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Cryptanalysis is the process of fnding faws or oversights in an encryption algorithm. Nearly, all encryption algorithms are
carefully examined through cryptanalysis to determine the security of the system in which the encryption algorithm has been
employed. A5/1 is a well-known encryption algorithm which is inbuilt in mobile phone for securing GSM communication, and
therefore, cryptanalysis of this algorithm is also important. A5/1 consists of three linear feedback registers of lengths 23, 22, and 19
bits. Due to the nonlinear clockingmechanism of A5/1, cryptanalytic attacks of guess-and-determine (GD) nature are efcient and
more successful. In this paper, we propose a new low keystream GD attack on GSM encryption algorithm A5/1. Te basic idea of
GD attack is guessing some portion of the registers of A5/1 and determining remaining portion of the registers via the relationship
between the register’s state and the known intercepted keystream. Te guessed and determined register’s state is validated by
running the cipher forward from that state. If the intercepted keystreammatches the generated keystream, we accept it. Otherwise,
we discard and try the attack again. Te computational complexity and the success rate of the proposed attack are O (252) and
96.6%, respectively.

1. Introduction

Tere are two categories of encryption algorithm (or cipher),
namely, symmetric cipher and asymmetric cipher. Sym-
metric ciphers are further classifed as stream cipher and
block cipher. A stream cipher is an approach of encrypting
data one bit at a time using an encryption algorithm and
a secret key. As opposed to a stream cipher, block cipher
encrypts data simultaneously in fxed-size blocks.

Cryptanalysis is the process of fnding faws or oversights
in an encryption algorithm. Nearly, all encryption algo-
rithms are carefully examined through cryptanalysis to
determine the security of the system. A5/1 is a well-known
synchronous stream cipher which is implemented on the
hardware of GSM mobile phones for providing over-the-air
communication privacy [1–5], and therefore, cryptanalysis
of A5/1 stream cipher is also important.

For the construction of synchronous stream ciphers,
linear feedback shift registers (LFSRs) are often used because
these registers can be easily implemented in hardware, have
good statistical properties, and can produce keystream bits at
or near the clock speed. Historically, stream ciphers were
designed to be employed in real-time systems because of
their high-speed encryption capability. However, modern
block ciphers are also capable of encrypting at high data
rates, e.g., AES, PRESENT [6], and 3DES [7]. Nevertheless,
some important applications where the computational re-
sources are limited still prefer stream ciphers to encrypt large
quantities of fast streaming data [8]. Due to such important
applications, security analysis of stream ciphers is very
important.

Nearly, all cryptographic and security algorithms un-
dergo security analysis process and are carefully examined to
establish the practical security of the system. In other words,
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the goal of the cryptanalyst is to fnd faws or insecurities in
a cryptography system so that the system can be upgraded.
Typically guess-and-determine (GD) attacks, time-memo-
ry-data trade-of (TMDTO) attacks, correlation attacks, and
statistical distinguishing attacks are few methods to crypt-
analyze stream ciphers. In 1994, when the approximate
design of A5/1 was leaked, it was cryptanalyzed by Anderson
[1], Babbage [9], and Golić [10].Te exact design of A5/1 was
revealed when it was reverse engineered by Briceno et al. [11]
from GSM telephone [12]. In the literature, several attacks
have been studied on the “exact design of A5/1” (for ex-
ample, [4, 5, 13–22]). However, previous proposed attacks
(except [16, 21]) are of interest from the theoretical aspects
because of their defciency in practicality due to needs of
large amount of keystream, lot of precomputation, high
computational demands, huge storage requirements, and/or
defciency in considering asynchronous (or irregular)
clocking of A5/1. It should be noted that irregular clocking
of A5/1 is very important. If irregular clocking of A5/1 is not
considered, then the randomness characteristics of the A5/1
generator weakens. Consequently, cryptanalysis of A5/1
becomes simple and can be performed in less computation.
It is worth pointing that due to the irregular clocking of A5/
1, GD attacks are often mounted on it. Moreover, such types
of attacks are common and are very successful against
stream ciphers. Te basic idea of such type of attack is
guessing some portion of the internal state and determining
remaining portion via the relationship between the internal
state and the known intercepted keystream.Te guessed and
determined internal state is validated by running the cipher
forward from that state. If the intercepted keystream
matches the generated keystream, we accept it. Otherwise,
we discard the current candidate and try the attack again
[22–24]. In this work, we present a new low keystream GD
attack of A5/1 and compare our attack with previously
proposed GD and TMDTO class of attacks. Te remainder
of the work is organized as follows. In Section 2, we present
the design of A5/1. In Section 3, we present a new low
keystream attack on the GSM encryption algorithm A5/1. In
Section 4, a review on the previous A5/1 attacks is presented
followed by conclusion in Section 5.

2. Description of A5/1: A GSM Stream Cipher

For GSM conversation between two communication parties,
e.g., A and B, a sequence of the frame is transmitted. Each
frame is transmitted in 4.615 milliseconds that contains 228
bits, where 114 bits represent the communication from A to
B and the remaining 114 bits represent return communi-
cation. Each frame also contains a frame counter Fn of 22 bits
which is publicly known. For each GSM conversation, a new
64-bit session key k is generated.Te session key followed by
a frame counter is used to set the initial state of A5/1 [4, 5].
Tree LFSRs REG1, REG2, and REG3 of lengths 19, 22, and
23 bits, respectively, are used to design A5/1 keystream
generator (see Figure 1).

Figure 1 shows that each register has a clocking tap at 8th
position in REG1, at 10th position in REG2, and at 10th

position in REG3. Each register also has a primitive feedback
polynomial (see Section 3, Paragraph 1, for details). All
LFSRs are clocked in a stop/go fashion according to the
majority rule, i.e., the registers that have the same clocking
bit must be clocked simultaneously. It should be noted that
at each clock, either two or three registers are clocked, i.e.,
each register moves with probability 3/4 and stops with
probability 1/4.

A5/1 operates as follows: the frst step is an initialization
step in which all LFSRs are set to “0” and then all are clocked
64 times linearly, and in parallel, successive bits of the session
key are XORed to the feedback of each register. In the second
step, all LFSRs are clocked 22 times (again linearly), and in
parallel, consecutive bits of the frame counter are XORed to
the feedback of each register. In this way, at the end of 86th
(64 + 22) clock cycle, an initial state Si is obtained. In other
words, a linear operation for 86 clock cycles is performed for
loading key and frame on the A5/1 keystream generator.
Finally, on the use of initial state Si, A5/1 carries out the
warm-up phase. In this phase, all LFSRs are clocked in
a nonlinear way (according to the majority rule) for 100 clock
cycles and the output is discarded. Afterward, A5/1 is clocked
nonlinearly for 228 clock cycles that produce 228-bit key-
stream.Te keystream combines with 228 bits of the plaintext,
and in this way, the ciphertext of 228 bits is generated. For
more details about A5/1, the readers can refer [4, 5, 15].

3. Proposed Attack

Figure 1 shows that tapping bits, i.e., {13, 16, 17, 18}, {20, 21},
and {7, 20, 21, 22}, are involved in primitive polynomials of
REG1, REG2, and REG3, respectively. Whenever a register is
clocked, its output is feedback at the least signifcant bit (LSB)
position of the respective register. However, before storing the
output at the LSB, bits below the LSB position are shifted
downwards, i.e., REGi[j]←REGi[j−1] (i indicates the register
number and j> 0). In our method of attack, we guess all bits of
REG1 and then determine the contents of REG2 and REG3
using 64 known keystream (KES) bits.Te attacks that use very
small amount of KES bits, e.g., 64 bits, are called low keystream
attacks. In contrast to previously known low keystream attacks
on the exact design of A5/1, computational complexity of the
proposed attack is 252 which is comparatively better. Also, the
rate of success is 96.6% which is remarkable.

3.1. Determination Phase. Tis phase determines the initial
internal state for all possible state candidates. Since REG1 is
guessed, we determine REG2 and REG3 which are unknown.
Firstly, we compute the MSB of REG2 and REG3 by
substituting MSB of REG1 and the frst KES bit in the
following equation:

REG2[21]⊕REG3[22] � REG1[18]⊕KES[0]. (1)

Initially, MSB of REG2 and REG3 is unknown, and
obviously four possibilities exist together. However, we
reduce four possibilities to two possibilities by applying
following two conditions:
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1{ }If REG1[18] � KES[0]then REG2[21] � REG3[22] � 0(or)REG2[21] � REG3[22] � 1,

2{ }If REG1[18]≠KES[0]then REG2[21] � 0,REG3[22] � 1(or)REG2[21] � 1,REG3[22] � 0.
(2)

Te above condition {1} or {2} reduces the amount of
possible state candidates to half. Afterward, by replication
(for example, [25, 26]) of possible state candidates, we de-
termine REG2 and REG3. For this purpose, frst we con-
centrate on the clocking bit of REG2 and REG3 registers.
Since we need to guess all possible combinations of clocking
bit of REG2 and REG3, there are three possibilities that are as
follows:

(1) If REG2[10] and REG3[10] are unknown, then the
state candidate is replicated as follows: load frst copy
by REG2[10]� 0, REG3[10]� 0; second copy by
REG2[10]� 0, REG3[10]� 1; third copy by REG2
[10]� 1, REG3[10]� 0; and fnally fourth copy by
REG2[10]� 1, REG3[10]� 1.

(2) If REG2[10] is known and REG3[10] is unknown,
then state candidate is replicated as follows: load frst

copy by REG3[10]� 0 and second copy by REG3
[10]� 1.

(3) If REG2[10] is unknown and REG3[10] is known,
then the state candidate is replicated as follows: load
frst copy by REG2[10]� 0 and second copy by REG2
[10]� 1.

We consider the secondmost signifcant bit of REG2 and
REG3, i.e., REG2[20] and REG3[21]. If REG2 and REG3 are
clocked together, then REG2[20] and REG3[21] are shifted
downwards and turn out to be new MSB (all possibilities of
clocking and un-clocking of REG2 and REG3 are described
in Algorithm 1). Tere are four possibilities for these new
bits, but equations (3) and (4) reduce them in two possi-
bilities. Tat is, equations (3) and (4) reduce the amount of
possible state candidates to half. Moreover, as we are con-
sidering the initialization of tapping bit REG3[20], in further

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Bits Purpose →

→Registers 
Clocking

Bits 
Tapping Bits

REG1 8 13, 16, 17, 18
REG2 10 20, 21
REG3 10 7, 20, 21, 22

Clock Control Unit

Keystream (KS)

REG1

REG2REG3

Figure 1: A5/1 stream cipher.
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rounds of attack when REG3 is clocked, REG3[21] remains
known and REG3[20] becomes unknown, since downwards
shifting REG3[21]←REG3[20].

REG2[20] � REG3[21]⊕REG1[17]⊕KES[i + 1], (3)

REG2[20] � REG3[21]⊕REG1[18]⊕KES[i + 1]. (4)

Consider the remaining tapping bits of REG3, i.e., REG3
[20] and REG3[7]. At the time of initialization, for each bit
position, we make two replicas and each one is initialized by
both possibilities (0 and 1). Now, we are in the situation of
fnding unknown bits of REG2 and REG3 by nonlinear
clocking of A5/1. In every clocking of REG2, two bits become
known: one in the lower part of the clocked register and
another in the upper part of the clocked register, which
implies that two bits become unknown. However, in the case
of REG3, during frst three rounds of clocking, three bits
become known and three bits become unknown. For in-
stance, REG3 is clocked just after initialization of REG1. As
a result, bits of register REG3 are shifted downwards, i.e.,
REG3[22], REG3[21], REG3[11], and REG3[8] are assigned
known value of REG3[21], REG3[20], REG3[10], and REG3
[7], respectively, and the XORing result of feedback poly-
nomial is set to REG3[0]. In this way, REG3[0], REG3[8], and
REG3[11] become known and REG3[7], REG3[10], and
REG3[20] become unknown and the remaining positions of
REG3 remain unknown since downwards shifting is done by
an unknown value. Here, the counter associated with REG3
is increased by 1. Afterward, REG3[7], REG3[10], and REG3
[20] are guessed again for executing further rounds of attack,
but after three rounds of clocking, we need not to guess
REG3[10] because the number of bits after the 7th index is
three (i.e., 8th, 9th, and 10th). A complete iteration-based
determination algorithm for determining contents of REG2
and REG3 is shown in Algorithm 1.

Algorithm 1, which is the determination algorithm,
determines all bits of REG2 and REG3 by utilizing input,
i.e., consecutive 64 bits of KES and guessing bits of REG1.
Let REG2 and REG3 be clocked c2 and c3 times, respectively.
Whenever registers are clocked, we update the associated
counter by one. Since the partial length between clocking
tap and MSB of REG2 is “10” as well as between clocking
tap and second MSB of REG3 is “10”, Algorithm 1 is re-
peated till c2 and c3 reach 10. In this way, both registers (i.e.,
REG2 and REG3) need to be clocked at least ten times. At
this moment, REG2 and REG3 are completely determined.
We observed that for obtaining a reasonable number of
complete state candidates (a state candidate with all bits is
known can be referred to as a complete state candidate),
minimum 10 KES bits are required, which is only possible
when both registers REG2 and REG3 are clocked together
for 10 consecutive rounds. An important question is that in
howmany rounds, counters c2 and c3 will reach 10, which is
the highest probability (about 90% to 100%) of determining
the key. We will see the answer to this question in
Section 3.3.2.

3.2. Processing Phase. Tis phase of the attack searches for
the key by verifying complete state candidates. In the ver-
ifcation process, we encrypt each complete state candidate
by A5/1 and match the generated output bit with the cor-
responding known KES bit. Tis process (i.e., clocking and
bit-wise matching) continues till a contradiction occurs.
When no contradiction occurs, it implies that the cipher’s
internal state after the warm-up phase has been obtained
because this time 64 bits of a complete state candidate are
matched with 64 KES bits. Afterward, we run the A5/1 in
reverse direction to discover the key.

3.3. Attack Analysis. After initialization, we have state
candidates with all bits of REG1 (guessed register), three bits
of REG2 (i.e., REG2[10], REG2[20], and REG2[21]), and fve
bits of REG3 (i.e., REG3[7], REG3[10], REG3[20], REG3[21],
and REG3[22]). Out of these eight bits, three bits: MSB of
REG2, MSB of REG3, and second MSB of REG3, remain
known in further rounds of attack. However, determination
algorithm determines full contents of REG2 and REG3 for
those state candidates whose counters c2 and c3 have been
reached to 10. An important factor in determination algo-
rithm is the saving of 50% state candidates in each round
since second MSB of REG2 becomes available by the ap-
plicability of one of the equations in equations (5)–(7). Tat
is, whenever REG2 is clocked, there is a one-half reduction of
state candidates in each round. In equations (5)–(7), i is
initialized to “0” and increases by “1” in every additional
clocking.

REG2[20] � REG1[17]⊕REG3[21]⊕KES[i + 1], (5)

REG2[20] � REG1[17]⊕REG3[22]⊕KES[i + 1], (6)

REG2[20] � REG1[18]⊕REG3[21]⊕KES[i + 1]. (7)

An interesting point about REG2 is that whenever it is
clocked, its clocking bit and 20th bit (simultaneously) be-
come unknown. Terefore, we need to assign both (0 and 1)
possibility to REG2[10] by replicating the register REG2 and
this concept is repeated till 1≤ c2< 10, while in the case of
REG3, during the frst two rounds of clocking, we guess
index bits 7, 10, and 20. During and in between 3rd to 8th
clocking, we guess index bits 7 and 20. After 8th and before
10th clocking, we guess only REG3[20]. Here, we assign both
(0 and 1) possibilities to index bits by replicating REG3.
Table 1 shows all possible cases for 10th and 20th index bits
of REG2 and REG3 being known. Te attacking phenom-
enon saves 50% cases for almost all possible cases. Since
cases such as REG2[10] is known and REG2[20] is unknown,
and REG2 [10] is unknown and REG2 [20] is known are not
applicable during 1≤ c2< 10, such cases need not to be
mentioned in Table 1.

3.3.1. Time Complexity. Te computational complexity of
the proposed attack depends on the number of replications
of registers after each A5/1 clocking, where one replication
of state candidate takes one unit of time. Without loss of
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generality, we assume that REG2 and REG3 are clocked
10 times simultaneously.

(a) Due to the condition {1} or {2}, we save 50% state
candidates, and due to equation (3) or equation (4),
we again save 50% state candidates. In this way, we
get 28 ∗ (1/2)2 � 26 initial state candidates. During
the run of determination algorithm, in the frst two
rounds, 24 replicated copies are created, 23 replicate
copies are needed after 3rd and before 8th round,
and 22 replicated copies are created before 10th
clock. Consequently, the time complexity for each
guess of REG1 is computed as
26 ∗ (24)2 ∗ (23)5 ∗ (22)2 � 233. Finally, the worst
case time complexity = 219 ∗ 233 � O(252), where 219
is associated with guessing of 219 possible state
candidates of REG1.

(b) Time complexity can be computed in a diferent way
as well. As shown in Table 1, in each round, either
REG2 is clocked with REG3 or not, we are saving half
of the possible cases over exhaustive search. Since
REG2 needs to be clocked 10 times, we save (1/2)10

cases. Moreover, initially, due to condition {1} or {2},
we save 50% state candidates, and due to equation (3)
or equation (4), we again save 50% state candidates.
In this way, we get the reduction in state candidates
by (1/2)2. Hence, the worst case time complexity to
get the key = 264 ∗ (1/2)2 ∗ (1/2)10 � O(252).

From (a) and (b), we conclude that the computational
complexity of the proposed attack in the worst case is O(252).

3.3.2. Success Probability. Since the amount of complete
state candidates rises with increasing rounds, the success
probability of the attack also rises. Consequently, as all the
state candidates are complete, the probability of successful
determining the whole key becomes high. An important
factor in success analysis is that during each clocking of A5/
1, at least two registers are clocked, i.e., a register is clocked 3
out of 4 times.

(1) Probabilistic Analysis. In this analysis, we fnd the
“number of expected rounds” for achieving a higher rate of
success (about 90% to 100%).

Input: 64-bit known keystream KES and initial state candidates.
Initialize clock counters: c2 � 0 and c3 � 0.
Repeat for each instance of state candidate
step1: computation based on majority rule
if all three registers are clocked then compute REG2[20] using equation (5), increment counters c2++, c3++, and go to step2
else if registers REG1 and REG2 are clocked then compute REG2[20] using equation (6), increment counter c2++, and go to step3
else if registers REG2 and REG3 are clocked then compute REG2[20] using equation (7), increment c2++, c3++, and go to step2
else increase counter c3++, and go to step2
end if
step2:
if c3< 8 then
assign both possibility (i.e., 0 and 1) to REG3[20] and REG3[7] by replicating REG3
else if 8≤c3< 10 then assign both possibility to REG3[20] by replicating REG3
end if
step3:
if clocking bit of REG2 is known and unknown for REG3 then make two replicas: copy 1: REG3[10]� 0; copy 2: REG3[10]� 1;
else if clocking bit of REG3 is known and unknown for REG2 then make two replicas:

copy 1: REG2[10]� 0; copy 2: REG2[10]� 1;
else make four replicas:

copy 1: REG2[10]�REG3[10]� 0; copy 2: REG2[10]�REG3[10]� 1;
copy 3: REG2[10]� 0, REG3[10]� 1; copy 4: REG2[10]� 1, REG3[10]� 0;

end if
Until (c2≥10 and c3≥10)

ALGORITHM 1: Determining registers REG2 and REG3.

Table 1: Percentage saving in fnding unknown bit.

REG2[10] REG2[20] REG3[10] REG3[20] Number of
cases Valid cases Saving cases

(%)
Known Known Known Known 0 0 0
Known Known Unknown Unknown 4 2 50
Unknown Unknown Known Known 4 2 50
Unknown Unknown Unknown Unknown 16 8 50
Unknown Unknown Known Unknown 8 4 50
Known Known Known Unknown 2 2 0

Complexity 5



Formally, we denote

n1⟶an event when REG2 and REG3 are clocked
together.
n2⟶an event when REG1 is clocked either with REG2
or REG3.
Prob(n1)⟶probability of event n1 occurs which is (1/
2).
Prob(n2)⟶probability of event n2 occurs which is (1/
2).

Let Prob(n2) � Prob n( 2′) + Prob n( 2″) � (1/4) + (1/4) =
1/2, where Prob n( 2′) is the probability of occurring the event:
REG1 is clocked with REG2 Prob n( 2″) is the probability of
occurring the event:REG1 is clocked with REG3 Tus,
Prob(n1) + Prob n( 2′) + Prob n( 2″) � 1.

During attack analysis, we observed that to determine all
bits of REG2 and REG3, both registers must be clocked
10 times (at least).Tis implies that x2 �10 and x3 �10. Let us
consider x1 � 10. Tus, the expectation E[Y] can be given as
follows:

E[Y] � x1 ∗Prob n1(  + x2 ∗Prob n2′(  + x3 ∗ Prob n2″( 

Prob n1(  + Prob n2′(  + Prob n2″( ,

E[Y] �
10∗ (1/2) + 2∗ (10∗ (1/4) + 10∗ (1/4))

(1/2) +(1/4) +(1/4)
� 15,

(8)

where we abbreviate expected number of rounds by E[Y] and
x1, x2, and x3 are counts of clocking cycles for events n1, n′2,
and n″2, respectively.

(2) Experimental Analysis. Number of round estimation
(as per above calculation) is rough for achieving a higher rate
of success; it may be a little bit less or more. Teoretically, it
seems impossible to evaluate the exact number of rounds to
achieve 100% successful attack. Terefore, we performed
some experiments by generating random keys and frames.
We mounted the proposed attack for each guess of REG1.
Also, tapping bits were guessed whenever required during
the cryptanalytic attack.Te attack was tested on A5/1 for 15
rounds and in parallel, all replicated 233 state candidates
were determined and verifed. We found that the experi-
mental results corroborate with our probabilistic analysis.
Table 2 shows that the success rate of the attack is on average
96.6% in 15 clocking rounds.We performed the experiments
on an Intel Quad-Core PC i7@3.40Ghz 1000 times, and
results demonstrated that the session key can be obtained in
an average of 12 seconds (7 seconds are required to derive
233 state candidates and 5 seconds are required to verify the
search candidates).

3.4. Space Complexity. For each guess, 233 state candidates
are needs to be verifed. For verifcation, memory re-
quirement can be determined as 233 ∗ 64 bits� 236 bytes� 26
GB, i.e., 64GB RAM. If the key is not matched for this
choice, in the next guess of 19 bits of REG1, previous guess is
discarded, and the verifcation of the new state candidate is
initiated. In this way, the proposed attack requires a total of
only 64GB RAM.

4. Related A5/1 Attacks and Their Comparison

In this section, we discussed only those previous attacks that
were proposed on the exact design of A5/1, practically ef-
fcient, and which belong to the GD class of attacks.

For attacking A5/1, Biham and Dunkelman’s [13] idea is
to wait for an event that can leak a huge volume of in-
formation about the key and then exploit it. Te basic attack
assumes that the register REG3 has not been clocked for 10
consecutive rounds. Te idea is that if we know the clocking
bit of REG3, we can get the information about clocking bit of
REG1 and REG2 for all 10 rounds because both registers are
considered the complement of REG3[10]. Formally, KES[i]
⊕REG3[22] is equal to the output bits of REG1 ⊕REG2. In
this way, guessing of following bits uncover all bits of REG1
and REG2: REG3 [22], REG2 [0], REG1 [9] to REG1 [12],
and REG1 [14] to REG1 [18]. In brief, the total complexity is
the sum of the cost of guessing 11 bits as mentioned above,
the cost of guessing 11 bits of REG3 (i.e., REG3[0] to REG3
[10]), and the cost of continuous clocking of the third
register, so that the attacker receives all unknown bits of
REG3. Additionally, the attacker needs to probe about 220
diferent locations by hit and trial to fnd information re-
vealing events where REG3 is not clocked 10 times con-
secutively.Te computational complexity of the attack is 247,
but the attack needs 220.8 KES bits. Tis basic attack was
further improved in [13] that reduces the time complexity to
239.91, but it also requires a lot of precomputed data, big
amount of known KES bits, and large space. Hence, prac-
tically such attacks are very difcult to implement.

Biryukov et al. [15] proposed two similar nongeneric
TMDTO class attacks on the A5/1 by exploiting low sam-
pling resistance properties of A5/1. Since these attacks be-
long to TMDTO class, there are many possible choices of
trade-of, and three of them are summarized in Table 3,
where the success probability of each attack is 60%. Even
though the random subgraph attack has less data complexity
than biased birthday attack, fetching keystream for 2 sec-
onds, i.e., the requirement of approximately 25000 known
KES bits, is a big obstacle to practically implement such an
attack. Barkan et al. [17] proposed “ciphertextonly” attack
which is an important contribution in the TMDTO class. An
important fact about GSM is that before encryption, GSM
employs error correction, and such weakness has been
exploited by the authors to attack A5/1. However, this attack
requires precomputation of the huge volume of data, and
those data must be stored in secondary storage; therefore, it

Table 2: Statistical results for the successful attacks based on the
experimental analysis (ηtsc: mean of total state candidates; ηcsc:
mean of complete state candidates).

Number of rounds ηtsc ηcsc (ηtsc/ηcsc)∗ 1000 (%)
10 228.21 224.12 5.87
11 229.50 226.45 12.07
12 230.30 228 20.30
13 231.80 230.20 32.98
14 232.12 231.45 62.85
15 233 232.95 96.60
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is very difcult to make such attacks practical. It is note-
worthy that simple forms of TMDTO class of attacks have
been independently proposed by Babbage [9] and Golić [10].
Keller and Seitz [16] demonstrated a hardware-based attack
which difers from previous approaches in two aspects. First,
the attack needs a very small amount of plaintext (only 64
bits). Second, the attack is not solely based on the software
because its crucial part is implemented on feld-
programmable gate array (FPGA). A relation between S,
S′, and S″ is shown in Figure 2.

Keller and Seitz’s algorithm is a two-phase backtracking
algorithm, where the frst phase tries to generate state S′
from few states of S and then generates output keystream.
Afterward, the second phase computes state S″ corre-
sponding to state S′. Te state S″ can be easily generated
because the frame number is known, and all registers were
clocked linearly. It should be noted that the basic part of
Keller and Seitz’s algorithm is like Anderson’s [1] algorithm.
Unlike Anderson’s approach, the asynchronous clocking of
A5/1 is also considered by Keller and Seitz.Te basic strategy
is to guess all possible, i.e., 241 states of REG1 and REG2, and
then deduce the largest register REG3 as follows. Foremost,
i.e., at time t� 0, the MSB of REG3 is obtained by XORing
MSB of REG1, MSB of REG2, and frst known KES bit.

Afterward, Keller and Seitz guessed the clocking bit of
REG3 by inspecting clocking bit of REG1 and REG2. If
clocking bit of REG1 and REG2 is not equal, then REG3 is
clocked either with REG1 or REG2, i.e., both possibilities
of REG3 clocking bit are checked. However, if clocking bit
of REG1 and REG2 is the same, then at least these two
registers are clocked, i.e., all three registers may have been
clocked. Nevertheless, during extensive analysis of this
attack, Gendrullis et al. [21] observed that Keller and
Seitz’s algorithm reduces the complexity of a simple GD
attack by identifying contradiction early that can occur by
guessing the REG3 clocking bit so that REG3 will not be
clocked. In other words, the authors discard a substantial
fraction of potential candidates at an early stage of the
verifcation process. Moreover, Keller and Seitz claim that
their attack technique reduces the worst case complexity
to 251.24 including expected 14 clock cycles per guess.
Unfortunately, the approach given by Keller and Seitz [16]
not only eliminates wrong candidates but also restricts the

search for correct candidates. It should be noted that
Keller and Seitz did not mention this fact. Furthermore,
no complete analysis of the attack has been performed.
Te expected computing time for a guess is slightly higher
than that stated by Keller and Seitz. Te number of all
valid state candidates for one fxed guess of REG1 and
REG2 is (1+(3/4))11 = (7/4)11 = 28.88 = 471. Also, the suc-
cess rate of the attack is only 18% ((86/471) = 0.18) [21].

A signifcant modifcation to the above-stated attack is
presented by Gendrullis et al. [21]. Unlike Keller and Seitz,
they checked all possibilities of clocking bit of REG3. It
implies that they have considered the cases of clocking and
un-clocking of REG3 to fnd the correct state candidates.
Tis decreases 0.25 of all cases and the number of choices
from two to one. In this way, the expected number of
possibilities for REG3 that needs to be verifed is roughly 471
for each of the fxed guesses of REG1 and REG2. Te attack
has computational complexity of 254.02.Te attack was tested
on the Cost-Optimized Parallel COde Breaker (COPACO-
BANA) with the knowledge of only 64 KES bits [20]. As
a result, the machine can recover the corresponding 64-bit
internal state of the cipher in about 6 hours. In this way, the
attack procedure signifcantly reduces the search space over
exhaustive search (O (264)). Te attack is practically efcient
with 100% success. Te only limitation is that the COPA-
COBANA hardware is very expensive and specifcally
designed for mounting such an attack.

A comparison table for above-discussed attacks is shown
in Table 3. It can be clearly observed from the table that there
is competition between low keystream attacks which is
practically possible, i.e., between those attacks that are
proposed by Keller and Seitz [16], Gendrullis et al. [21], Lu
et al. [4], Li [5], and the one which is presented in this work.
Table 3 shows that the proposed low keystream attack re-
quires 64GB memory to save replicated state candidates;
however, a considerable amount of computational time is
reduced. Memory requirement is also very less as compared
to the attack proposed by Lu et al. [4] and Li [5]. It should be
noted that we are guessing very fewer state candidates, and
for each guess, the proposed practical attack takes lesser
time, i.e., only 12 seconds with high rate of success (96.6%)
which is better as compared to the recently proposed attack
by Lu et al. [4] and Li [5].

Table 3: Comparison of related attacks (PW: precomputation workload; CC: computational complexity).

Attack PW CC Known keystream Success probability
(%) Memory requirement Time to

recover key
Proposed in [12] 238 239.91 220.8 bits 63 64GB Impractical attack
Biased birthday attack 1 [14] 248 1 second 220.5 bits 60 146GB Impractical attack
Biased birthday attack 2 [14] 242 1 second 220.5 bits 60 292GB Impractical attack
Subgraph attack [14] 248 3–6 minutes 214.7 bits 60 146GB Impractical attack
Proposed in [15] 0 251.24 Only 64 bits 18 0 7 hours
Proposed in [20] 0 254.04 Only 64 bits 100 0 7 hours
Proposed in [4] NA NA Only 64 bits 81 984GB 9 seconds
Proposed in [5] NA NA Only 64 bits 80.08 3.84 TB 33 seconds
Proposed in this paper 0 252 Only 64 bits 96.6 64GB 12 seconds
Large amount of keystream requirements makes frst four attacks impractical; needing of lot of precomputation data is also a big obstacle in practicality of
these four attacks.
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5. Conclusion and Future Work

In this work, we have presented a new low keystream GD
attack on the GSM encryption algorithm. Te worst case
computational complexity of the proposed attack is O(252)
which is much better than the brute force (O(264)). As
evident from the results, the proposed attack is comparable
to previous A5/1 attacks in terms of computational com-
plexity and success probability. Since we have considered all
the valid state candidates, the probability of containing the
secret key by the fnal set of complete state candidates is high.
Trough probabilistic analysis and experimental test, we
demonstrate that the success rate of the proposed attack is
96.6% and the proposed algorithm is practical and able to
recover the key in 12 seconds. Te proposed algorithm uses
only very small amount of information (64 bits of key-
stream) to mount the attack. Terefore, the proposed al-
gorithm can be used as a valid and efcient alternative for
cryptanalyzing A5/1 and the similar stream ciphers, for
example, 64-bit GMR-2 stream cipher which is used in
satellite phones. As a future work, we plan to test the
proposed algorithm on GMR-2 stream cipher.
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