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Tis study proposes a fractional gradient descent (FGD) algorithm for FIRmodels with missing data. By using the auxiliary model
method, the missing data can be obtained. Ten, the FGD algorithm is applied to update the parameters of the FIR models.
Because of the fractional term in the conventional GD algorithm, the convergence rates of the GD algorithm can be increased. In
addition, to avoid the step-size calculation, an Aitken FGD-based auxiliary model algorithm is also introduced. Te convergence
analysis and simulation examples are provided to show the efectiveness of the proposed algorithms.

1. Introduction

Te gradient descent (GD) algorithm is a classical method
which is widely used in system identifcation and parameter
estimation [1–3]. Its basic idea is to assign a random initial
parameter estimate and then force the estimate to move to
another better estimate [4–6]. Clearly, the direction and
step-size are the two factors in the GD algorithm designing.
Owing to the zigzagging nature, the GD algorithm has
a quite slow convergence rate [7–9]. To increase the con-
vergence rates, one can modify the GD algorithm through
two ways: (1) choose a better direction instead of using the
negative direction; (2) calculate a suitable step-size.

In the last few decades, there have been lots of modifed
GD algorithms, e.g., the forgetting factor GD algorithm [10],
the multiinnovation GD algorithm [11, 12], the conjugate
GD algorithm [13], and the momentum GD algorithm [14].
For example, Fan and Liu proposed a forgetting factor GD
algorithm for input nonlinear FIR-MA systems, where the
colored noise is transformed into a white noise by using the
data fltering method [15]. Chen et al. developed a multi-
direction GD algorithm for ARX models, such an algorithm
establishes a link between the GD and LS algorithms [16]. Xu
et al. used a three-stage GD algorithm for exponential
autoregressive time-series models [17]. Although these

algorithms can increase the convergence rates, they bring
other challenging issues: (1) heavy computational eforts,
e.g., the multidirection GD algorithm; (2) less confdence of
the convergence properties, e.g., the three-stage GD algo-
rithm; and (3) large variance of the parameter estimates, e.g.,
the forgetting factor GD algorithm.

Te FGD algorithm proposed in [18, 19] is an outstanding
alternative of the GD algorithm. Its basic idea is to add
a fractional gradient direction to the GD algorithm [20–22].
With the help of the additional direction, the convergence
rates of the GD algorithm are increased. Recently, a two-stage
fractional least mean square identifcation algorithm is
proposed for a large-scale linear system; this large-scale
system is decomposed into two parts, and these two parts
are iteratively identifed [23]. Chaudhary et al. developed two
FGD algorithms for signal modeling, where these two al-
gorithms require less computational eforts [24]. Xu et al.
provided a momentum-based FGD and an adaptive-based
FGD algorithm for time-delayed ARX models; these two
algorithms have fast convergence rates and less computa-
tional eforts [25]. Khan et al. proposed a fractional SGD
algorithm for recommender systems, and this algorithm
provides fast and accurate recommendations by using a time-
varying learning rate [26]. However, the above work assumed
that all the data from the models were available.
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Owing to the network congestion, some data of the
dynamic systems are missing [27–29]. Usually, two standard
tools are applied to systems with missing data: (1) the lifting
technique, e.g., the polynomial transformation algorithm
[30], whose key is to transform the system into a lifted
system with high order and then estimate the parameters
based on all the measurable data; (2) the imputation tech-
nique, e.g., the auxiliary model method [31], frst estimates
the missing data and then updates the parameters based on
the measurable data and estimated data. Since the lifting
method can enlarge the number of unknown parameters,
this study focuses on the imputation method.

Tis study proposes an FGD-based auxiliary model
(FGD-AM) algorithm for FIR models with missing data.
Based on the auxiliary model method and the FGD algo-
rithm, the missing data and parameters can be iteratively
estimated. In addition, to avoid calculating the step-size, an
Aitken FGD-AM (A-FGD-AM) algorithm is also proposed.
Compared with the traditional algorithms, the method in
this study has the following contributions: (1) the method
has faster convergence rates; (2) the method does not require
calculating the step-size; and (3) the method avoids the
matrix inverse calculation.

Te study is organized as follows. Section 2 describes the
FIR models with missing data. Section 3 proposes the
FGD-AM algorithm. Section 4 gives the A-FGD-AM al-
gorithm. Section 5 provides two simulation examples. Fi-
nally, conclusions and future directions are presented in
Section 6.

2. Problem Statement

First, setup some notations. Te norm of a matrix X is
defned as ‖X‖ �

���������

λmax[XXT]

􏽱

; λmax[XXT] and λmin[XXT]

mean the maximum and minimum eigenvalues of matrix
XXT, respectively; the norm of a vector
z � [z1, z2, . . . , zn]T ∈ Rn is defned as ‖z‖ � (􏽐

n
i�1 z2

i )1/2; the
superscript T denotes the matrix transpose.

2.1. FIR Model with Missing Data. Consider the following
FIR model with missing data:

y(t) � F(z)u(t) + v(t), (1)

where y(t) and u(t) are the system output and input, re-
spectively, v(t) is the noise, and F(z) is a polynomial which
is written by

F(z) � f1z
− 1

+ f2z
− 2

+ · · · + fnz
− n

. (2)

With the development of the communication network
and sensor technologies, researchers usually use sensors to
collect the data and then transmit them over a communi-
cation network. Some data are often missed due to the
network congestion. In this study, we assume that some
output data are missing, the data at the sampling instants
m1, m2, . . . , mq are missing, while the data at the other
sampling instants t1, t2, . . . , tp are available. For instance, for
the irregular sampling pattern in Figure 1, the available
outputs are y(0), y(1), y(3), y(6), y(10),

y(15), y(16), y(21), y(28), . . ., namely, y(t0), y(t1), y(t2),

y(t3), y(t4), y(t5), y(t6), y(t7), . . ., for t0 � 0, t1 � 1, t2 � 3,

t3 � 6, t4 � 10, t5 � 15, t6 � 16, t7 � 21, t8 � 28, . . .. Tis is
a general framework in which we assume the patterns with
irregular sampling outputs availability. Specially, it includes
all output availability as special cases when ti+1 − ti � 1 for all
i. For parameter estimation, the number of the measurable
data is larger than the number of the unknown parameters,
that is p> n.

2.2. FIR Model: A CommonModel. FIR model is a common
model, which can approximate the other kinds of models.

2.2.1. ARX Model. Consider the following ARX model:

A(z)y(t) � B(z)u(t) + v(t), (3)

which can be simplifed as follows:

y(t) �
B(z)

A(z)
u(t) +

1
A(z)

v(t). (4)

Using the fnite impulse response method, we can get

F(z) �
B(z)

A(z)
,

� f1z
− 1

+ f2z
− 2

+ · · · + fpz
− p

.

(5)

We defne

w(t) �
1

A(z)
v(t). (6)

Te ARX model can be simplifed as the following FIR
model:

y(t) � F(z)u(t) + w(t). (7)

2.2.2. CARMA Model. Te CARMA model is written by

A(z)y(t) � B(z)u(t) + D(z)v(t), (8)

which can be simplifed as

y(t) �
B(z)

A(z)
u(t) +

D(z)

A(z)
v(t). (9)

Let

F(z) �
B(z)

A(z)
,

w(t) �
D(z)

A(z)
v(t).

(10)

Ten, the CARMAmodel is simplifed as an ARXmodel.

2.2.3. OE Model. Te OE model is written by

y(t) �
B(z)

A(z)
u(t) + v(t). (11)
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Let

F(z) �
B(z)

A(z)
,

w(t) � v(t).

(12)

Clearly, the OE model is the same as the ARX model.

Remark 1. Since almost all the other kinds of models can be
approximated by an FIR model, we can frst estimate the
parameters of the FIR model and then recover parameters of
the original models.

3. FGD-Based Auxiliary Model Algorithm

3.1. Fractional Derivative-Review. Te traditional GD and
Newton algorithms update the parameters with the frst
derivative and second derivative, respectively. Teir corre-
sponding convergence rates are linear convergent and
quadratic convergent. Although the Newton method has
faster convergence rates, it involves a matrix inverse cal-
culation in each iteration which leads to heavy computa-
tional eforts. A nature question arises, can we use
a fractional derivative to obtain an algorithm which has
a faster convergence rate than the GD algorithm and has less
computational eforts than the Newton method.

Tere are three conventional fractional derivative
methods [32–34]: (1) the Riemann–Liouville (RL) fractional
derivative, (2) the Caputo (CAP) fractional derivative, and
(3) the Grünwald–Letnikov (GL) fractional derivative.

3.1.1. RL Fractional Derivative Method

RL
a D

α
xf(x)≜D

n
aD

α−n
x f(x)( 􏼁 �

1
Γ(n − α)

dn

dx
n 􏽚

x

a

f(t)

(x − t)
α− n+1 dt,

(13)

where Γ(α) � α × Γ(α − 1).

3.1.2. CAP Fractional Derivative Method

C
a D

α
xf(x) �

1
Γ(n − α)

􏽚
x

a

f
(n)

(t)

(x − t)
α+1− n

dt. (14)

3.1.3. GL Fractional Derivative Method
GL
a D

α
xf(x)

≜ lim
h⟶ 0

1
n
α 􏽘

⌊x−a/h⌋

k�0

(−1)
kΓ(α + 1)

Γ(k + 1)Γ(α − k + 1)
f(x − kh)

� lim
h⟶ 0

1
n
α 􏽘

⌊x−a/h⌋

k�0

Γ(k − α)

Γ(k + 1)Γ(−α)
f(x − kh).

(15)

Take f(x) � x, for example, the α-order fractional de-
rivative of f(x) is written by

f
α
(x) �

Γ(2)

Γ(2 − α)
x
1− α

. (16)

3.2. GD Algorithm and Newton Method. Assume that we
have collected L sets of data (p + q � L). Defne

Y(L) � [y(L), y(L − 1), . . . , y(1)]
T ∈ RL

,

Ψ(L) � [ψ(L),ψ(L − 1), . . . ,ψ(1)] ∈ Rn×L
,

ψ(L) � [u(L − 1), . . . , u(L − n)]
T ∈ RL

,

V(L) � [v(L), . . . , v(1)]
T ∈ RL

.

(17)

Ten, the FIR model is written by

y (t0)
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t

Figure 1: Te irregular sampling output.

Complexity 3



Y(L) � ΨT(L)ϑ + V(L),

ϑ � f1, f2, . . . , fn􏼂 􏼃
T ∈ Rn

.
(18)

Defne the cost function as

J(ϑ) �
1
2

Y(L) − ΨT(L)ϑ
����

����
2
. (19)

Using the GD algorithm for the FIR model, we have

ϑk � ϑk−1 + cΨ(L) Y(L) − ΨT(L)ϑk−1􏽨 􏽩,

0< c<
2

λmax Ψ(L)ΨT(L)􏽨 􏽩
.

(20)

Since the output vector Y(L) contains the missing
outputs y(m1), y(m2), . . . , y(mq), we use the auxiliary
model to compute the missing outputs, that is, the missing
outputs in iteration k are computed based on the parameter
estimates in iteration k − 1,

􏽢yk mi( 􏼁 � ψT
mi( 􏼁ϑk−1, i � 1, 2, . . . , q. (21)

Ten, the GD-based auxiliary model (GD-AM) algo-
rithm is listed as follows:

ϑk � ϑk−1 + cΨ(L) 􏽢Yk(L) − ΨT
(L)ϑk−1􏽨 􏽩,

0< c<
2

λmax Ψ(L)ΨT
(L)􏽨 􏽩

,

􏽢Yk(L) � 􏽢yk(L), 􏽢yk(L − 1), . . . , 􏽢yk(1)􏼂 􏼃
T
,

􏽢yk(i) �

y(i), i � tj, j � 1, 2, . . . , p,

􏽢yk(i), i � mo, o � 1, 2, . . . , q.

⎧⎪⎨

⎪⎩

(22)

Remark 2. Te GD-AM algorithm should compute the ei-
genvalues of the information matrix to choose a suitable
step-size. Two shortcomings exist: (1) if the information
matrix has a high order, to compute its eigenvalues is dif-
fcult; (2) if the information matrix is ill-conditioned,
whatever the step-size is, the convergence rates are
quite slow.

Diferent from the GD-AM algorithm, the Newton-
based auxiliary model (NT-AM) method updates the pa-
rameters by

ϑk � ϑk−1 + Ψ(L)ΨT(L)􏽨 􏽩
− 1
Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩,

(23)

􏽢Yk(L) � 􏽢yk(L), 􏽢yk(L − 1), . . . , 􏽢yk(1)􏼂 􏼃
T
,

􏽢yk(i) �
y(i), i � tj,

􏽢yk(i), i � mo.
􏼨

(24)

Simplifying equation (23) yields

ϑk � Ψ(L)ΨT(L)􏽨 􏽩
− 1
Ψ(L)􏽢Yk(L). (25)

Remark 3. From equation (25), we can conclude that the
NT-AM algorithm is the same as the least squares algorithm.
Terefore, the NT-AM algorithm has faster convergence
rates than the GD-AM algorithm. However, the NT-AM
algorithm needs to compute the inverse of a matrix. If the
matrix has a high order, to compute its inverse is
challenging.

3.3. FGD-Based Auxiliary Model Algorithm. Te FGD al-
gorithm takes α − th derivative of the cost function with the
aim of increasing the convergence rates and avoiding the
matrix inversion. Its basic idea is to add an additional di-
rection behind the negative gradient direction. Te FGD
algorithm is written by

ϑk � ϑk−1 − r1
zJ(ϑ)

zϑ
− r2

z
α
J(ϑ)

zϑα
, (26)

where

zJ(ϑ)

zϑ
� −Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩, (27)

is the gradient descent direction, and

z
α
J(ϑ)

zϑα
� −Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩

z
αϑ

zϑα
, (28)

is the additional direction.
Based on equation (16), it follows that

z
αϑ

zϑα
�

1
Γ(2 − α)

ϑ1− α
. (29)

Ten, the FGD algorithm is transformed into

ϑk � ϑk−1 + r1Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩

+ r2Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩
z
αϑ

zϑα

� ϑk−1 + r1 + r2
1
Γ(2 − α)

ϑ1−α
t−1􏼢 􏼣Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩.

(30)

Clearly, the diference between the FGD and GD algo-
rithms is the additional direction and its corresponding step-
size. Te additional direction can polish the negative gra-
dient descent direction with the aim of obtaining a better
direction.

Substituting the parameter estimates at iteration k − 1
with the estimates at iteration k − 2 into the second part of
the right side of equation (30) yields

ϑk � ϑk−1 + r1Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩

+ r2Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−2􏽨 􏽩
z
αϑ

zϑα
,

(31)
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and let

c1 � r1,

c2 � r2
z
αϑ

zϑα
.

(32)

It gives rise to

ϑk � ϑk−1 + c1Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩

+ c2Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−2􏽨 􏽩.
(33)

Remark 4. Equation (33) is equivalent to the conjugate
gradient direction (C-GD) algorithm. Terefore, the FGD
algorithm can be regarded as a modifed C-GD algorithm.

3.4. Properties of the FGD Algorithm. Subtracting the true
values ϑ on both sides of equation (30) obtains

ek � ek−1 + r1Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩

+ r2Ψ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩
z
αϑ

zϑα

� ek−1 − r1 + r2
1
Γ(2 − α)

ϑ1−α
k−1􏼢 􏼣Ψ(L)ΨT(L)ek−1

� I − r1 + r2
1
Γ(2 − α)

ϑ1−α
k−1􏼢 􏼣Ψ(L)ΨT(L)􏼢 􏼣ek−1.

(34)

To keep the FGD algorithm convergent, one should
guarantee that

I − r1 + r2
1
Γ(2 − α)

ϑ1−α
k−1􏼢 􏼣Ψ(L)ΨT(L)

��������

��������
< 1. (35)

Assume that the eigenvalues of the matrix Ψ(L)ΨT(L)

are 0⩽λ1⩽λ2⩽ · · ·⩽λn, then we can get

I − r1 + r2
1
Γ(2 − α)

ϑ1−α
k−1􏼢 􏼣Ψ(L)ΨT(L)

� P
− 1 I − βdiag λ1, λ2, . . . , λn􏼈 􏼉􏼂 􏼃P,

(36)

where P is a nonsingular matrix, and
β � r1 + r2(1/Γ(2 − α))ϑ1−α

k−1. Since

I − βdiag λ1, λ2, . . . , λn􏼈 􏼉􏼂 􏼃 �

1 − βλ1 0 · · · 0

0 1 − βλ2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · 1 − βλn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

Terefore, to keep the FGD algorithm convergent, the
step-size β should satisfy

0< β<
2
λn

, (38)

and the best step-size is

β �
2

λn + λ1
. (39)

For the best step-size, the convergence factor is

μ �
η − 1
η + 1

, (40)

where η is the condition number and is written by

η �
λn

λ1
. (41)

Remark 5. Te same as the GD algorithm, if the condition
number η of the information matrix is large, no matter what
the step-size is, the convergence rates of the FGD algorithm
are quite slow.

4. Aitken FGD-AM Algorithm

In the FGD-AM algorithm, one should compute the ei-
genvalues of the matrixΨ(L)ΨT(L) to obtain a suitable step-
size. If the matrix has a large condition number, the con-
vergence rate of the FGD algorithm is slow. In this section,
we introduce the Aitken FGD-AM (A-FGD-AM) algorithm
to increase the convergence rate of the FGD-AM algorithm.

4.1.AitkenAccelerationMethod. Rewrite the FGD algorithm
as follows:

ϑk � ϑk−1 + βΨ(L) 􏽢Yk(L) − ΨT(L)ϑk−1􏽨 􏽩. (42)

Let

ϑk � f
1
k, f

2
k, . . . , f

n
k􏽨 􏽩

T
. (43)

Using the Aitken method to obtain a new estimate
sequence,

f
i

k � f
i
k −

f
i
k+1 − f

i
k􏼐 􏼑

2

f
i
k+2 + f

i
k − 2f

i
k+1

, i � 1, 2, . . . , n. (44)

Theorem 1. Assume that the parameter estimate ϑk is
updated by the FGD algorithm in (42), and the estimate
sequence ϑk􏽮 􏽯 is computed by the Aitken method in (44).
Ten, the sequence ϑk􏽮 􏽯 is at least quadratic convergent.

Proof. Te FGD algorithm in equation (42) can be rewritten
as

ϑk � g ϑk−1( 􏼁. (45)

Ten, the iterative function of the Aitken method can be
expressed as

h ϑk−1􏼐 􏼑 � ϑk−1 −
g ϑk−1( 􏼁 − ϑk−1

2
􏼐

g g ϑk−1( 􏼁( 􏼁 + ϑk−1 − 2g ϑk−1( 􏼁
. (46)

Clearly, the derivative of the iterative function h(ϑk−1) is

Complexity 5



h
′ ϑk−1􏼐 􏼑 � 0. (47)

If

h
″ ϑk−1􏼐 􏼑≠ 0, (48)

the sequence ϑk􏽮 􏽯 is quadratic convergent; otherwise, the
sequence is at least third-order convergent. Tis completes
the proof.

Te steps of the A-FGD-AM algorithm are listed as
follows:

(1) To initialize, let ϑ0 � 1/p0, with 1 being a column
vector whose entries are all unity and p0 � 106, and
y(t) � 0, u(t) � 0, t⩽0.

(2) Collect the input data u(1), u(2), . . . , u(L),{ } and
the measurable output data
y(o1), y(o2), . . . , y(op)􏽮 􏽯

(3) Let k � 1
(4) Use the auxiliary model method to compute the

missing output data 􏽢yk(m1), 􏽢yk(m2), . . . , 􏽢yk(mq)􏽮 􏽯

(5) Form 􏽢Yk(L)

(6) Update the parameter estimation vector ϑk by (30)
(7) Use the Aitken method to obtain the parameter

estimation vector ϑk

(8) Compare ϑk and ϑk−1: if they are sufciently close, or
for some preset small ε, if ‖ϑk − ϑk−1‖⩽ε, then ter-
minate the procedure and obtain the estimate ϑk;
otherwise, increase k by 1 and go to step 4. □

Remark 6. By using the Aitken method, one does not re-
quire to compute the eigenvalues of the information matrix.
Tat is, the A-FGD-AM algorithm is robust to the step-size.

4.2. Summary. Based on the discussion above, the properties
of these three algorithms are summarized as follows:

GD-AM algorithm

Advantage. It has less computational eforts than the
NT-AM algorithm.
Disadvantage. It has the slowest convergence rates and
is difcult to compute the step-size.

NT-AM Algorithm

Advantage. It has the fastest convergence rates among
these three algorithms
Disadvantage It needs to compute the inverse of an
information matrix and has the heaviest computa-
tional eforts among these three algorithms

FGD-AM Algorithm

Advantage. It has faster convergence rates than the
GD-AM algorithm, has less computational eforts
than the NT-AM algorithm, and can use the Aitken
acceleration technique to increase the
convergence rates.

Disadvantage. It has heavier computational eforts
than the GD-AM algorithm.

5. Examples

5.1. Example 1. Consider an FIR model with missing data:

y(t) � f1u(t − 1) + f2u(t − 2) + f3u(t − 3)

+ f4u(t − 4) + f5u(t − 5) + v(t),

ϑ � f1, f2, f3, f4, f5􏼂 􏼃
T
,

� [0.2, −0.3, 0.4, 0.3, 0.1]
T
,

u(t) ∼ N(0, 1), v(t) ∼ N 0, 0.12􏼐 􏼑.

(49)

In simulation, we collect 500 sets of input and output
data, where all the input data are measurable and the output
data at the sampling instants t � 4, 8, 12, . . . , 500 are miss-
ing. Let α � 1.2.

Use the GD-AM, NT-AM, and FGD-AM algorithms for
this FIR model. Te parameter estimates and their esti-
mation errors τ � ‖ϑk − ϑ‖/‖ϑ‖ are shown in Table 1 and
Figure 2. Te output estimates are shown in Figure 3.

In addition, we apply the FGD-AM algorithm with
diferent noise to signal ratios for this FIR model (FGD-AM-
1, v(t) ∼ N(0, 0.12); FGD-AM-2, v(t) ∼ N(0, 0.22); and
FGD-AM-3, v(t) ∼ N(0, 0.32)). Te estimation errors τ �

‖ϑk − ϑ‖/‖ϑ‖ are shown in Figure 4.
From this simulation, we can get the following fndings:

(1) Te parameter estimates of these three algorithms
can asymptotically converge to the true values

(2) Te NT-AM algorithm has the fastest convergence
rates, then is the FGD-AM algorithm, and the
GD-AM algorithm has the slowest convergence
rates;

(3) Te estimated outputs of these three algorithms can
catch the true outputs

(4) Te larger the noise to signal ratio is, the larger
estimation errors the FGD-AM algorithm will have

5.2. A Water Tank System. Consider a simple water tank
system in Figure 5, where u(t) is the position of the inlet
water valve, and y(t) is the level of Tank 2.We try to keep the
level of Tank 2 in a fxed number; if the level is larger than the
fxed number, we will turn u(t) down; on the other hand, we
should turn u(t) up. Te outputs (the true level of Tank 2)
are transmitted over the communication network, and some
data are missing due to network congestion. Assume that the
system is modeled by the following FIR model:

y(t) � 0.4732u(t − 1) + 0.3216u(t − 2) − 0.4574u(t − 3)

+ 0.2352u(t − 4) + v(t).

(50)

In simulation, we use a random binary sequence gen-
erated by Matlab as the input signal
u � idi nput(320,′rbs′, [0, 1], [−1.5, 1.5]) and assign α � 1.4.
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Assume the outputs at the sampling instants
t � 3, 6, 9, . . . , 300 are missing, while the other outputs are
measurable.

Apply the FGD-AM and A-FGD-AM algorithms with
diferent step-sizes for this model. Te parameter estimation
errors τ � ‖ϑk − ϑ‖/‖ϑ‖ are shown in Figures 6 and 7. Te
output estimates are shown in Figures 8 and 9. In addition,
use the A-FGD-AM and NT-AM algorithms for the water
tank system, where the A-FGD-AM algorithm chooses the
optimal step-size (c � 2/λmax[Ψ(L)ΨT(L)] + λmin[Ψ(L)

ΨT(L)]). Te parameter estimation errors are shown in
Figure 10, and their elapsed times are shown in Table 2.

Tis simulation example shows that the A-FGD-AM
algorithm has faster convergence rates than the FGD-AM
algorithm; the A-FGD-AM algorithm is robust to the
step-size, while the FGD-AM algorithm is sensitive to the
step-size; and the A-FGD-AM algorithm has almost the
same convergence rates as the NT-AM algorithm, but it
has less computational eforts than the NT-AM
algorithm.

Table 1: Te parameter estimates and their estimation errors.

Algorithms k f1 f2 f3 f4 f5 τ(%)

GD-AM

1 0.01816 −0.02790 0.03770 0.02632 0.01047 90.76400
2 0.03461 −0.05313 0.07189 0.05033 0.01982 82.38729
5 0.07528 −0.11531 0.15647 0.11050 0.04228 61.64713
10 0.12134 −0.18521 0.25237 0.18041 0.06621 38.09592
15 0.14958 −0.22761 0.31118 0.22458 0.07968 23.62824
20 0.16691 −0.25334 0.34724 0.25246 0.08721 14.74477

NT-AM

1 0.18741 −0.28870 0.37823 0.29285 0.08355 5.26669
2 0.19988 −0.30138 0.39833 0.30092 0.09284 1.20668
5 0.20088 −0.30199 0.39963 0.30090 0.09379 1.06486
10 0.20088 −0.30199 0.39963 0.30090 0.09379 1.06478
15 0.20088 −0.30199 0.39963 0.30090 0.09379 1.06478
20 0.20088 −0.30199 0.39963 0.30090 0.09379 1.06478

FGD-AM

1 0.11235 −0.16065 0.19141 0.13352 0.02828 51.50809
2 0.16286 −0.23592 0.29032 0.20723 0.05092 27.04707
5 0.19881 −0.29528 0.38311 0.28405 0.08384 4.59820
10 0.20102 −0.30183 0.39883 0.29989 0.09311 1.16937
15 0.20089 −0.30198 0.39958 0.30084 0.09375 1.07048
20 0.20088 −0.30199 0.39963 0.30089 0.09379 1.06513

True values 0.20000 −0.30000 0.40000 0.30000 0.10000

2 4 6 8 10 12 14 16 18 200
k

0

0.1

0.2

0.3

0.4

0.5

0.6

τ

GD−AM
NT−AM
FGD−AM

Figure 2: Te parameter estimation errors.
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350 400 450 500300
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−2

0

2
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Figure 3: Te true outputs and estimated outputs.
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Figure 4: Te parameter estimation errors with diferent noise-to-signal ratios.
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Figure 5: A water tank system.
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Figure 6: Te parameter estimation errors (c � 1/λmax[Ψ(L)ΨT(L)]).
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Figure 7: Te parameter estimation errors (c � 2.01/λmax[Ψ(L)ΨT(L)]).
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Figure 8: Te true outputs and estimated outputs (c � 1/λmax[Ψ(L)ΨT(L)]).
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Figure 9: Te true outputs and estimated outputs (c � 2.01/λmax[Ψ(L)ΨT(L)]).
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6. Conclusions

An FGD-AM algorithm is proposed for FIR models with
missing data. By adding an additional direction to the
conventional GD-AM algorithm, the convergence rates can
be increased. Since the FGD-AM algorithm involves the
step-size calculation in each iteration, an A-FGD-AM al-
gorithm is developed.Te A-FGD-AM algorithm has several
advantages over the FGD-AM algorithm and the NT-AM
algorithm, e.g., it has faster convergence rates, is robust to
the step-size, and does not require matrix inverse calcula-
tion. Terefore, the A-FGD-AM algorithm can be used in
a wide range of cutting-edge applications.

Although the FGD-AM algorithm has several advantages
over the conventional GD-AM algorithm, some interesting
topics about the FGD-AM algorithm need to be further
discussed. For example, how to choose an optimal fractional
order in each iteration and how to avoid the outliers in the
Aitken FGD-AM algorithm.

Data Availability

Te data generated or analyzed during this study are in-
cluded within the article.

Conflicts of Interest

Te author declares that they there are no conficts of
interest.

Acknowledgments

Tis study was supported by the Natural Science Foundation
for Colleges and Universities in Jiangsu Province (Grant no.
20KJB120032).

References

[1] Y. J. Ji and L. X. Lv, “Two identifcation methods for a non-
linear membership function,” Complexity, vol. 2021, Article
ID 5515888, 7 pages, 2021.

[2] F. Giri and E. W. Bai, Block-Oriented Nonlinear System
Identifcation, Springer, Berlin, Germany, 2010.

[3] T. Soderstrom and P. Stoica, Systen Identifcation, Prentice-
Hall, Englewood Clifs, NJ, USA, 1989.

[4] L. Xu, F. Ding, and E. F. Yang, “Auxiliary model multi-
innovation stochastic gradient parameter estimation methods
for nonlinear sandwich systems,” International Journal of
Robust and Nonlinear Control, vol. 31, no. 1, pp. 148–165, 2021.

[5] M. Jiao, D. Q. Wang, Y. Yang, and F. Liu, “More intelligent and
robust estimation of battery state-of-charge with an improved
regularized extreme learning machine,” Engineering Applications
of Artifcial Intelligence, vol. 104, no. 2, Article ID 104407, 2021.

[6] M. Gan, H. T. Zhu, G. Y. Chen, and C. L. P. Chen, “Weighted
generalized cross validation based regularization for broad
learning system,” IEEE Transactions on Cybernetics, vol. 52,
no. 5, pp. 4064–4072, 2022.

[7] X. P. Liu and X. Q. Yang, “Identifcation of nonlinear state-
space systems with skewed measurement noises,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 69,
no. 11, pp. 4654–4662, 2022.

[8] J. Chen, B. Huang, M. Gan, and C. P. Chen, “A novel reduced-
order algorithm for rational models based on Arnoldi process
and Krylov subspace,” Automatica, vol. 129, Article ID
109663, 2021.

[9] Y. H. Zhou, X. Zhang, and F. Ding, “Hierarchical estimation
approach for RBF-AR models with regression weights based

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

2 4 6 8 10 12 14 16 18 200
k

NT−AM
A−FGD−AM

Figure 10: Te parameter estimation errors.

Table 2: Te elapsed times of these two algorithms.

Algorithm NT-AM A-FGD-AM
Elapsed times (second) 0.239 0.202

Complexity 11



on the increasing data length,” IEEE Transactions on Circuits
and Systems-II: Express Briefs, vol. 68, no. 12, pp. 3597–3601,
2021.

[10] Q. L. Liu, Y. S. Xiao, F. Ding, and T. Hayat, “Decomposition-
based over-parameterization forgetting factor stochastic gradient
algorithm for Hammerstein-Wiener nonlinear systems with non-
uniform sampling,” International Journal of Robust and Nonlinear
Control, vol. 31, no. 12, pp. 6007–6024, 2021.

[11] M. Gan, X. X. Chen, F. Ding, G. Y. Chen, and C. L. P. Chen,
“Adaptive RBF-AR models based on multi-innovation least
squares method,” IEEE Signal Processing Letters, vol. 26, no. 8,
pp. 1182–1186, 2019.

[12] Y. Gu, Q. Zhu, J. C. Liu, P. Y. Zhu, and Y. X. Chou, “Multi-
innovation stochastic gradient parameter and state estimation
algorithm for dual-rate state-space systems with d-step time
delay,” Complexity, Article ID 6128697, 2020.

[13] S. Abbasbandy, A. Jafarian, and R. Ezzati, “Conjugate gradient
method for fuzzy symmetric positive defnite system of linear
equations,” Applied Mathematics and Computation, vol. 171,
no. 2, pp. 1184–1191, 2005.

[14] Q. Tu, Y. J. Rong, and J. Chen, “Parameter identifcation of
ARX models based on modifed momentum gradient descent
algorithm,” Complexity, vol. 2020, Article ID 9537075,
11 pages, 2020.

[15] Y. M. Fan and X. M. Liu, “Data fltering-based multi-
innovation forgetting gradient algorithms for input non-
linear FIR-MA systems with piecewise-linear characteristics,”
Journal of the Franklin Institute, vol. 358, no. 18, pp. 9818–
9840, 2021.

[16] J. Chen, J. X. Ma, M. Gan, and Q. M. Zhu, “Multi-direction
gradient iterative algorithm: a unifed framework for gradient
iterative and least squares algorithms,” IEEE Transactions on
Automatic Control, vol. 67, no. 12, pp. 6770–6777, 2022.

[17] H. Xu, F. Ding, and E. F. Yang, “Tree-stage multi-innovation
parameter estimation for an exponential autoregressive time-
series model with moving average noise by using the data
fltering technique,” International Journal of Robust and
Nonlinear Control, vol. 31, no. 1, pp. 166–184, 2021.

[18] N. I. Chaudhary, M. A. Z. Raja, Z. A. Khan, A. Mehmood, and
S. M. Shah, “Design of fractional hierarchical gradient descent
algorithm for parameter estimation of nonlinear control
autoregressive systems,” Chaos, Solitons & Fractals, vol. 157,
Article ID 111913, 2022.

[19] N. I. Chaudhary, M. A. Z. Raja, Y. He, Z. A. Khan, and
J. Tenreiro Machado, “Design of multi innovation fractional
LMS algorithm for parameter estimation of input nonlinear
control autoregressive systems,” Applied Mathematical
Modelling, vol. 93, pp. 412–425, 2021.

[20] Z. A. Khan, N. I. Chaudhary, and S. Zubair, “Fractional
stochastic gradient descent for recommender systems,”
Electronic Markets, vol. 29, no. 2, pp. 275–285, 2019.

[21] Z. A. Khan, M. A. Z. Raja, N. I. Chaudhary, K. Mehmood, and
Y. He, “MISGD: moving-information-based stochastic gra-
dient descent paradigm for personalized fuzzy recommender
systems,” International Journal of Fuzzy Systems, vol. 24, no. 1,
pp. 686–712, 2022.

[22] Z. A. Khan, S. Zubair, H. Alquhayz, M. Azeem, and A. Ditta,
“Design of momentum fractional stochastic gradient descent
for recommender systems,” IEEE Access, vol. 7, pp. 179575–
179590, 2019.

[23] M. A. Z. Raja and N. I. Chaudhary, “Two-stage fractional least
mean square identifcation algorithm for parameter estima-
tion of CARMA systems,” Signal Processing, vol. 107,
pp. 327–339, 2015.

[24] N. I. Chaudhary, S. Zubair, and M. A. Z. Raja, “A new
computing approach for power signal modeling using frac-
tional adaptive algorithms,” ISA Transactions, vol. 68,
pp. 189–202, 2017.

[25] T. Y. Xu, J. Chen, Y. Pu, and L. X. Guo, “Fractional-based
stochastic gradient algorithms for time-delayed ARXmodels,”
Circuits, Systems, and Signal Processing, vol. 41, no. 4,
pp. 1895–1912, 2022.

[26] Z. A. Khan, S. Zubair, N. I. Chaudhary, M. A. Z. Raja,
F. A. Khan, and N. Dedovic, “Design of normalized fractional
SGD computing paradigm for recommender systems,”Neural
Computing & Applications, vol. 32, no. 14, pp. 10245–10262,
2020.

[27] S. Magnusson, C. Enyioha, N. Li, C. Fischione, and V. Tarokh,
“Convergence of limited communication gradient methods,”
IEEE Transactions on Automatic Control, vol. 63, no. 5,
pp. 1356–1371, 2018.

[28] H. Li and Y. Shi, “Distributed receding horizon control of
large-scale nonlinear systems: handling communication de-
lays and disturbances,” Automatica, vol. 50, no. 4, pp. 1264–
1271, 2014.

[29] V. Sanjaroon, A. Farhadi, A. S. Motahari, and B. H. Khalaj,
“Stabilization of nonlinear dynamic systems over limited
capacity communication channels,” IEEE Transactions on
Automatic Control, vol. 65, no. 8, pp. 3655–3662, 2020.

[30] J. Ding, L. L. Han, and X. M. Chen, “Time series AR modeling
with missing observations based on the polynomial trans-
formation,” Mathematical and Computer Modelling, vol. 51,
no. 5-6, pp. 527–536, 2010.

[31] X.Wang, F. Ding, A. Alsaedi, and T. Hayat, “Auxiliary model-
based iterative parameter estimation for a nonlinear output-
error system with saturation and dead-zone nonlinearity,”
International Journal of Robust and Nonlinear Control, vol. 31,
no. 9, pp. 4262–4286, 2021.

[32] R. Almeida, “A caputo fractional derivative of a function with
respect to another function,” Communications in Nonlinear
Science and Numerical Simulation, vol. 44, pp. 460–481, 2017.

[33] S. S. Cheng, Study on Fractional Order LMS Adaptive Filtering
Algorithm, University of Science and Technology of China,
Anhui, China, 2018.

[34] T. T. Hartley and C. F. Lorenzo, “Fractional-order system
identifcation based on continuous order distributions,”
Signal Processing, vol. 83, no. 11, pp. 2287–2300, 2003.

12 Complexity




