs, three
scores were decided to be used, at depths of 2, 4, and 8
plies, bringing the total length of the neural network input
vector to 197. For these depth values, the chess engine on
the particular machine can provide evaluations in a matter
of a few milliseconds, while the processing time needed to
extract the 194 static features mentioned before is about
10 seconds. Te time needed for the two types of database
queries, for checking if a position already exists and
storing it, takes less than 10milliseconds each.Tese bring
the whole procedure of processing a position to a total of
about 3minutes. In order to produce more data in the
same amount of time, two instances of the processing
application were run in parallel (in diferent CPU
threads), each one provided with its own (non-
overlapping) set of games to process and also running its
own instance of Stockfsh, but interacting with the same
table in the database which was the single point of data
storage. Te table would then be exported as a csv fle
whenever the data were needed for network training.

3. Radial Basis Function Neural Networks

Radial basis function (RBF) networks [8] represent
a special type of feed-forward neural networks that have
been utilized successfully in a diverse range of applica-
tions from regression and classifcation problems [30, 31]
to system control [32, 33]. Proposed in late 80s by
Broomhead and Lowe, RBF neural networks consist of one
hidden layer employing radial basis function as activation
function and ofer many important properties such as
universal approximation, generalization, and robustness
[22]. Te simple structure of an RBF network allows for
signifcant advantages regarding speed and efciency
when compared to other popular architectures like MLP
networks [25].

A visual representation of an RBF network with N input
variables, L hidden nodes, and one output variables is
presented in Figure 4. Each node in the hidden layer im-
plements a radial basis function characterized by a center
vector cj ∈ RN(j � 1, 2, · · · , L), which is equal in dimension
with the input layer, and, depending on the choice of the
RBF, a width value. Te structure of the RBF network entails
a nonlinear mapping between the input and the hidden layer
while the output layer is linearly attached to the hidden layer,
where each connection is weighted by a value known as
synaptic weight wj ∈ R(j � 1, 2, · · · , L).

Given a set of input-output data,

xi, yi( 􏼁, i � 1, 2, · · · , K, (1)

where xi ∈ RN, yi ∈ R, N is the number of input variables, K
is the total number of examples, and L is the number of units
in the hidden layer, and training an RBF network consists
of computing the vector of synaptic weights, but also
the number and location of the RBF centers and the cor-
responding widths where necessary [34] yielding an

approximating function f: RN⟶ R, so that each input
yields a corresponding target output.

Te nodes in the hidden layer implement an RBF
function zj (j � 1, 2, · · · , L), where for this work, the thin
plate spline function is employed

z(]) � ]2 log(]), (2)

where v denotes the activity of a certain input vector to
a certain RBF node. For instance, the activity of the l-th unit
to the k-th input vector is defned as

]l(x(k)) � x(k) − cl

����
����2, k � 1, 2, · · · , K, (3)

where cl is the center vector of the l-th RBF unit and x(k) is
the k-th input vector.

Te output layer gives the RBF network evaluation, and
the k-th input vector is given by

􏽢y(x(k)) � 􏽘
L

j�1
wjφj x(k), cj􏼐 􏼑, (4)

where wj is the synaptic weight of the k-th RBF unit.
After determining the hidden layer size and the location

of the RBF centers, the vector of synaptic weights is de-
termined. Due to the linear relationship between the hidden
and the output layers, the synaptic weights can easily be
calculated using linear regression. A typical approach is
using the linear least squares method, where in the matrix
form one gets the following:

w � (Z
Τ
Z􏼑

−1
Z
Τy, (5)

where Z denotes a matrix that contains the outputs of the
hidden layer for every input vector and y ∈ RK denotes
a vector that contains the desired output, i.e., the target
values.

Computing the number and locations of RBF nodes is
deemed as the most challenging aspect of training an RBF
network, which has great impact on its modeling capabil-
ities. It is usually handled by using a clustering technique,
such as the k-means algorithm which was actually the most
popular approach in training RBF networks in their early

X1

X2

X3

XN

… …

W1

W2

W3

WL

Hidden Layer Output LayerInput Layer

Σ

Figure 4: An RBF network representation.
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days [35]. Despite its popularity, this algorithm comes with
certain disadvantages that originate from its stochastic and
iterative nature. For instance, the algorithm is too sensitive
to the initial center location of clustering that may arise
converging problems. Apart from that, a number of diferent
runs are needed in order to check the consistency of the
results. As for the network size, k-means algorithm lacks the
ability to automatically determine the number of RBF
centers, which means that an exhaustive trial and error
procedure must be incorporated yielding the procedure
inappropriate for cases with high dimensionality.

As the datasets in this work fall into this category, the
use of a more efcient and less computational expensive
procedures is mandatory. To this end, to overcome the
disadvantages of the aforementioned technique, this
work adopts the standard fuzzy means (FM) algorithm
[25] described briefy in the next section which has been
applied successfully to a wide range of applications
[32, 36].

3.1. Fuzzy Means Algorithm for RBF Networks Training.
Te fuzzy means (FM) algorithm, in contrast to the k-means
algorithm, is able to determine the number and the locations
of the RBF centers in an automatic way avoiding any time-
consuming iterative and stochastic procedures. Te main
idea of the algorithm is the partitioning of each dimension of
the input domain into one-dimensional triangular fuzzy sets,
creating a grid of multidimensional subspaces in the input
space, where a selected subset of these subspaces will rep-
resent the RBF centers for the hidden layer of the network
based on a specifc criterion.

More specifcally, considering a case where the RBF
network to be trained accepts N normalized input variables,
or in other words, the input space has N dimensions, and
every dimension is partitioned into the same number M of
triangular fuzzy sets, which can generally be described as
follows:

Am � am, δa􏼈 􏼉, (6)

where Am denotes the m-th fuzzy set and am and δα denote
the center element and the half of the width ofm-th fuzzy set,
respectively.

Partitioning the input space in this manner produces
a total of S multidimensional fuzzy subspaces, equal to the
product of the number of fuzzy sets in each dimension. Each
fuzzy subspace is denoted as A(s), where s � 1, 2, · · · , S, and
its center element will be a vector containing the center
elements of the respective fuzzy set in each dimension. For
example, for a two-dimensional input using fve fuzzy sets in
each dimension, the total fuzzy subspaces are S � 52. Tese
subspaces represent candidate RBF centers for the nodes on
the hidden layer, which are selected in such a way so that
they uniformly cover the distribution of the input space.

Te criterion that the algorithm is based on for the
selection of the appropriate subset of the fuzzy subspaces is
derived from the membership function, which indicates to
what degree a specifc input vector belongs to a specifc fuzzy
subspace.Temembership function for the k-th input vector

to the s-th fuzzy subspace denoted as μAs (x(k)) is given by
the following:

μAs (x(k)) �
1 − d

s
r(x(k)), if d

s
r(x(k))≤ 1,

0, otherwise,
􏼨 (7)

where ds
r(x(k)) is a distance function between the input

data vector x(k) and the center of the fuzzy subspace A(s).
Tis distance function is represented as a hypersurface
on the N-dimensional space of the input and constitutes
a means of discriminating input vectors that get any
degree of membership to a fuzzy subspace as from oth-
er vectors that do not. Since every dimension of the
input space is partitioned using the same number of fuzzy
sets, the distance function hypersurface is actually
a hypersphere which can be defned by the following
equation:

d
s
r(x(k)) �

��������������

􏽐
N
i�1 αs

i − xi(k)( 􏼁

􏽱

��
N

√
δα

, (8)

where N denotes the dimensionality of the input space, αs
i is

the component of the fuzzy subspace center element in the
i-th dimension (i.e., the respective fuzzy set center element),
and xi(k) is the input vector component in the i-th di-
mension of the k-th input vector. Based on the above, the
algorithm processes the training input vectors and de-
termines a selection of the fuzzy subspaces so that every
input vector receives nonzero membership in at least one of
them. As mentioned, this is a noniterative procedure as the
input dataset is processed only once, and hence, short
computational times are achieved even in cases of large
datasets [25].

More specifcally, for each one of the input vectors in the
training subset, the algorithm frst checks if it is located
outside from all the hyperspheres defned by the selected
fuzzy subspaces. If that is the case, a new fuzzy subspace is
selected based on the value of the membership function for
each fuzzy set in every dimension for the current vector, and
thus, a new RBF node is added to the network. After pro-
cessing the whole input dataset, a selection of RBF centers
that compose the hidden layer of the network has been
constructed.

Te algorithm handles only one operational parameter
and that parameter is the number of fuzzy sets that all input
dimensions will be partitioned by, which afects the size of
the network and thus its modeling capabilities. Tere are
various ways to defne the value of the aforementioned
parameter, the simplest of which in the case of the standard
fuzzy means algorithm is a trial and error procedure, as each
dimension is partitioned by the same number of fuzzy sets.
In the case of the nonsymmetric version of the algorithm,
which is based on the same basic principles with standard
FM, there are N diferent operational parameters to be
determined, as it is allowed diferent number of fuzzy sets in
each dimension. In this case, an optimization procedure is
necessary in order to produce an RBF network with optimal
confguration within a logical computation time, most
common of which include metaheuristic search methods
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belonging to evolutionary computation [36] and swarm
intelligence [25, 37].

4. Case Study

4.1. Experimental Setup. Before applying any modeling
techniques, the created datasets should be divided randomly
in three independent subsets, namely the training, valida-
tion, and testing subsets. Te training subset is used during
the training procedure and more specifcally for the de-
termination of the RBF network parameters. Te validation
subset is used for model selection that is the size of the RBF
network, in order to avoid overftting to the training subset.
As for the testing subset, it is used merely for an unbiased
model evaluation. Tere is not a strict rule regarding the
splitting of the available dataset. In this work, the available
data points are randomly divided in a manner 50%, 25%,
25% for the training, validation, and testing subsets,
respectively.

In order to evaluate the performance of the tested
modeling techniques, two diferent indicators were chosen.
Te frst concern the metric of the mean absolute error
(MAE) given by the following equation:

MAE �
􏽐

K
i�1 yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

K
, (9)

and the second indicator is the coefcient of determination
(R2) which is defned as follows:

R
2

� 1 −
􏽐

K
i�1 yi − 􏽢yi( 􏼁

2

􏽐
K
i�1 yi − y( 􏼁

2 , (10)

where yi and 􏽢yi, (i � 1, 2, · · · , K) are the real measurements
and model estimations, respectively, and y is the mean value
of the actual targets.

Te optimal value of the operational parameter s for the
RBF network, that is, the number of the fuzzy sets in each
dimension, was chosen after a trial and error procedure in
a specifc range [smin, smax], where smin and smax are the lower
and upper bounds of the search space, i.e., the minimum and
maximum number of fuzzy sets, respectively. In this work,
the optimal value of s was found using the validation subset
and an exhaustive search procedure in the range [5—20].
For comparison purposes, two diferent neural network
architectures were tested. More specifcally, a two hidden
layer MLP network architecture trained with the Lev-
enberg–Marquardt backpropagation algorithm was
employed [38]. Te optimal combination of hidden layer
sizes was found using the validation subset, by performing
an exhaustive trial and error procedure in the range [5—20]

and [5—10] for the frst and the second layer, respectively.
Te other rival method concerns a CNN model of two 2D
convolutional layers with 20 5× 5 and 50 3× 3 flters in the
frst and the second layer, respectively, trained with sto-
chastic gradient descent (SGD) algorithm, as proposed in
[4]. Due to their stochastic nature, the MLP and CNN
models produce a diferent result for each run, and thus, 30
diferent runs were performed in order to test the consis-
tency of the results.

Except from testing a diferent network architecture, an
investigation on the input features was also performed, by
applying four diferent methods of neural network training.
To bemore specifc, our proposed training dataset consists of
the 194 input variables mentioned earlier, plus the 3 low-
depth evaluation inputs. Variations of this dataset were
created in order to observe the impact of the low-depth
evaluation input on the fnal outcome, namely including all
of the three evaluation inputs for depths 8, 4, and 2, in-
cluding only the variables for depths 4 and 2, and fnally,
including none of these variables at all, altering the total
amount of inputs to 197, 196, and 194, respectively. As far as
architecture is concerned, the frst method included RBF
networks while the second and third method includedMLPs
and CNNs models; in both cases, training was performed
using the aforementioned input dataset. Te fourth method,
also concerning MLP architecture, made use of the meth-
odology found in [12], which was executed on our own
dataset, so that the network training input dataset was
constructed, in order to compare the resulting perfor-
mances. In [12], two alternative board representations, re-
ferred to as “bitmap” and “algebraic,” are used, and MLP
models were used, among others. Te model giving the best
performing case is the bitmap representation. Te bitmap
representation analyzes the board in diferent layers, each of
them regarding a specifc piece. Tere are 6 diferent types of
pieces for each side, hence 12 layers. Each layer consists of 64
inputs that represent the state of the 64 squares of the board,
respectively. Te value of an input may be 0 indicating that
no piece is currently occupying the respective square, 1 if the
square is occupied by a white piece of the type corresponding
to the layer, and −1 if it is occupied by a black piece of the
type corresponding to the layer. Tis representation results
to an array of inputs that contain 768 values. As mentioned
earlier, variations were created using the low-depth evalu-
ation inputs resulting in datasets containing 768, 770, and
771 inputs, respectively.

As for the created datasets, when a chess engine evaluates
a position, there are two types of possible outcome: an
evaluation score or the number of moves until mate, if such
a sequence is found. While processing, only middlegame
positions lowers the possibility of the latter case, and po-
sitions with mating sequences may still occur. Such positions
were then fltered out and were omitted from the fnal
dataset, since they do not correspond to an actual evaluation
score. Te resulting dataset in this case consists of 80,425
middlegame positions.

In a second level of refnement, another fltering was
performed for data having extremely high evaluation scores.
In a typical chess game, evaluation scores tend not to be very
high since the game is usually more or less balanced. For
instance, evaluation scores over 6 indicate that an imbalance
of two minor pieces and values over 9, which corresponds to
the value of a queen, are sparser than those closer to zero and
the reason for this is that when the game is headed towards
such circumstances, the losing player often resigns, and these
positions do not occur. Tis fact leads datasets containing
much more data in the region nearer to zero and less as
values get higher. Te threshold for the aforementioned
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fltering was set to 20, so as to examine the impact of this
situation on the training of the neural network.Te resulting
dataset following this second type of fltering consisted of
79,874 middlegame positions.

4.2. Results and Discussion. Te results for the created
datasets in the two diferent cases of dataset fltering that
have been described are depicted in Tables 3 and 4. Te
diferent input dataset variations regarding the low-depth
evaluation inputs as described above are denoted as scenario
1, 2, and 3. Along with the values of the MAE and R2 in-
dicators for each scenario, for the validation and test sets,
additional information for eachmethod is presented, namely
the computational time for network training, the size of the
yielded network model in terms of nodes, and the number of
selected fuzzy sets, applicable only in the RBF method.

A graphic representation of target versus predicted
values for the best performance of the RBF network in the
test subset for the two dataset fltering cases can be seen in
Figures 5 and 6, respectively, where the line 1:1 is also in-
cluded as reference.

Considering both tables, it can be observed that scenario
1, which contains all three supplementary evaluation input
variables, outperforms the other scenarios in every method.
On the other hand, scenario 2 that contains only the two
lower depth variables performs slightly better than scenario
3 that merely contains static features, especially in the RBF
method.

Observing the results of the over-20 evaluation fltering in
comparison to those of mating evaluation fltering, it is obvious
that the indicators are afected by the existence of larger
evaluations, which are sparser in the dataset for reasons
explained earlier in this section. Errors in such evaluations,
being larger in value, obviously have a greater impact on the
mean absolute error and apparently the same goes for the
coefcient of determination. Tis also indicates a discrepancy
in the performance of the network, which was also observed in
the respective diagram in Figure 5, as in areas away from zero,
the network performance is poorer as it mainly has to perform
extrapolation in order to give a prediction. Conversely, in areas
near zero where data are denser, the necessary interpolation is
much more likely to be efcient.

Te RBF networkmodel along with our proposed feature
set appears to be the overall best performer in all cases.
Especially for the over-20 evaluation fltering, which is much
better scoped in terms of playing the game, the MAE
achieved by the RBF network is comparable to the advantage
that chess engines typically give to the white side just for
having the turn to play in the beginning of a game.
Moreover, the fact that the performance of the RBF network
does not improve that much by the existence of the sup-
plementary evaluation inputs is certainly an asset, making
the possibility of eliminating them, quite feasible for this
method as opposed to the two MLP networks and the CNN
where this would have a signifcant impact as evidently
demonstrated by scenario 3.

One minor exception to the above is the performance
within mating evaluation fltering where the bitmap MLP

network achieves a slightly better MAE than the RBF net-
work, only in scenario 1. However, even then it does not
surpass it regarding the R2 indicator and the amount of time
needed for training, the network is signifcantly larger. A
more interesting observation is that in scenario 3, where no
low-depth evaluation input variables are provided, the RBF
network performs more or less the same (even slightly better
in respect to R2) as the bitmapMLPmethod does in scenario
2, where two low-depth evaluation variables assist its per-
formance. Terefore, the RBF network is the one proposed
as the best performing and most promising approach. Its
success could be attributed to the efectiveness of the FM
algorithm which has been shown to outperform other
machine learning approaches in various problems [25].

Generally, we may notice that within both fltering
approaches, all the tested networks perform the best in
scenario 1, when they are aided by all the supplementary
low-depth evaluation inputs, and then better in scenario 2,
when only the two lesser depth evaluations are included,
than in scenario 3, when no such inputs are used. In-
terestingly and partially mentioned before, these methods
seem to be afected to diferent extends by these additional
inputs with the RBF method being the least dependent on
them and the bitmap MLP being the most improved in their
presence. As it can be seen, the improvement of the RBF
network in scenario 2 over scenario 3 seems almost in-
signifcant as opposed to both the MLP methods.

Comparing the two MLP methods, the overall results of
the bitmap method are generally a bit better than our
proposed feature method. However, the training of such
a network using 768 to 771 inputs in contrast with the one
using 194 to 197 inputs takes about 15 times more com-
putational time. We can observe that our proposed set of
features considerably reduces computation time needed for
network training over the bitmap representation approach,
mostly due to the signifcantly lower amount of input
variables.

As far as a comparison betweenMLP and CNNmodels is
concerned, one can see that the former outperforms the
latter in all cases and scenarios in terms of mean and best
metric values. Te dominance of MLP models over CNNs
was also verifed by the work of Sabatelli et al., where they
concluded that even though both architectures can be used
as robust function approximators, MLP models lead the
performance [4]. In fact, their results showed that MLP
networks performed better or equally to CNNs in all the
experiments, regardless the choice of bitmap or algebraic
inputs in classifcation or regression tasks. Moreover, they
discovered that simply increasing the depth of CNNs was
not sufcient to improve performance, as it only resulted in
increased complexity and longer training times. It should
also be noted that in Sabatelli et al., CNNs were found to
perform equal or worse when using bitmap inputs compared
to algebraic ones, which is the reason that bitmap inputs
were not used for CNNs in this work.

Te lack of uniformity in the input dataset can be easily
observed in Figure 5, where it can be seen that a big part of
the data is gathered in the area close to zero. Another ob-
servation in Figure 6 is that as far as very large evaluation
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values are concerned, there seem to be some groups forming
at value ranges of 20 to 40 and −20 to −40 and some extreme
values around ± 70. Tis phenomenon may be due to the
fact that, when constructing the input data, the engine was
given a fxed amount of time to process each position, and
such extraordinarily high evaluations can dramatically
change when the engine reaches one more level of depth, or
even if it happens to fnd an even better move sequence at the
same depth. In other words, these may be cases where the
engine has not managed to converge to an evaluation in the
available amount of time. If more time was given to the
engine, some of these evaluations would remain the same,
some of those 30-like evaluations would spread to a larger
range, and maybe a few of the evaluations at 70 could ac-
tually become 90 or 150. Of course, it is not possible to
determine the time frame the engine needs in order to
converge, so possibilities for such phenomena, especially for
irregular circumstances like evaluations of 30 or 70, will
always exist. Apart from that, however, the overall ar-
rangement of the data points tends to follow the expected
shape of the ideal model line, as depicted in Figure 6.

An observation in Figure 5 regarding the performance of
the network is that in the aforementioned cases where the

target values are extremely large, almost every prediction is
way of in terms of value approximation, possibly due to the
inadequate quantity of data in these areas that result to the
failing extrapolation, the network attempts to perform.
However, it is important to note that all predictions, except
from two, are in the appropriate quadrant, meaning that
winning side is still predicted correctly. Interpreting this fact
in the context of playing the game, a position of actual
evaluation of +30 that is mispredicted as +17 is still regarded
as a clear win for the white side by the network.

Finally, it should be pointed out that although the de-
velopment of a neural network using our proposed method
requires some preparation and a considerate amount of time
for training, the resulting model is able to provide evaluation
predictions for several moves ahead without processing any
search tree as a chess engine would do. Tis is the practical
importance and actual motivation of this work as these
predictions are obtained in negligible amounts of time,
compensating for the minor defcit in accuracy. In fact, the
time needed for a prediction has been measured as an av-
erage over 10000 predictions. Te average time for obtaining
a prediction using our trained model is 6.9milliseconds.
Although this is an impressive fact in its own right, there is
a more useful aspect to it. Regardless of the amount of
training time the model might need, but more importantly
regardless of the amount of time that is given to the chess
engine to analyze each position during the training dataset
construction, the prediction time would practically remain
the same. Tis implies that in a context where time is
a limiting factor, as in competitive play, when a chess engine
would have as much position analysis available as the time
limit would allow, a software based on such a model could
practically obtain evaluations based on the analysis time
given during its training dataset construction, making the
actual competitive time limit irrelevant.

5. Conclusions

A new approach to evaluating chess position scores based on
RBF networks trained with the symmetric fuzzy means al-
gorithm is proposed in this work. Te proposed set of
features for network training was obtained using the
Stockfsh 10 chess engine. In order to provide a dynamic
aspect of the chess position in the training dataset, three
more supplementary input variables are devised with the
actual evaluation of Stockfsh inmuch lower depths of search
than the one we would ultimately try to predict by using the
neural network, resulting in three diferent scenarios. Te
available data points were collected and processed by over
1500 top-level games, resulting in a database of about 80,000
chess positions, and two fltering techniques were performed
for each tested scenario, regarding mating evaluation and
high evaluation scores. For comparison proposes, an MLP
and a CNN network are included in the study. Moreover, we
compare against a bitmap board representation described in
[12].Te comparative results are in favor of the RBF network
trained with our proposed set of features as inputs, re-
gardless the choice of the scenario. Te results showed that
our proposed set of features signifcantly decreases the
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network training time, compared to existing techniques as
confrmed by the experiments where it was concluded that
an evaluation for several moves ahead (about 28 moves) can
be made in about 7milliseconds on average.

Future research plans include the creation of a larger
database of chess positions implementing more handcrafted
supplementary input variables in order to investigate to what
extend could the modeling capabilities increase, the
implementation of more sophisticated techniques, such as
an RBF network trained with a nonsymmetrical fuzzy means
algorithm [25, 34], or the development of a fully functional
chess-playing application utilizing model predictive control
(MPC) [32, 39] as a decision-making tool that the appli-
cation would rely on in order to decide the next move.

Data Availability

Te data used in this study contain moves from a collection
of chess games. Tey can be downloaded from the following
online chess databases: https://www.chessgames.com/ and
https://www.365chess.com/.
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