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We believe that the ongoing global pandemic has highlighted the need for comprehensive approaches to address issues that
transcend geographical and cultural boundaries. Terefore, this article aims to provide a general but abstract review to allow
readers of a broad spectrum to learn the basic principles of three related concepts: systems, cybernetics, and complexity.
Additionally, to better exemplify these concepts, we ofer a review of works from the last decade that use systems theory,
complexity, and cybernetics for their development. In this context, the result of this review will allow for breaking down the
barriers of reductionist silos of knowledge and fostering a multidisciplinary and interdisciplinary dialogue.

1. Introduction

Recently, the literature has highlighted that optimisation,
multiattribute decision-making, and human factors are
motor themes of current research in engineering and sys-
tems science [1]. Furthermore, while these areas play
a fundamental role in resolving problems in our society, it is
also true that their theoretical substratum is less visible to
technicians and invisible to numerous nontechnicians. Tis
work visualises this conceptual substratum based on three
interrelated concepts: systems, cybernetics, and complexity.
Our focus provides a general review but simultaneously
abstracts to establish a background so that readers of a broad
spectrum may know the basic principles of this critical
subject. In addition, with the idea of giving updated ex-
amples of these concepts, we ofer a review of works from the
last decade that use systems theory, complexity, and cy-
bernetics for their development.

Te initial motivation stems from the challenge to in-
tegrate systems thinking into engineering and science, es-
pecially in the ongoing global pandemic that has highlighted
the need for comprehensive approaches to address issues
that transcend geographical and cultural boundaries. An
essential aspect of cybernetics and the systems approach is

analysing or defning strategies for solving problems re-
gardless of their nature. Tat is, defning and describing
every diferent issue with the same conceptualisation by
abstracting and observing their structure, dynamics and
components, their relationships with the environment, and
their level of complexity, and, with all this, to evaluate the
best strategy from a solution. Tese aspects are elaborated
upon in this review.

Te historical journey concerning these concepts goes
way back. Ancient Greek thinkers have already observed
that the whole is more than the sum of the parts. Plato
coined the term cybernetic with an interdisciplinary look
associated with the art of navigating or directing. Tis
concept refers to navigation, and its use implies permanent
knowledge of the ship’s direction; this situation was called
regulation; later, it was known as communication and
control. Subsequently, many philosophers made diferent
contributions to systematic views, scientifc methods, and
the theory of evolution and contributions from social
sciences. However, the addition of von Bertalanfy’s general
systems theory drastically brings together these diferent
currents of thought. It proposes a comprehensive approach
to analyse problems that, by their nature, are complex and
multidisciplinary.
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Cybernetics reveals that a system must use signals on
deviations from the goal to direct its behaviour to achieve
a goal. Wiener’s cybernetics appeared in 1948 [2], and this
fundamental contribution appears almost simultaneously
along with two others, i.e., the information theory of
Shannon [3] and the theory of games of von Neumann and
Morgenstern [4]. Wiener took cybernetics, feedback, and
information concepts far beyond technology and generalised
them into biological and social realms. In this vein, in the
beginning, there was a signifcant development of frst-order
cybernetics closely associated with the mechanistic models
which is more typical of engineering. Yet, von Foester
launches into applications to psychic and social systems,
including the observer, giving rise to second-order cyber-
netics. Moreover, cybernetics as a theoretical feld continues
to be developed; examples are the Principia Cybernetica
Project, the American Cybernetics Society, and the devel-
opment of social systems and psychological therapy
applications.

We will approach the complexity of systems through
distinction, which is to recognise a diference and com-
plexity, which is difcult to understand. Te elements
provided by British cybernetics, in addition to exemplifying
the fundamental notions of their theoretical framework,
such as variety and regulation, will allow us to have an initial
vision of the concept of systems complexity. A frst approach
is through the variety of Shannon, the possible number of
states that a system can have. However, given the difculty of
defning systemic complexity, we will examine more com-
plex system characteristics. Tese characteristics include
emergence, feedback, nonlinearity, spontaneous order, in-
terdependence and self-organisation, noncentral control,
hierarchies, numerousness, and diversity.

Finally, we will focus on a general analysis of complexity
measurements according to diferent currents of thought.
We will follow Lloyd [5] for this path, who compiled many
measures to measure the complexity in three dimensions,
i.e., how difcult is it to describe it?, how difcult is it to
create it?, and what is its degree of organisation? Our ex-
ploration considers complexity based on Ladyman et al. [5]
as disorder and diversity, feedback, computational mea-
surements, thermodynamic depth and statistical complexity,
efective complexity, and logical depth.

2. Fundamentals

Te representation of reality in models that allow the study
of its behaviour is infuenced by the context. Tus, in
premodern times, Western culture was based on the thought
of Greek teachers and philosophers and the principles of
Christianity established in the Bible. Tis context of pre-
conceived scientifc truths created a hierarchical ontology in
which God came frst. Moving forward to the modern era
between the XV and XVIII centuries, thought was infuenced
by positivist philosophers such as Francis Bacon [6]. Bacon
established that knowledge of the world could be achieved
through empirical observation, and this is how the rise of
scientifc thought, the establishment of hypotheses, the
search for data, and the validation of truths began. In this

way, new knowledge is generated which can be accumulated
and put at the service of humanity.

Although Aristotle already established the ideas of
systems thinking as his well-known “the whole is more than
the sum of its parts,” we cannot fail to mention other
thinkers. For example, philosophers such as Descartes, Kant,
Hegel, and others established important guidelines con-
cerning the interpretation of reality and its representation as
knowledge, which signifcantly impact the systems’
approach [7].

Knowledge should be based solely on reason and not on
superstition and tradition. Tus, it should also be noted that
rationalism represents one of the fundamental philosophical
currents in the development of scientifc thought. In this
development, Descartes (1596–1650) plays a fundamental
role, above all known for being the author of the Discourse
on Method [6], a work in which he presents his philo-
sophical work, also known as “methodical doubt.” For
Descartes, the “I think” (cogito) is the frst truth because it is
the frst thing in which one cannot doubt, and in which our
thinking stumbles: one can doubt everything, except that
one doubts, and since doubting is a straightforward exercise
of thinking, there is no way to doubt thinking itself. Te
importance of Descartes in systemic thinking is due to es-
sential aspects of Cartesian thought. Te frst is his emphasis
on the essential unity of knowledge, which contrasts sharply
with the Aristotelian conception of the sciences as a series of
separate disciplines. Te second aspect is captured by
making a simile with a tree. Tis refers to the usefulness of
philosophy for ordinary life: the tree is valued for its fruits,
and these are gathered, and fnally, there is the metaphysics
or philosophy that is located at the roots of the tree and
which perfectly captures the Cartesian belief in what has
come to be called foundationalism, a view that holds that
knowledge is to be constructed from the bottom up. Des-
cartes’ method is based on mathematics since it provides
certainties and truths that are certain and secure, grounded
on strict reasoning, and has four rules: evidence, analysis,
synthesis, and verifcation. Even so, “innate ideas” are
necessary, which we do not make but which come already
given and are part of our reason. Descartes alludes to the self,
the world, and God as the main ideas later treated as
substances. David Hume (1711–1776), the Scottish philos-
opher and author of the treatise on human nature, sustained
another signifcant current of modern philosophy called
empiricism and was a strong opponent of Cartesian ideas.
Hume argued that knowledge, contrary to what Descartes
thought, is not based on the mathematical operation of
reason, but on experience. Furthermore, this knowledge
does not have, once again compared to Descartes, innate
ideas since, for Hume, ideas come from experience and
impressions of reality through the senses. Hume does not
despise reason either, but he does relegate it to a second place
bymaintaining that on the ethical plane; the reason is not the
guide of life and that it occupies the place of “slave of the
passions.” Hume, in a similar way to Leibniz, distinguished
two kinds of knowledge: logical truths and facts. He also
stated that philosophy could not go beyond experience. If
a hypothesis claims to have discovered the ultimate original
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qualities of human nature, it must be rejected out of hand as
chimerical and presumptuous. Hume, taking a sceptical
view, generates a science of human nature based on ob-
servation and experience, which is characterised by the
development of a comprehensive and constructive treatment
of human nature [6].

According to Jackson [7], p. 1, Kant’s work is signifcant
for systems thinking for three reasons. First, he felt that
science could acquire greater recognition, as had already
been the case with Newtonian physics, so he wanted and
wished to contribute to it; he also believed that it was im-
perative to understand the limitations of science. Te second
reason lies in his interest in “organicism” as a complemen-
tary approach to mechanistic thinking, especially in studying
nature. Moreover, the third place is his arguments about the
capacity of humans to generate principles of moral conduct
because they uniquely possess the autonomy of freedom. In
this manner, rationalists such as Descartes believe that it is
possible to employ only cogent thought to arrive at
knowledge about the nature of things. However, for Kant,
rational thought alone leads to contradictions, such as proof
that God exists and does not exist. Terefore, reason must be
based on experience if it is to produce true knowledge.

At the beginning of the 19th century, Hegel criticised
Kant for his ahistorical description of the mind. For Hegel,
reason gives rise to reality but is itself historically condi-
tioned at the same time. Te process by which the mind can
overcome its historical limitations and gain a holistic un-
derstanding of itself is dialectical. Hegel frequently states
that the central theme of philosophy is the reason or the
absolute, and thus, an interpretation of the totality where the
natural world and human ends is parts [6]. Understanding
the whole, the absolute, is obtained through a systemic
unfolding of partial truths in the thesis, antithesis, and
synthesis, which embraces the positive aspects of the thesis
and antithesis and overcomes them. With the synthesis
becoming the new thesis, each movement through this cycle
gradually enriches our understanding of the whole system.

Husserl is another philosopher who has had a signifcant
infuence on systemic thinkers. He wrote his major works on
phenomenology in the early years of the 20th century. Te
term phenomenology indicates that his interest was in
phenomena, namely, all conscious mental activities, whether
linked to sensory perception, imagination, or our emotions,
is thinking about something. Philosophy is about discov-
ering how the mind directs itself and gives meaning to the
world through intentionality. Note that Husserl establishes
the apophantic and ontological domains. Te apophantic is
the domain of the senses and propositions, while the on-
tological is the domain of things, states of afairs, and re-
lations. Apophantic analytics examines the logical and
formal structures of the domain of the apophantic. Formal
ontology examines the formal structures of the domain of
the ontological. In his later work, this thinking brought him
closer to Hegel’s philosophy [6] as he became interested in
the historicity of consciousness. He began to see experiences
as conditioned. Husserl’s attention to the experiences of the
world was attractive to many philosophers and established
a phenomenological tradition. Heidegger, his disciple, who,

following the same line, advances and tries to recognise,
through language, the being hidden amid its environment,
transformed phenomenology into an investigation of being
and especially of the way of being in the world in a particular
social context. In the frst place, the being, the Dasein, is
thrown into a world that it does not choose; others establish
it. Secondly, it has to adopt a posture to act in that world:
human existence. Finally, Dasein is discourse and must
consistently articulate, either discoursing or discussing the
entities that operate in ordinary situations.

We cannot fail to mention Piaget, who stated that
cognitive development in children occurs when mental
processes are reorganised due to the interaction between
biological maturation and environmental experience.

In the more scientifc realm, the rise of Newton estab-
lishes the frst approaches to a linear view of the world.
Science aimed to discover the laws of nature and their
mathematical modelling. Tis idea was accepted as absolute
truth until the birth of quantum physics. Te reductionist
approach divides the parts as much as possible and solves
these problems independently, as established by Descartes to
study their components. However, the frst approaches for
the modelling of nonlinear systems appear in social systems,
owners of high complexity, and where the traditional
modelling tools are no longer sufcient. In this nonlinear
scenario, the approach is oriented to study the interactions
instead of being reductionist. Tis situation orients the
approaches to consider how the world is seen, instead of
emphasising people and their interactions. In the re-
ductionist analysis approach, a problem or system is broken
down into parts, and each is studied separately. Instead, the
system approach has a synthesis strategy; from the elements
or components, it explores their interactions and concludes
the behaviour of the whole system. However, it is in-
dispensable to establish from a conceptual point of view
what is meant by a system so as to understand it better for
developing the systems approach strategy. Brent D. Ruben
emphasises in the Ackoft preface [8], “Nature does not come
to us in a disciplinary form. Phenomena are not physical,
chemical, or biological.Te disciplines are the ways in which
we study the phenomena; they emerge from points of view
and not from what is viewed. Hence, the disciplinary nature
of science is a fling system of knowledge. Its organisation is
not to be confused with the organisation of nature itself.”

2.1. Systems. Te most general conception of systems is that
it is a set of interacting parts. According to the Oxford
English Dictionary, a system refers to “a set of things that
work together as parts of a mechanism or an interconnecting
network; a complex whole.”

It is notorious that Bertalanfy himself [9], p. 37, refers to
systems emphasising that similar conceptions and general
points of view have been developed in various disciplines of
modern science. According to Bertalanfy, science tried to
explain observable phenomena by reducing them to in-
teractions of investigable elementary units independent of
each other in the past. Systems of various orders were in-
vestigated by investigating their respective parts in isolation.

Complexity 3



Hence, we see the signifcant impact of his general systems
theory on the integral treatment of natural, artifcial, or
social phenomena. However, when speaking of systems, one
must necessarily talk about the environment or surround-
ings; in this sense, a system is distinguished from the en-
vironment; it is a form that can either be physical or abstract.
Te concept of distinction, formally defned by Spencer-
Brown [10], states that “a distinction is a boundary that
separates two sides so that one side cannot reach the other
side without crossing the boundary.” In this way, it is es-
sential to highlight that a system has an edge that separates it
from its environment to distinguish the interior, the exterior,
and the edge. Observing our environment through cognitive
operations allows us to conceptualise it through diferent
distinctions, i.e., we can observe cars, hills, animals, and
other forms that capture the exterior through these dis-
tinctions. Distinctions consider all the perceptions we have
through our senses. Tus, the distinctions we make are
determined by our biological structure due to our nervous
system [11]. Te deepening of these elements and good
examples concerning the concept of systems are given in
Espejo and Reyes [12]. An analysis of the German theorist
Luhmann [13] is made by Eguzki Urteaga of the University
of the Basque Country Department of Sociology [14],
emphasising that Luhmann breaks with the assumption that
there is an actor or an action behind social communication.
He goes further by not considering any theoretical project as
an identity (the system) but as a diference (between the
system and its environment). Te system does not exist in
itself but only exists and is maintained by its distinction from
its environment. Tus, it is vital to highlight Luhmann’s
importance to the relationship between system and dis-
tinction; a system is a distinction and, therefore, has an
interior, an edge, and an exterior. Luhmann distinguishes
three types of systems: psychic, biological, and social. Te
social system consists only of communications. People are
outside the social system since it is conceived only as
communications between people and people belong to the
environment (p. 249 of [13]).

For interacting with the environment, a system must be
organised, confgured as an organisation, and the question is
what is an organisation? One of the frst to establish the
notion of systems that organise themselves is Ashby [15],
who states that the parts are organised when communication
occurs between them and when dependencies or conditions
are established in the interaction. For example, some cor-
relation of what happens in A will act in B. Tis establishes
the occurrence of only some events or happenings in B;
otherwise, there will be no communication.

von Foerster [16] clarifes that the existence of such
systems suppose that they must always be inserted in an
environment that possesses order and available energy to live
at the expense of it. Tus, according to von Foerster, self-
organisation is sustained if (1) a self-organised system is
a system that consumes energy and order from its envi-
ronment, (2) there is an environmental reality in a sense
suggested by the acceptance of the principle of relativity,
which states that if a hypothesis that is applicable to a set of
objects holds for one object and also holds for another object,

simultaneously, it will then be acceptable for all objects in the
set, and it is then the accepted reality as a system environ-
ment, consistent for two observers, and (3) the environment
has structure because it is also a system outside of the system
under study. Of course, it can also be constituted by other
systems that are as well highly likely to be complex.

A system can interact and adapt to the environment to
the extent that it learns from it and manages that knowledge.
Knowledge is the fundamental question that defnes the
domain of epistemology. Specifcally, the Principia Cyber-
netica Web group, in the MST theory, metasystem transition
theory, states it is understood that knowledge consists of
models that allow the adaptation of a cybernetic system to its
environment, thereby anticipating possible perturbations.
Models function as recursive generators of predictions about
the world and the self. A model is necessarily simpler than
the environment it represents, allowing it to run faster, i.e.,
to anticipate processes in the environment.

Tus, concerning system and environment, Luhmann
states that self-reference refers to how a system can establish
relations with itself and diferentiate these relations from the
relations with its environment (p. 44 of [17]). Te author’s
reference implies the system’s closure in itself, but this does
not mean that it cannot establish relations with the envi-
ronment. On the contrary, closure means that the system’s
operations have been recursively possible by the system
operations’ results (p. 101 of [18]). An essential element of
operational closure is that the system can defne its limits
through its operations, thus distinguishing itself from its
environment, and this is the way it has to observe itself as
a system. From Spencer-Brown’s [10] point of view, one can
say that the system always operates within the form that is in
itself and not outside it. Operations are from start to fnish
within the system and one cannot intervene in the envi-
ronment. When the edge is crossed, it is not an operation of
the system; perhaps, one could say that knowledge is possible
because it is operationally closed (p. 63 of [18]). For Luh-
mann [19], autopoietic systems (living, psychic, and social)
are operationally closed. All operationally closed systems
react only to internal operations, which give rise to other
operations, which in turn give rise to other operations (and
so on) but always within the system’s limits.

However, the above does not imply that the system cannot
communicate with the environment or other systems. On the
contrary, it is a selective relationship, named interpenetration
(p. 196 of [18]). Tis term, instead is used to describe the
highly close structural coupling between the psychic and
social systems, means that a system’s active operation de-
pends on complex conditions and achievements that must be
guaranteed in the environment. Nevertheless, these condi-
tions do not have an active operation in the system; in other
words, neither the environmental conditions are part of the
system nor they are their independent operations. Tus, al-
though it is indeed related to interpenetration, the structural
coupling has more to do with an external view that wonders
how they are connected. Terefore, how can the system
operate in an environment despite being autopoietic? Tat is,
can it reproduce itself through its operations? Maturana, who
coined the autopoietic concept, means that structural
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development depends on the structural coupling to the extent
that it does not produce structures incompatible with the
environment [11].

Jackson (p. 63 of [7]) summarises that, in Luhmann’s
theory, systems are signifcantly diferentiated from each
other (for a social system, all the others are in its envi-
ronment), so relationships develop between them. To ex-
plain how this can occur, Luhmann again turns to the work
of Maturana and Varela, this time making use of the concept
of interpenetration to describe the extreme structural cou-
pling. Social systems are operationally closed and, therefore,
develop according to their structural logics. However, they
can be perturbed or irritated by other systems in their en-
vironments in ways that cause structure-determined
changes. Over time, frequent irritations between two so-
cial systems can cause them to resonate with each other
continually and become structurally coupled in the sense
that their relationship reaches specifc stability and they
become dependent on each other. Te association between
the function systems of politics and economics, for example,
is signalled by taxation and central banking. Both function
systems retain their general autonomy but integration re-
duces the freedom that each has individually.

2.2. Cybernetics. Before developing the ideas presented in
this section, we emphasise particulary on one fact. In 1948,
Norbert Wiener’s cybernetics appeared due to the de-
velopments in computer technology, information theory,
and self-regulating machines (p. 15 of [9]). It was again one
of the coincidences that occur when ideas are being dis-
cussed in the community; three fundamental contributions
appear almost at the same time: Wiener’s cybernetics [2],
Shannon and Weaver’s information theory [3], and von
Neumann and Morgenstern’s game theory [4]. Wiener took
the cybernetic, feedback, and information concepts far be-
yond the technology felds and generalised them into the
biological and social realm. He clarifed that systems theory
is often identifed with cybernetics and control theory, which
is incorrect. Cybernetics is founded on information and
feedback and is part of general systems theory, such as the
control mechanism theory in technology and nature. Cy-
bernetic systems are a particular case of systems that exhibit
self-regulation. Additionally, Heylighen and Joslyn [20] in
the Encyclopedia of Physical Science and Technology state
that the term cybernetics derived from the Greek kubernetes,
or “helmsman,” frst appeared in antiquity with Plato, and in
the 19th century with Ampère, who saw it as the science of
efective governance. However, the concept was revived by
Wiener in “Cybernetics or the control and communication
in animals and machines [2].” Wiener defned cybernetics as
the science of control and communication in animals and
machines, i.e., the art of management (p. 1 of [21]). Tus,
coordination, regulation, and control will be its themes.
Terefore, cybernetics is not concerned with what systems
consist of but rather with how they work. Instead, it focuses
on how systems use information, models, and control ac-
tions to orient themselves and to maintain their objectives
while counteracting various disturbances.

Cybernetics received contributions from diferent dis-
ciplines. It emerged from a series of interdisciplinary
meetings from 1944 to 1953 that brought together several
notable postwar intellectuals, including Wiener, John von
Neumann, Warren McCulloch, Claude Shannon, Heinz von
Foerster, W. Ross Ashby, Gregory Bateson, and Margaret
Mead. It is consistent with the principles developed in the
general systems theory developed by von Bertalanfy [9].
Tere are many concepts related to cybernetics, such as self-
regulation, feedback, self-replication, goal orientation,
and goals.

During the 1950s, cybernetic thinkers became consis-
tent with the school of general systems theory (GST),
founded at about the same time by von Bertalanfy, to build
a unifed science by discovering common principles gov-
erning open evolving systems. GST studies system levels of
generality, from static structures to metaphysical systems
[22]. At the same time, cybernetics focuses more specifcally
on goal-directed functional systems with some form of
control relationship [2]. Te development of second-order
cybernetics includes the system being observed. It also
includes the observer in the system [16], which signifcantly
impacts applications to psychic and social systems. For
frst-order cybernetics, more identifed with more me-
chanical engineering systems and of deep interest to au-
tomatic control engineers, computer scientists or creators
of automata are oriented to the fulflment of objectives. As
the frst example of Wiener’s rockets, the observer has no
signifcant relevance; however, in the systems of the social
sciences area, the second observer is very relevant mainly
because of the bias that this efect may imply in the results
of the analysis.

One crucial aspect of cybernetics and the systems ap-
proach is that these allow defning strategies to solve
problems independently of their nature. Tese permit the
defnition and description of every diferent problem with
the same conceptualisation, i.e., to abstract and observe their
structure, dynamics, and components, as well as their re-
lationships with the environment, and to establish their
complexity in order to evaluate the best solution strategy.
Te study of components and their interactions is essential,
as are adaptation processes and knowledge management,
which is the key to system learning [23]. Concepts such as
order, organisation, complexity, hierarchy, structure, in-
formation and control, system-level interactions, boundary,
distinction, environment, and homeostasis, among others,
are manifested in systems of diferent types.

Te primary analysis in cybernetics refers to the dif-
ference between one phenomenon and another, so the
phenomenon itself is not so important, but what makes one
phenomenon diferent from another is important. Tis
approach has its origin in Leibniz and is better expressed by
Bateson [24], who, with his complex thinking, expresses that
when there is relevant information, there is a diference that
makes one object diferent from another.Tis distinguishing
characteristic gives rise to the later development of in-
heritance, fundamental in developing the programming, and
design of object-oriented systems. Cybernetics as a theo-
retical feld continues to develop; examples are the Principia
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Cybernetica Project and the American Society of Cyber-
netics. In addition, many applications in social systems and
psychological therapy have also been developed.

2.3. Variety and Complexity. Let us consider that a distinc-
tion is to recognise the diference and complexity which is
somewhat difcult to understand. Tus, we could say that
something is complex when something is challenging to
understand and when many diferences can be recognised.
Below, we introduce concepts that allow the frst view of
complexity and exemplify its variety and regulation and the
fundamental elements in cybernetics. A critical centre that
integrally studies complexity is the Santa Fe Research In-
stitute, which studies this multidisciplinary concept.

One frst approach is the British school of cybernetics.
According to Pickering [25]and p. 306 of [7], the unique
feature of British cybernetics is that it abandons the search for
objective knowledge in the traditional sense and instead
advocates a process for discovering what is possible when
systems interact with the world. Tus, Beer, one of its most
connoted representatives, inventor of the viable systemmodel
(VSM), converts Ashby’s brain model into an “embodied
organ” interested in interpretation rather than representation.
However, one cannot ignore the importance that Beer [26, 27]
establishes in the VSM concerning the organisation’s in-
teraction with the environment. However, Beer [27] em-
phasises that it is related to the observer for the
exemplifcation of complexity. For example, for an entre-
preneur, complexity will be associated with human resources,
materials, equipment, and capital, which would be very
diferent for a computer programmer, where complexity is
associated with lines of code, logic, number of inputs and
outputs, and interaction with other systems, among others. As
a frst approach to the idea of complexity, we will use the
formulation of Ashby [15, 21] to consider variety as a way to
measure complexity. For example, suppose we have the
following set, which contains 12 elements; yet, we will only
have three diferent elements to have a variety of three:

c, b, c, a, c, c, a, b, c, b, b, a. (1)

It is important to emphasise that the variety will depend
on the observer. If we have two lights, we will have a variety
of 4, considering all the possibilities of on and of for each
one of them. However, if we move away, we will not dis-
tinguish them individually; we will only distinguish on or of,
and thus, we will have a variety of 2. A fundamental concept
is a constraint in a relation between the two sets. Te variety
that exists in one condition is smaller than the one that exists
in another. Tis is a relation between two sets and occurs
when the variety which exists under one condition is inferior
to the variety which exists under another [15].

Variety V is a measure of complexity and is defned as
the number of possible states that a system can adopt. We
assume that the variables representing a particular state are
discrete and that a set of state variables represents a state.Te
variables used to describe a system may not be discrete or
independent. For example, if a particular cat is small and
restless or large and aggressive, then the size of the variable

and character are related. If the size of the variables has two
values, small and large, and the variable character has two
values, restless and aggressive, then they are related. It would
have only two possible states, but the total number of
possible states would be four. In the example, if the size is
measured in kilograms, it can be categorised into two levels.

More generally, if the variables that describe a system set
as a total number of feasible states more minor than the
states that we can conceive, then the system is said to be
constrained [21, 28]. Te system cannot be in all potentially
conceivable states. Tis fact is because some internal or
external laws, relationships, or controls prohibit certain
combinations of values for the variables. Te constraint C
can be defned as the diference between the maximum and
the actual variety, that is,

C � Vmax − V. (2)

Te constraint reduces our uncertainty about the state of
the system and thus allows us to make nontrivial predictions.
For example, if we detect that the cat is small, it will be
restless in the aforementioned example. Te constraint also
allows us to formally model relationships, dependencies, or
couplings between diferent systems or aspects of systems.
Variety and its complement, constraint, can be generalised
to a probabilistic framework, replaced by entropy and in-
formation. In this case, we will consider that the complexity
is equivalent to the feasible variety; it is a measure that allows
comparing the complexity of two or more systems. It is
a rather a theoretical concept, but it is an excellent way to
understand the meaning of complexity through variety, in
a frst approach to the concept of complexity.

Suppose we are comparing two higher educational in-
stitutions according to their mission functions: teaching,
research, extension, internationalisation, and management.
Ten, we could measure this through other metrics. How-
ever, according to Ashby [15], we essentially measure
complexity, which allows us to compare two institutions
from a more objective point of view. For example, if each
mission function has three possible levels, the total space of
possibilities is 35.

As another example, we can consider a company with
capital, human resources, materials, and equipment. We
would have a comparison of complexities according to this
point of view. If the items measured are in diferent units, we
can transform them discretely and establish three categories
for each. Ten, the total space of possibilities is 34. A re-
striction could be only to consider category 1 or 2 in human
resources, and the total number of possibilities would be
2× 33. Beer [26] states that we tend to have a low variety of
representations in our minds to represent a high variety of
situations in reality. We cannot attenuate a variety of new
system states because they proliferate too quickly and lead to
signifcant errors in our judgments.

However, we must adjust our mental models to absorb
the variety of new situations. Terefore, a fundamental el-
ement for our systems’ analysis is to quantify the variety of
systems represented by black boxes. Where we know only
the input and output variables, and the mathematical way to
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calculate the variety of a black box as a function of its input
and output variables is to raise the variety of the output
variables to the power of the variety of the input variables.
For example, if the possible values of the variables are zero
and one, then the input is 22 and the output is 2. Te variety
is 24, and the combinations refect the static variety, which
measures all possible combinations between the input and
output (see Figure 1).

Suppose now that the information inputs at the input
consider time. We consider that each state corresponds to
a bit pattern 0 and 1; in a particular instance, a combination
of 0 and 1 will enter, and a response of 0 or 1 will be the
output; for example, a string could be at times T1, T2, T3,
and T4,. . . 000, 010, 100, and 110, . . . Moreover, the output
would be, in this case, at T1, T2, T3, and T4, namely, 0, 0, 1, 0.
Te total number of patterns would now be 16, i.e., a dy-
namic variety. Te variety is calculated considering that n is
the number of inputs andm is the number of outputs, and in
our example, this is represented as

2m2n

� 21
22

� 16, (3)

where 22, which is 4, is raised to 2, which is 16, the total
number of possible patterns. Figure 2 shows the diferent
patterns generated.

In any case, if the input’s possible values are q and the
output is p and the total input and output variables are n and
m, then the variety would be

V � p
mqn

. (4)

Finally, according to Ashby [21], the law of variety re-
quired indicates that a system is viable when it can cope with
the complexity of the environment in which it operates.
Controlling a situation implies being able to cope with its
complexity, which is measured by its variety. Tus, Ashby’s
law states that only the variety can absorb or destroy its
variety; control is only possible if the variety of the controller
is equivalent to the variety of the situation under control, in
this case, the environment in which it operates.

Tus, Ashby states that a system S receives perturbations
represented in vector D, with a particular variety, from an
environment A. Also, S has a regulator R, a vector corre-
sponding to actions taken for each perturbation. R acts on D
and produces results Z. If R and D are vectors, then
R×D�Z. Furthermore, we have an additional mapping
from set Z of results, to set E of values, which can be as
simple as the 2-element set {good, bad}, and represents the
purpose of the system.

In this case, the regulator limits the result to a particular
subset, keeps some variables within certain limits, or even
keeps them constant. For example, suppose the varieties are
measured logarithmically; the varieties of D, R, and the
actual results are Vd, Vr, and Vo, respectively. Ten, the
minimum value of Vo is Vd-Vr. If Vd is given, the minimum
of Vo can only be decreased by a corresponding increase in
Vr. Te previous example is the law of required variety. Tis
law means that restricting the results to the subset valued as
good requires a particular variety in R.

Elements developed by Wiener have allowed a better
understanding of natural phenomena. Tese elements in-
clude feedback, control, communication, self-regulation,
and action coordination. Also, these ideas have enabled
generating wide applications in engineering and manage-
ment [26, 27]. A practical example from the engineering feld
described by Espejo and Reyes (p. 24 in [12]) is the cen-
trifugal regulator, which shows a mechanical model of self-
regulation to maintain a permanent gas load. Moreover,
another example by the same authors (p. 26 in [12]), re-
ferring to applications in organisations, highlights control in
organisations and does not refer to its naive interpretation as
a simple process of coercion. On the contrary, however, it
refers primarily to self-regulation, a homeostatic process
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Figure 1: Example of variety.
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Figure 2: Diferent patterns generated.
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similar to the aforementioned process explained above. So,
we can say that, in a complex system of any kind, in-
teractions occur between an excellent infnity of elements,
and innumerable phenomena of communication, feedback,
and self-regulation are developing between them.

3. Systems and Complexity

Te review and scope of complexity in systems began in the
19th century when Carnot and other scientists initiated the
development of thermodynamics, considering Newton’s prin-
ciples and laws. Predictions were made according to the laws of
thermodynamics. Since then, several schools of thought have
been developed in the complexity of systems and it is embodied
in the schools of thought to address systems with diferent
orientations in their complexity [29]. Warfeld [29] indicates
that there is no agreement in the community in this respect;
also, he states that the quality of what emerges from a science
depends on the support infrastructure; if it is not adequate for its
development, then it will be subjected to profound criticism.
However, Warfeld [29] highlights the schools of thought of
system dynamics, adaptive systems theory, chaos theory, the
structure-based school, and those which are not classifable. We
look over these proposals in the following sections..

3.1. System Dynamics. System dynamics, based on the early
ideas of Forrester [30], is a methodology for analysing and
modelling behaviour over time in complex environments.
Based on identifying feedback components between ele-
ments and information and material delays within the
system, a modelling of level variables and fows is developed,
assimilating the phenomenon of modelling a system of
ponds and fows with feedback loops. Limits to growth, one
of the applications of system dynamics commissioned by the
Club of Rome to a group of Massachusetts Institute of
Technology (MIT) scientists, was published in 1972, before
the oil crisis. Te report’s lead author, Meadows et al. [31],
a biophysicist and environmental physicist specialising in
system dynamics, prepared this report with 17 scientists.
Senge’s ffth discipline represents more qualitative ap-
proaches [32] that base their action on fve driving ideas: (1)
personal mastery: the ability to clarify vision, focus energy,
be patient, and act with objectivity; (2) mental models:
understanding the deep-seated mental images that infuence
actions; (3) building a shared vision: the ability to develop
a shared vision of the future that everyone shares; (4) team
learning: the ability of a team to collaborate to produce
exceptional results; and (5) systems thinking: the ability to
see patterns of change and how the parts afect the whole.

3.2. Adaptive Systems’ Teory. Tis proposal was pre-
dominantly associated with the Santa Fe Institute but is now
associated withmany business schools. However, the best way
to understand this school of thought is to review howMitchell
[33] refers to this conception, i.e., how is it possible for those
systems in nature that we call complex and adaptive (brains,
insect colonies, the immune system, cells, the global economy,
and biological evolution) to produce such complex, adaptive

behaviour from simple, underlying rules? How can in-
terrelated but selfsh organisms collaborate to solve problems
that afect their overall survival? And are there any over-
arching principles or laws that apply to these phenomena?
Can life, intelligence, and adaption be considered mechanical
and computational? If they can, could we build bright, living
machines? And if we could do that, would we?

3.3. Chaos Teory. Tis school of thought’s origins corre-
spond to various groups, especially in the feld of physics.
However, chaos is a characteristic of a complex system;
Aristotle already conducted studies of chaos. An excellent
start to understanding this school is to review what many
scientists and mathematicians who study such things have
used. Tis is a more straightforward form of the logistic
model called a logistic map, which is perhaps the most
famous equation in the science of dynamical systems and
chaos. Tere are also essential contributions from physics
and those made by the ones who received Nobel Prize in
Chemistry, Ilya Prigogine [34].

3.4. Te Structure-Based School. Warfeld developed this
proposal along with his colleagues and associates, empha-
sising the collaborative and computer-assisted construction
of the structure of a problem situation as a fundamental step
in resolving the complexity of the phenomenon under study
[29, 35]. Warfeld adds that the diferences among the three
lie in the particular formalisms underlying their thinking
and in the extent to which their metaphors (e.g., “chaos” or
“adaptive systems”) are replaced by the specifc results
arising from applications of these formalisms.

3.5. Unclassifable. Tis thought vein corresponds to groups
of academics that can be described as the members that
constitute a vast school formed by professors linked to the
academy and by professionals of diferent specialisations.
According to Warfeld, these subgroups are characterised by
either their interdisciplinary approaches (e.g., fostered for
integrative studies, predominantly for liberal arts faculty) or
postmodern approaches, often challenging organised
knowledge. Moreover, none of them openly acknowledges
complexity in their philosophy or practice.

4. Complexity

According to Ladyman et al. [5, 36] and Ladyman and
Wiesner [36], complexity science is a new science or
knowledge area along with its development, and it is studied
in diferent science areas, acquiring new conceptualisations
and developing approaches relative to each of these areas or
knowledge subjects. Tey as well add that a unique phe-
nomenon called complexity is reaching its development in
diferent branches of science. Also, Mitchell [33] states that
a complex system refers to a system in which large networks
of components without a central control and simple rules of
operation give rise to complex collective behaviour, so-
phisticated information processing, and adaptation through
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learning or evolution. An alternative short defnition is
a system that exhibits nontrivial emergence and self-
organising behaviours.

Te contribution of the importance of physical systems
indicates that it is necessary to incorporate elements
established by Prigogine and Stengers [34]. Many social,
biological, or physical systems have characteristics based on
nonequilibrium thermodynamics. Cooperation phenomena
are also found in inanimate nature by forming ordered
structures that appear in physics and chemistry. Tus, these
structures, which seem to be more the rule than the ex-
ception, are strongly irreversible and dissipative phenomena
in energy and matter and appear in systems that exchange
energy and matter with the environment, i.e., they are open
systems; it is the closed systems that have been frequently
presented in thermodynamics. In these open systems, the
entropy balances consider two terms, one due to energy
exchanges with the environment either by mass or energy
transfer, which can be negative or positive, and the other due
to irreversible internal processes; this sum establishes the
total energy change. Unlike the equilibrium conditions [37],
diferent parameters, and initial and environmental condi-
tions, an open system can adopt a wide variety of diferent
forms and structures, showing a specifc adaptation to the
environment. Tis situation appears in highly dissipative
conditions far from equilibrium, which require a permanent
supply of energy from the outside to be maintained. When
a system X is coupled to an external system Y and Y guides X
to meet some established goals by sending addressing sig-
nals, then system X either corrects behaviours or does not.
Tus, system X has an organisation monitored from outside;
X does not have its (own) organisation. If the control system,
or regulator as Ashby calls it, is within the system itself, then
it is said to be self-regulating and becomes self-organising.

Many physical systems [37] of self-organised examples,
such as the Van der Pol oscillator, show nonlinear behaviour
when their parameters are varied. Yet, the most important
thing is that if we consider a particular period, the balance of
absorption and dissipation of energy is zero. Te system
starts to oscillate spontaneously, sustaining and stabilising
itself with a continuous balance between energy absorption
and dissipation. Tese characteristics can be projected to
other systems, such as ecological systems or societies to
produce hierarchies of self-organising elements. Tese ele-
ments themselves can be open systems, so there will be
multiple positive or negative feedback loops. In general,
a system can be stable and, for example, if it is evaluated as
a function of time for a long initial period, still new equi-
librium states may develop after a specifc instant. However,
despite this, the system moves away from this new equi-
librium and advances to new equilibrium states; thus, species
of equilibrium gaps appear as the whole evolution of the
process unfolds [34]. Finally, Boulton et al. [38], cited in p.
127 of [7] , state how dissipative structures can have a great
interpretation in the feld of social sciences and project
management. Prigogine’s models encompass internal and
external “fuctuations” and microscopic diversity that fall
within the “realm of complex evolutionary models” that are
relevant to both the social and natural sciences.

Te following section presents a very general frst ap-
proach to answer the question of which dimensions could
characterise a complex system and help us to understand
what a complex system is. Tis approach is supported by the
work of Ladyman et al. [5, 36], Ladyman and Wiesner [36],
Mitchell [33], Page [39], Warfeld’s classifcation [35], and
other authors who have contributed to the development of
complexity.

4.1. Emergency. Emergence is visualised in diferent human
knowledge areas. In these areas, similar behaviours can be
glimpsed in felds as disparate as physics, biology, epide-
miology, sociology, political science, and computer science,
among others; Mitchell [33], Jackson [7], and Ladyman and
Wiesner [36] highlight this phenomenon in their books in
a cross-cutting manner with examples taken from diferent
knowledge felds. Also, these felds are viewed from a higher
level of abstraction to pursue explanatory and predictive
mathematical theories that make the similarities between
complex systems more formal and that can describe and
predict the emergence phenomena. Tus, a way is being
sought to formally express the fact that the behaviour of
systems is unique and that knowledge is one. Te emergence
in systems arises from unexpected behaviours resulting from
the interaction of the components or parts of a system which
may give rise to some forms of adaptation through difer-
entiation phenomena [40]. An essential element of emer-
gence is, as Ladyman et al. [5] indicate, that an emergence
object, property, or process exhibits downward causality
type behaviours, and upward causality produces degradation
in the sense that, for example, a subatomic element can
produce radiation in a cell that produces radiation that will
lead to the degradation of the whole system. Bottom-up or
top-down causalities often go together, as do interactions
between diferent system levels. Perhaps, in a simple way, the
cause-and-efect chain can be established from the whole to
the parts and from the parts to the whole, producing also the
feedback in the interaction [41, 42]. Te emergence to which
we refer is more from the point of view of the evolution of
nature and more from practical approaches, such as the one
that has to do with fractal formation or the organisation of
ant colonies and how levels of organisation in nature arise
from fundamental physics and the physical parts of more
complex systems, as well as systems of a social-technical
type, which are being treated as excellent examples by
Mitchell [33]. From a more pragmatic point of view, Miller
and Page [43] state that many of our most profound ex-
periences of emergence come from those systems in which
local behaviour seems so wholly disconnected from the
resulting aggregate that it has magically emerged, echoing
Clarke’s observation on advanced technology. Also, some
statistical behaviours such as the law of large numbers in-
dicate that the distribution of the sample means of a pop-
ulation independent of its distribution of origin is normally
distributed when the sample size tends to intensify. Finally,
Page (p. 24 of [39]) provides a sound synthesis of emergence.
According to Page, emergence refers to higher-order
structures and functions resulting from entity
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interactions. Ant bridges, market failures, domestic cultures,
and collective wisdom are all examples of emergence.
Emergence underpins the idea of scientifc scale. Physics
becomes chemistry; chemistry becomes biology; biology
becomes psychology, etc. In other words, cells are born from
the interactions of atoms, organs are born from the in-
teractions of cells, and societies are born from the in-
teractions of persons. Each level of emergence results in
higher-order features: cells divide, hearts beat, people think,
and societies mobilise. As a result, the emergence generates
behaviours that are very difcult to predict from the in-
teraction of the parties, and this occurs in both physical and
social systems.

4.2. Feedback. Wiener [2] states that a fundamental issue in
cybernetics is that everything boils down to messages (i.e.,
information) sent and responded to (i.e., feedback). Te
efectiveness of the behaviour of society or any system de-
pends on the quality of these messages. It also exemplifes the
way we drive a car on an icy road. All our driving behaviour
depends on the knowledge of the slipperiness of the road
surface. When we use the steering wheel, there will be an
interaction with the road through signals that come and go;
fnally, the vehicle must be stabilised through a process of
permanent checking. Te same happens when we are taking
a shower, and we are regulating the water temperature. With
our hands, we check if the temperature is adequate; if it is
low, we will regulate the fow of hot water with the tap; if it is
too hot, we will regulate this with the cold water tap and then
check again, so we continue with a process of trial and error.
Another classic example is the antiaircraft project that was
assigned to Norbert Wiener, a brilliant mathematician
working at MIT [44]. Te main problem was predicting the
position of an aircraft; this was because, given the limited
velocity of the cannon projectiles, the cannon operator
should not aim directly at the aircraft. If he did, by the time
the projectile reached its intended target, the aircraft would
of course no longer be there. In addition, pilots will likely
move randomly to avoid destroying each other. Wiener’s
approach was to develop a mathematical theory to predict
future events by extrapolating incomplete information from
the past, which was ultimately the basis of modern statistical
communication theory [44]. While working with a young
engineer, Julian Bigelow, they built an antiaircraft machine
by connecting a cannon to the newly developed radar.
However, feedback is a fundamental feature in adaptation,
a property that is considered to be a characteristic of
complex systems [45]. Yet, feedback is classically associated
with automatic control systems in engineering; the adap-
tation process involves a very intense interaction between
the diferent components and is very difcult to implement if
no feedback processes allow fundamental adjustments to be
made for adaptation. Mitchell [33] states that all these
systems adapt; that is, they change their behaviour to im-
prove their chances of survival or success through evolu-
tionary or learning process adaptation. Tough the concept
of feedback was coined from cybernetics, it is closely related
to the process of adaptation that requires feedback for the

achievement of adjustments that in cybernetics are short
steps but, in organisms, take long periods of evolution, using
information from the environment and the system itself.

4.3. Nonlinearity. Two variables have a linear relationship
when the variation causes a constant proportional change in
the other. Although reductionist approaches use a strategy in
which, by decomposing a problem to fnd its solution, they
assume that the whole is the sum of its parts, the nonlinear
behaviours that appear can generate more complex be-
haviours and are very difcult to predict. Te example of
rabbits described by Mitchell [33], which have exponential
behaviour, is very illustrative in this regard:

X(t + 1) � R∗X(t)∗ (1 − X(t)). (5)

Many researchers have used a simplifed version of the
logistic map or logistic equation that became well-known
due to a scientifc paper by the biologist Robert May and was
further studied by the physicist Feigenbaum [46]. It rep-
resents a demographic model in which births and deaths are
represented in R, and X(t) represents the percentage of
occupation of the territory, which corresponds to the
maximum habitation capacity of the species; in simple
terms, it explains the behaviour of a population approaching
a limit established by the capacities of the place it inhabits:

X(t + 1) � R∗X(t)∗ (1 − X(t)). (6)

May observed and demonstrated that slight variations in
the parameter R causes very diferent behaviours in the
values of X, and this model is used as an example of a system
that, when changing its conditions as the value of R gen-
erates a chaotic change, it is a representative of the non-
linearity, and this is also shown as a chaotic representation of
a system that is very difcult to predict for particular values
of R. Te increase in R can be seen in the fgure. It implies
variations in the percentage of occupancy greater than
specifc points of R, resulting in values of X that are difcult
to predict. Also, Ladyman and Wiesner (p. 48 in [36]) add
that the universe contains many components that interact
with each other in a nonlinear manner: “Tere is a nesting of
emergence structure on many spatial scales. Each galactic
structure represents the history of the early universe and the
symmetry breaking that gave rise to the fundamental forces
and subatomic particles, as well as the more specifc history
of galaxy formation itself.” From the natural sciences, Page
[39] indicates that Stuart Kaufman, a physician and theo-
retical biologist infuenced by cyberneticists McCulloch and
Ashby and presents an attractive idea to build computer
models to illustrate spontaneous emergence in biological
systems. Kaufman represented the interaction of agents in
models of coevolution, considering the environment as
a wild landscape, where they move, throwing peaks of
diferent heights separated by valleys due to the nonlinear
interactions between agents possessing diferent attributes.
Tus, nonlinear interactions in complex systems generate
unexpected and very difcult-to-predict behaviours in the
system’s overall behaviour.
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4.4. Spontaneous Order, Interdependence, and Self-
Organisation. In this case, Ladyman et al. [5] indicate
that a fundamental idea in complex systems’ research is the
order in the behaviour of a system that arises from the sum
of a large number of awkward interactions between ele-
ments. However, it is not at all easy to say what the order is.
Related notions include symmetry, organisation, periodicity,
determinism, and pattern. Ladyman also points out that total
order undermines the system’s complexity because it in-
dicates that there is a bureaucracy that controls its behav-
iour. Interdependence is an element that emerges and
establishes an infuence in the endless search for order in
systems with operations specifc to armed forces [45]. Order
and interdependence are permanently related, considering
that, in dynamic processes, forces are established and will
always seek the attractors of equilibrium. Concerning
complex interacting systems, an ecosystem consists of or-
ganisms belonging to many diferent species, competing or
cooperating with their shared physical environment [47].
Another example is the market, where diferent producers
compete and exchange money and goods with consumers.
Although the market is highly chaotic and nonlinear, this
system generally reaches an approximate equilibrium in
which all the changing and conficting consumer demands
are satisfed. Beinhocker [48] indicates that traditional rules
cannot explain the economy because three factors infuence
this view. First, wealth has grown explosively, complexity has
grown explosively, and no one is taking responsibility; no
one is responsible for these events. So, a diferent expla-
nation is required, more like a complex adaptive system
where agents interact through inductive rules with much
peer-to-peer interaction using imperfect information in an
environment of high computational power and fast learning;
from these interactions, patterns of behaviour often emerge
that are not expected. Terefore, the economy is seen as
a dynamic system with heterogeneous agents that learn over
time, adapt and change, interact with institutions, and
change not only economic mechanisms but also behavioural
ones, generating evolutionary behaviours that permanently
create innovation. From the feld of physical chemistry, an
essential element is the contribution of Ilya Prigogine
[34, 49] Nobel Prize winner in Chemistry in the conception
of the character of spontaneous order and self-regulation,
who introduces the concept of dissipative structures in open
systems with an extensive exchange of energy and matter
with the environment, which corresponds to irreversible
thermodynamic systems far from equilibrium. Tese
structures, whose most relevant characteristic is that they are
self-organised coherent structures in systems far from
equilibrium, which associate the ideas of order and dissi-
pation. Prigogine observes that new types of structures
appear spontaneously far from the equilibrium situation.
From chaos arise ordered structures that require an input of
energy to sustain themselves, that do not maintain linear
relationships, and that are impossible to predict accurately.
Tese structures generate momentary equilibria that can
lead to new expansions in qualitatively diferent situations
from those near equilibrium. A classic example is the Benard
instability, where the liquid is in a container with

a temperature diference between the upper and lower
surface due to the latter being heated. Tere is, therefore,
a temperature gradient, as the bottom is hotter than the
surface, which produces heat conduction from the bottom to
the top. Instability occurs when the gradient exceeds
a specifc limit. Generating heat transport by conduction is
augmented by convective transport due to the movement of
the particles. Vortices are formed temporarily, which dis-
appear when heat is removed, and the initial condition
returns.

4.5. Noncentral Control. A widely agreed characteristic of
complex systems is the lack of centralised control [5].
Mitchell (p.8 in [33]) indicates that the immune system
consists of many diferent types of cells distributed
throughout the body (in the blood, bone marrow, lymph
nodes, and other organs). Tis collection of cells works
together efectively and efciently without any central
control. Also, Mitchell (p. 12 in [33]) states that large net-
works of individual components (ants, B cells, neurons,
stock buyers, and website creators, among others) follow
relatively simple rules without a central control or leader. It
is the collective actions of many components that give rise to
the complex, hard-to-predict, and changing patterns of
behaviour that fascinate us. Often these types of interaction
rules are elementary, but they generate complex systemic
behaviours. It is not clear that there is a centralised in-
formation system to guide the whole’s behaviour, so from
the interactions, it is possible to infer the system’s global
behaviour. Heylighen and Gershenson [47] emphasise that
there is no centralised control, highlighting that, in some
artifcial systems such as neural networks, there is no cen-
tralised control, and all neurons are connected directly or
indirectly to each other, but none is in control, and there is
no centralised control in a neural network. Heylighen and
Gershenson [47] add that the various studies we reviewed
have uncovered many fundamental features or “signatures”
that distinguish self-organising systems from the more
traditional mechanical systems studied in physics and en-
gineering. Some features, such as centralised control ab-
sence, are shared by all self-organised systems and can,
therefore, be seen as part of what defnes them. Also, Beer (p.
25 in [27]) states the following: “Te frst principle of control
is that the controller is part of the system under control. Te
controller is not something attached to a system by a higher
authority who then grants it a management prerogative. In
any natural system, whether we are talking about animal
population or the inner workings of some living organism,
the control function is major through the architecture of the
system, and it is not identifable, but its existence is somehow
inferred from the behaviour of the system. In addition, the
controller grows with the system and, if we look back in time,
we see that the control also evolves with the system.”

4.6. Hierarchical Organisation. Ladyman and Wiesner [36]
posit that, in complex systems, there are often many levels of
organisation that can be considered to form a hierarchy of
system and subsystem, as proposed by Herbert [50] in “Te
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Architecture of Complexity.” Emergence occurs because the
order arising from interactions between parts at a lower level
is robust. One way to absorb variety is through organisation
into hierarchies, for which work must be performed, and the
environment’s entropy must be increased [15]. Tus, Simon
examines the complexity and its structure from four points
of view. Te frst is that a complex system is composed of
subsystems; these have their subsystems, and so on. Te
second corresponds to the relationship between the struc-
ture of a complex system and the time required for this
structure to emerge through evolutionary processes, which
specifes that hierarchical systems will evolve much faster
than nonhierarchical systems of a comparable size.Te third
explores the dynamic properties of hierarchically organised
systems and shows how they can be decomposed into
subsystems to analyse their behaviour. Te fourth aspect
examines the relationship between complex systems and
their description, i.e., simple descriptions that are important
for human knowledge and understanding of how the system
reproduces itself. From the point of view of philosophy,
hierarchies to absorb variety are also explained by the
principle of ascending and descending causalities; Jáuregui
[42] andMorales [41] present a more detailed explanation of
this principle with good graphical examples of the in-
terrelationship between hierarchical levels, the infuence of
one level on the other, and how they are related when an
event is triggered. All processes at a lower hierarchy level are
constrained and act according to the higher-level laws.
Heylighen and Joslyn [20] indicate that cybernetics is
concerned with the properties of systems irrespective of their
material or concrete components. In this way, very diferent
systems can be described, and isomorphisms can be sought
between them, for which it is essential to study and consider
the relationships between their components and how they
are transformed into each other. To address these issues, it is
essential to study order, organisation, complexity, hierarchy,
structure, information, and control to investigate how these
manifest themselves in systems of diferent types. Tese
concepts are relational and allow us to analyse and model
diferent abstract properties of systems formally and to study
the behaviour of their complexity over time. Heylighen and
Joslyn [20] also state that, in complex control systems, such
as organisms or organisations, goals are organised in hi-
erarchies, where higher-level goals control the confguration
of subsidiary goals. Endorsing the concept of ascending and
descending causality mechanisms, Morales [41] and Jáuregui
[42] state that if the objective of a living being is to escape
from a danger, the brain through the nervous system will
activate the legs to fee from this situation. Heylighen and
Joslyn add another example: if your primary survival goal
involves the lower-order goal of maintaining sufcient
hydration, this may trigger the goal of drinking a glass of
water.Tis goal, in turn, will activate the goal of bringing the
glass to your lips. At the lowest level, this involves the goal of
keeping your hand steady without spilling water. In relation
to hierarchies and systems, Heylighen [28] indicates “We
have seen that evolution constantly generates higher levels of
supersystems. Te more complex the system, the later its
emergence. Terefore, any system can be analysed or

“decomposed” into its constituent subsystems, which in turn
can be reduced to their constituents, and thus progressively
follow, at the lowest level, the elementary particles. . . such
consecutive layers or levels of “subsystems in systems in
supersystems in ...” are called hierarchy.”

4.7.Numeracy andDiversity. Usually, when there are many
elements involved in a system, this could imply higher
levels of complexity, as it is likely to require higher or-
ganisation levels. Ladyman et al. [5] add that the elements
must be not only many but also similar prerequisites for
the interaction condition. Tus, in order for systems to
interact or communicate (in the broadest sense) with each
other, they must be able to exchange energy, matter, or
information. Many examples have been cited from dif-
ferent areas of knowledge, such as neurons in the brain,
ant communities, and economic systems where agents
with similar characteristics operate in a common market.
However, according to Page (p. 16 in [39]), scientists speak
of diversity when referring to one of three characteristics
of a population, namely, a variation in some attributes,
such as diferences in size or weight, a diversity of types,
such as types of vehicles, or diferences in confguration, as
diferent as the composition of atoms in a molecule or
other compounds. Diversity is common in complex sys-
tems, especially when there is an interaction of people,
machines, and equipment, and in this case, the concept of
diversity also plays an important role. Tus, Page states
that diversity applies to populations or sets of entities. A
ball bearing cannot be diverse nor can a fower. Diversity
requires multitudes. Cities are diverse; they contain many
people, organisations, buildings, roads, etc. Ecosystems
are diverse because they contain multiple types of fora
and fauna. He also distinguishes three diversity types: the
frst refers to diversity within a type or variation that
corresponds to diferences in the value of some attribute
or characteristic, such as the height of girafes, the second
diversity is that of types and classes or species in biological
systems, which refers to diferences in type, such as the
diferent types of food that are stored in the refrigerator,
and the third refers to compositional diversity that refers
to diferences in how types are organised, examples in-
clude recipes and molecules. Diversity is a dimension that
arouses interest in diferent disciplines such as sociolo-
gists, ecologists, and biologists specialising in manage-
ment and integrated systems of people, machines, and
equipment, whether information technology or industrial,
because they refect the diversity and not only the com-
plexity that corresponds somewhat to the interaction of
many similar elements.

5. Measures of Complexity

So far, we have selected and described diferent views and
characteristics of a complex system. In the following sec-
tions, we will continue with a very general synthesis of some
measures proposed in the literature to establish more
quantitatively the level of complexity of a system from
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diferent perspectives and points of view. A detailed de-
scription of these measures can be found in Appendix A.

Te physicist Seth Lloyd published an article proposing
three diferent dimensions by which the complexity of an
object or process can be measured, considering: How difcult
is it to describe? How difcult is it to create? Furthermore,
how organised is it? [51]. Lloyd established forty measures of
complexity proposed by diferent people, and in each, he
addressed one or more of these three questions, using con-
cepts from dynamical systems, thermodynamics, information
theory, and computation. Mitchell [33] provides a complete
summary of some of these measures, and Ladyman and
Wiesner [36] put forward a more formal explanation.

5.1. Complexity as Disorder and Diversity. Te order degree
of a system is always related to its complexity; a complex
system dwells somewhere between order and disorder. Scott
Page diferentiates three types of diversity measures: di-
versity within a type corresponding to measures of variation,
diversity between types such as entropy, distance, and at-
tribute, and diversity of the population composition of
a community [39]. Variance can be used for numerical
events and allows measuring variability within a particular
type, such as the number of edges per node in a network, but
not for types, such as species in a population; for measuring
diferences between types, entropy is a better indicator.
Shannon’s entropy [3] is used in many engineering appli-
cations to measure the complexity of systems, not only in the
feld of communications but also in other areas such as
manufacturing [52], supply chains, and others. Weitzman
[53] posits a reasonably general concept of distance derived
from the idea of traditional taxonomy and an associated
characterisation of the diversity of a population based on
that distance.

5.2. Feedback. Tere are no special measures to measure
feedback in a system. However, feedback is intrinsic to
complex systems, as it refers to the self-regulation of in-
teractions; its origins appear from the beginning of cyber-
netics, but it is a widespread concept in automatic control in
engineering. System dynamics is a well-known and widely
used approach [30, 31, 54], which allows modelling and
analysing these interactions refecting temporal behaviour in
complex environments.

5.3. Te Lotka-Volterra Equations. Well known in the lit-
erature and also known as predator-prey or prey-predator
equations, these equations refect in a simple way the dy-
namic characteristics of biological systems in which there are
two interacting species: one is the prey and the other is the
predator. Tese species are modelled through a pair of
nonlinear frst-order diferential equations used to describe
their behaviours that are representative of a wide range of
similar situations of applications from various disciplines.

5.4. Computational Measurements. Tese theoretical mea-
sures help us establish some concepts that allow us to

represent the characteristics of a complex system and help us
understand its meaning and the importance of incorporating
measurements that enable us to understand its behaviour
better. For example, Lloyd [51] compiles more than 40
measures to view diferent aspects of a complex system,
considering diferent perspectives and schools of thought.
Some of these measures that have been studied historically
and have inspired some practical applications will be
reviewed [52, 55]; their essential characteristic is that they
consider complex systems as computational devices with
memory and computational power.

5.5. Termodynamic Depth. Lloyd and Pagels [56] consider
the most probable sequence of scientifcally determined
events leading to the formation of the object which measures
the total amount of thermodynamic and informational re-
sources used to constitute the object itself. Ladyman and
Wiesner [36] state that the trajectory that defnes the system
states is not unique and that if a probability is assigned to
each state involved in the trajectory to constitute that object,
then its thermodynamic depth is defned as the function of
the average of all possible trajectories for the constitution of
that object.

5.6. Statistical Complexity. A complex system is an entity
that stores and processes information. Tis occurs in nature.
Our brain stores processes and information, and this
structures all our behaviour. Tus, always the result of the
behaviour of a system will result from a computation [36].
Te measurement of the system behaviour assumes that its
result is manifested in sequences. Tese sequences will be
measured through instruments and procedures that will
depend on the problem’s nature. Trough an algorithm, the
main regularities of the chain are represented. Te sizes of
the automata that generate these sequences defne the sta-
tistical complexity of the system based on the information
provided by the sequences.

5.7. Efective Complexity. An entity’s efective complexity is
the length of a highly compressed description of its regu-
larities, which are part of the chain considered for the ef-
fective complexity, and the rest are being considered as
random characters, a concept established by Gell-Mann and
Lloyd [57]. Kolmogorov and, independently, Chaitin and
Solomonof propose that, for such strings, one can use al-
gorithmic information content (AIC), which is a kind of
minimum description length [33]. A string possessing many
regularities on diferent length scales, which is what we
believe a complex system to be, will be assigned a high
efective complexity, so the description of a shorter com-
puter programme acts as a universal code that is uniformly
good for all possible strings, thus resulting in algorithmic
complexity being a conceptual precursor of entropy.

5.8. Logical Depth. According to Bennett and Herken [58],
the logical depth of an object is a measure of how difcult it is
to construct that object. Mitchell [33] adds that “logically
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deep objects contain internal evidence of having been the
result of a long computation or a slow dynamic process to
simulate and could not have originated otherwise.” For
example, a highly ordered sequence of A, C, G, and T is easy
to construct. Likewise, if I asked you to give me a random
sequence of A, C, G, and T, it would be easy enough; then,
the logical depth of the system, represented as a string,
depends on the runtime of the programmes that produce it.
Tus, Bennett and Herken [58] draw on an algorithmic
information theory, proposing that the shortest programme
to generate a string represents the most feasible and logically
comprehensible a priori description.

6. Examples of Application

Te review of recent works that together use systems’ theory,
complexity, and cybernetics for their development is helpful
to exemplify these concepts better. Figure 3 describes the
method used. Between 2012 and 2022, thirty-two indexed
articles were published in the Web of Science database that
meet these criteria.

Te review of these studies is detailed below.

6.1. Social Systems and Postindustrial Society. Te frst set of
studies is oriented to see how this vision is applied in social
systems for understanding the phenomena in the post-
industrial society. O’Sullivan and Manson [59] focused on
studying how geography can use techniques and method-
ologies from physics to carry out research studies in an
increasing datafcation of the society. Together with the
traditional methods of geographers, these studies could
improve the understanding of a world in a far more complex
way than even physicists can imagine. Building on the work
of human geographers who have reported how the re-
lationship between human societies and their environments
has come to be designed in the adaptive capacity approach,
Adams [60] explains how the current discourse centred on
adaptive capacity has emerged, and based on this, this study
explores its meaning for climate change adaptation policies,
in the understanding that the scope of human action is
circumscribed to the adaptive dynamics of the socio-
ecological system. Other authors have used the theoretical
bases of Niklas Luhmann in this area. In response to the
growing use of natural language processing within artifcial
intelligence, Straeubig [61] proposes using Niklas Luh-
mann’s social systems’ theory, which places communication
frmly within social systems to develop comprehensive
models for the practical implementation of this commu-
nication process. In the same vein, these proposals have also
been exemplifed in understanding problems associated with
communications in cyberspace; as Clark and Zhang did [62],
these authors proposed to use Niklas Luhmann’s social
systems’ theory to explain Internet censorship in China.

Also, these concepts serve as the basis for understanding
natural and imaginary societies. Krispin [63] proposes
combining the culture-behaviour approach and meta-
contingency to understand humanity. Te science of culture
and behaviour aims to expand our understanding beyond

individual behaviour to include complex interactions be-
tween individuals. Tis seeks to integrate concepts from
behaviour analysis with ideas from felds outside behaviour
analysis, including systems’ theory, anthropology, and bi-
ology. On the contrary, metacontingency is a contingency
relationship between a set of interlocking behavioural
contingencies, their aggregate product, and the conse-
quences of selection. Likewise, these concepts can be applied
to unreal societies created in literature and art, such as the
case of James Joyce’s Finnegans Wake, which can be
interpreted through the elements of cybernetics and systems.
Indeed, Ball [64] claims that Finnegans Wake anticipates
and provides a narrative foreshadowing of the work of early
cyberneticians such as Humberto Maturana and Francisco
Varela and of systems theorists such as Niklas Luhmann in
their depiction of how meaning is produced out of over-
whelming complexity through self-reference and through
the selection of semantic connections. Appignanesi [65]
shows us some of the fundamentals of general systems
theory examined through the lens developed by Spencer
Brown and von Foerster, emphasising on the late works of
Luhmann, and all of these are possible through the analysis
of Escher’s artworks and Calvino’s literary works. Tis
theoretical framework has been proposed to enable in-
tervention in social phenomena such as family and
community.

In the feld of family, Becvar and Becvar [66] call for
marriage and family therapists to conduct a therapy from
a systems’ theory perspective and not use the individual as
the primary unit of analysis. Tis proposal states that family
therapists should use the basic principles of holistic meta-
theory that moves beyond the frst-order cybernetics into the
realm of second-order cybernetics with its social con-
structionist orientation. On the contrary, Almaguer-Kalixto
et al. [67] propose using sociocybernetics to analyse and
intervene in complex social problems. Trough a case of
promoting the recovery of collective memory and un-
derstanding of the impact of associations on the develop-
ment of a community, the use of frst- and second-order
cybernetics concepts and general systems’ theory applied to
the social sciences is exemplifed. Finally, it is possible to
apply these concepts to developing technical systems.
According to Xu [68], systems’ science is a must to deal with
the overwhelming complexity of systems in Industry 4.0 and
the surrounding industrial ecosystem. Industry 4.0 is an
interconnected system that integrates technical systems such
as smart factories and creates a complex system. An example
of the application of system concepts in Industry 4.0 is that it
can be defned from multiple perspectives, such as the ones
relating to functions, structure, and organisation.

6.2. Management and Business. Te second group of studies
focuses on using these concepts in management and busi-
ness; these papers are characterised by examples of orga-
nisations with high interaction with their environment; in
this sense, Bartscht [69] establishes that to keep viability,
a system permanently needs to balance exploration and
exploitation activities, and many organisations today fail in
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fnding an adequate tradeof between them. Te system has
gained new knowledge which is incorporated as a part of its
identity during the adaptation process. Bojnec [70] in-
troduces cybernetic systems into defence management ap-
plications to address the unique challenges of the
information society and systems modelling for decision-
making. Te author presents an evidence-based analysis
of the defence system and a new way of thinking that in-
fuences defence planning and management. Umpleby [71]
summarises a vision of these concepts from a business
perspective and, among other things, establishes the lack of
academic programs that encompasses this type of thinking.
Nachbagauer and Schirl-Boeck [72] explore an application
in the area of project management and proclaim that the
management of risks and uncertainty in megaprojects is an
emerging topic; they present clarifcations of concepts based
on second-order cybernetics and systems theory, trans-
ferring knowledge from organisation theory to project
management, the article shows that managing the un-
expected in megaprojects requires fnding a balance between
structure and self-organisation in felds such as planning,
communication, hierarchy, experience, and organisational
culture. Relevant conclusions are established about plans,
communication, management of system structures, ac-
countability, the exercise of leadership, and corporate cul-
ture. Finally, in this line, Kandjani and colleagues [73]
propose a model for the evolution of systems using concepts
from enterprise architecture (EA), cybernetics, and systems
theory to develop the coevolution path model (CePM) that
explains how the company coevolve with its environment. It
is established that depending on the variety of the system
and the environment, the states of the system can be clas-
sifed into four groups: viable states, vulnerable states, in-
efcient states, and states that can coevolve in equilibrium.

6.3. Exploring the Unknown. Te third class of investigations
explores the unknown and identifes the complex and chaotic
dynamics that drive volatile, uncertain, complex, and am-
biguous modern situations. For example, the use of systems
theory elements to understand and frame the creativity

process is proposed by Hieronymi [74], or to understand the
health systems from a complexity perspective, moving away
from the linear, the rigid, and the directional [75]. In the latter
proposal, health systems are characterised by the emergence
of unexpected behaviours. Wallis andWright [76] analyse the
theories that explain poverty based on systemic and com-
plexity levels; their proposal places -sociological theory as the
highest score in this explanation. Katine and associates [77]
develop a systems-based framework to support the rigorous
design, analysis, and transformation of the structure of re-
search and development organisations. Te proposed viable
system model allows for stability while allowing for change
based on changing circumstances. In connection with this
line, Laszlo and associated [78] focus their work on con-
cerning the complexity of the great themes of humankind;
population growth, social inequities, hunger, armed confict,
water shortages, pollution, and climate change, that still imply
greater complexity when they are treated together, to try this
systemic problem, they highlight that it is necessary to de-
velop empathy-oriented education. Pečarič [79] makes a de-
scription and parallel to the principal elements of the systems
theory and cybernetics with the characteristics and behaviour
of legal systems; he also includes a section on Bayesian
network theory and its possible applications in legal systems,
giving particular importance to the concept of regulation and
adaptation. Finally, Keating and Katina [6] explore three
perspectives for complex system governance (CSG). First,
they show the infuence of systems theory, management
cybernetics, and system governance in CSG, and a model and
general characteristic for CSG is given. Secondly, the role and
nature of CSG pathologies as deviation from normal or
healthy system conditions are developed. Lastly, it is estab-
lished that the success factor for developing CGS corresponds
to the design, execution, and evolution of the CSG meta-
system functions.

6.4. Models and Complexity. Te latter type of research
focuses on the models and complexity. First, to contribute to
the general theory of models, Ashby [15] presented three
diferent perspectives from the model theory that can be
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Figure 3: Review method used for the application examples.
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used in systems research based on systems theory, cyber-
netics, and constructivism. Te views shown are general
model theory, general morphological approach, and Cynefn
framework. Additionally, Leendertz [80] analysed how the
concept of social complexity emerged in the social sciences
and when scholars transferred and adapted elements of
complexity theory from mathematics, computer science,
cybernetics, and general systems theory to refne the social
theory. Te conditions under which this shift occurred
intertwine with public-political discourses and public policy
in advanced Western democracies. Te address on com-
plexity among social scientists had meaning in academic
discourse and was used as a buzzword and as a metaphor. In
this sense, Koopmans [81] defnes the term complexity
considering perspectives encountered in education such as
information theory, cybernetics, and general systems theory.
Te paper includes Morin’s thinking, which emphasises the
temporal aspects of systemic behaviour, the relationship
between the system’s behaviour and constituent elements,
searching for causality as a recursive rather than a linear
process, and emergence. It is also added that novelty and
complexity perspectives must be seen as a behaviour of
individuals in their systemic context. An essential charac-
teristic of a complex system is its anticipation capacity, in
this sense, Nechansky [82] directs the purpose of his work to
analyse the main diferences in the cybernetic structures
necessary for elementary anticipation, taking into consid-
eration that anticipation is seen as the repetition of a known
pattern, and complex anticipation, as the repetition of
known sequences of patterns. Contributions to more
quantitative tools are given in two papers of Wang [83, 84],
in the frst one, he proposes based on the grey system theory,
a connection analysis method to analyse incomplete se-
quences of information; in the second, he suggests a grey
linear control system for regulating the price of China’s real
estate and provides the necessary support to assist the rel-
evant management departments with their policymaking.
Wang creates a grey state equation of the real estate market
price that can refect both the market supply-demand price
mechanism and the production price mechanism using the
principles of economic cybernetics. Finally, Yolles and Fink
[85, 86] presents three papers. He develops a generic
modelling theory of simplex orders using principles from
Schwarz’s living systems and conceptualisation from cul-
tural agency theory, considering Rosen’s and Dubois’ con-
cepts of anticipation. In the frst paper, Yolles and Fink [85]
introduce generic modelling for living systems theory and
designate the number of generic constructs to orders of
simplex modelling. Tey present a generic modelling theory
of higher orders of simplexity, where simplexity refers to the
dialectics between simplicity and complexity; each higher
order correspond to every generic construct involved. In the
second paper, Yolles [87] explains the need for an adaptive
model to respond efectively to complex situations in wicked
problems and identifes its essential aspects. A reasonable
conclusion of this paper is the introduction of the relational
paradigm, which include conceptualisations, theory, stra-
tegic processes, and operative decision processes (involving
methods of communication and agreement among

stakeholders), essential to respond to the issue needs of
a wicked problem. Finally, Yolles and Fink [86] present
a fourth-order simplex model and explore the potential for
higher orders using recursive techniques through a cultural
agency theory. Indeed, it is essential to highlight that cultural
agency is helpful to structure complex problems with both
a top-down and bottom-up approach and takes into account
behavioural anticipation given an appropriate modelling
approach; this paper includes examples of frst, second, third
and fourth-order simplexity.

7. Conclusion

Tis article aimed to comprehensively present the concepts of
systems, cybernetics, and systems complexity to establish
a conceptual basis for systems thinking for science and en-
gineering. Tis text was written in a language understood by
specialists in other areas. Te complex issues facing the world
today, whether in natural or artifcial systems, are multidis-
ciplinary in all areas of knowledge and practice. In problems
associated with science, engineering, technology develop-
ment, ecology, climate change, crisis, and social changes,
common paradigms coexist that characterise isomorphic
situations of systemic and cybernetic behaviour and have the
characteristics of complexity presented in this article.

In order to better illustrate the ideas of this review, we
have explored the last decade of articles that combine sys-
tems’ theory, complexity, and cybernetics. Selected papers
were categorised into four main topics: (1) social systems
and postindustrial society, (2) management and business, (3)
exploring the unknown, and (4) models and complexity.Te
articles on the topic of social systems and postindustrial
society are oriented towards how this vision is applied in
social systems and the understanding of the phenomena in
postindustrial society. On the contrary, articles on the topic
of management and business are characterised by examples
of organisations with high interaction with their sur-
roundings. In addition, papers on the topic of exploring the
unknown fnd the unknown and identify the complex and
chaotic dynamics that lead to volatile, uncertain, complex,
and ambiguous modern situations. Finally, the articles on
models and complexity aim to contribute to the general
theory of models and complexity using conceptual and
quantitative tools. Two signifcant conclusions can be drawn
from this literature analysis for illustrative purposes. First,
the number of papers in a decade is meagre, an average of
three per year, and on the contrary, a high percentage of
these studies are authored by a single author; we believe that
this indicates the need for more work and more researchers
in the integration of these concepts. Second, although most
of the papers analysed are found in journals with scope in
systems, complexity, and cybernetics, there are also con-
tributions in journals in other areas, such as health, geog-
raphy, and sociology. Tis fact shows the cross-cutting
nature of these ideas in current science.

After 1900, a conceptual movement began, almost si-
multaneously and in parallel, where von Bertalanfy estab-
lished the ideas of systems theory, Ashby and Winner
established the ideas of cybernetics, and the Santa Fe
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Institute consolidated and formally integrated the study of
the complexity of systems and measurements of complex
systems. Tis movement is based on essential ideas such as
the whole and the sum of the parts of Aristotle, the ideas of
empiricists such as Bacon, and rationalists such as Descartes,
who proposed the integral development of science, and
Hume, who reinforced that the ideas come from experience,
and Hegel, who highlighted the role of the mind and its
historical conditioning and for interpretation of the whole.

For a scientist, a technologist, or a manager, studying the
systemic approach provides a reference framework to face the
complexity of controlling higher-order systems in large-scale
organisations and projects, where preparation for manage-
ment is often associated with practical learning. In the feld of
management, the organisation often moves away from
equilibrium, looking for new states associated with temporary
equilibria, forcing managers to monitor possible future events
and patterns that could afect its structure and dynamics and
to consequently take corrective actions. Tis situation fre-
quently cannot be made visible, as it generates criticism from
stakeholders.Tis is a recursive situation that spreads through
the organisation with diferent repercussions and internal
reactions depending on the levels at which the event’s impact
was received; thus, triggering reactions that force those af-
fected to study how the problemwill be solved.Te previously
described scenario is from the point of view of an organisation
that permanently faces diferent events and that has the
permanent duty of environmental monitoring to be prepared
to face possible contingency. However, imbalances perma-
nently occur in natural or artifcial systems, and the pre-
viously described logic repeats itself. Hence, the importance
of multidisciplinary and communication protocols between
the diferent disciplines, along with the coordination between
diferent actors to face surrounding changes, is one of the
most challenging issues to solve to face the environmental
complex phenomena and the imminent change of era in our
society. Also, in technology, innovation, and research, spe-
cialised knowledge is no longer sufcient since society faces
more and more multidisciplinary or interdisciplinary prob-
lems. Tus, knowing isomorphic behaviours allows us to
understand the phenomenon of nature better so that we can
have better strategies to face it. Te signifcant problems of
humanity in natural systems related to climate change, en-
vironmental problems, and sustainability, as well as the need
to handle crises in modern societies or to manage large and
complex artifcial technological systems in the diferent felds
of engineering, make it imperative to know the general
principles of systems, cybernetics, and complexity. On the
contrary, one of the difculties observed in problem-solving
processes is frst to establish what the problem is, and most of
the time the process of understanding is interactive with
permanent feedback processes with users or stakeholders.
Tis interactive process of systemic thinking has intense
feedback processes and an integration of concepts that make
up the fnal story or conceptual model.

Tese days, introducing systems’ thinking into the ed-
ucation of scientists and engineers is a huge challenge. In this
sense, there are studies at diferent levels, whether in ele-
mentary and secondary education or at university and

postgraduate levels [88, 89]. Tese experiments suggest that
preparation should begin with instructors and that there
should be diferentiated strategies according to the educa-
tion level. However, despite the novelty of these proposals, it
is clear that given the problems that humanity faces today,
we must agree that systems thinking is a fundamental tool
that must be introduced in the training of scientists and
engineers so that they can support the development of
humanity. In this context, how can we prepare our com-
munities to face complex problems of higher dimensional
orders? and how can we introduce the systems approach in
our curricula? A particular answer for STEM teaching may
be the following: First is to convince the people who exercise
leadership, then recruit some instructors giving them gen-
eral knowledge such as those raised in this article, and then
to formulate some strategy for its implementation. After
which they will work at four levels: basic undergraduate,
intermediate undergraduate, upper-undergraduate, and
postgraduate. In the frst levels, concepts of interactions and
their dynamics through essential tools must be introduced,
and in the upper levels, a more formal method such as object
process modelling must be presented. Also, the curricular
reforms implemented in engineering along with the systemic
approach could be complemented with curricular strategies,
such as transversal workshops or other techniques used in
specifc subjects. In any case, it will be a learning process that
will bear fruit in a long process of continuous improvement.

Te initial motivation of this article was to integrate
systems thinking into engineering and science, especially in
the ongoing global pandemic that has underscored the need
for approaches to address issues that rise above geographical
and cultural frontiers. Tis thinking should start from the
frst levels. Although it appears paradoxical, it should have
simple examples that would allow incorporating of concepts
of edge, environment, and above all the interactions between
the components. Tink frst, at a conceptual level, and then
defne components interactions, feedback, and afterwards
variables and equations. However, beyond this initial ori-
entation, we believe that education, in general, should start
with disseminating these concepts to the public with
structured and specialised academic training in specifc
felds. Tis action will allow us to initiate transversal con-
versations on these issues. Furthermore, it will enable us to
break down barriers of the silos of reductionist mentalities of
knowledge and encourage a multidisciplinary and in-
terdisciplinary dialogue.

Appendix

A. Measures of Complexity

What has been done so far is to speak indirectly of the
concept of complexity, through what characterises a com-
plex system.Te following is a very general synthesis of some
measures that have been proposed in the literature to es-
tablish in a more quantitative way the level of complexity of
a system from diferent points of view. Te physicist Seth
Lloyd published an article in 2001 proposing three diferent
dimensions via which tomeasure the complexity of an object
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or process, namely, how difcult is it to describe?, how
difcult is it to create?, and what is its degree of organisation?
[51]. He established forty measures of complexity that had
been proposed by diferent people, each of which addressed
one or more of these three questions using concepts from
dynamical systems, thermodynamics, information theory,
and computation. Mitchell provides a very good summary of
some of these measures [33], and Ladyman and Wiesner
provide a more formal explanation [36].

A.1. Complexity as Disorder and Diversity. A good way to
start this discussion is to indicate what Mitchell says: living
systems are complex, they exist somewhere in between order
and disorder [33]. She adds that over the long history of life,
living systems have become much more complex and in-
tricate rather than more disordered and entropic; thus,
a complex system dwells somewhere between order and
disorder. Ladyman, Wiener [36], and Page [39] diferentiate
three types of diversity measures; diversity within a type
corresponding to measures of variation, diversity between
types such as entropy, distance, and attribute, and diversity
of community composition, i.e., population:

VarX ≔ E[ X( ) − E[X]). (A.1)

Te variance of a random variable X allows measuring
the variability within a particular type. Entropy is a better
measure to measure diferences between types because it can
consider the frequency with which the types are presented,
and in this way, the complexity can be better measured
considering this concept:

H(X) ≔ −  P(x)logP(x). (A.2)

Shannon’s entropy [3] is the measure used in many
engineering applications, not only in the feld of commu-
nications but also in other areas such as manufacturing [52],
supply chains, and others, to measure the complexity of
systems. If x is a random variable that has a probability of
occurrence P(x), then the entropy of the system represented
by this variable is

H(X) ≔ −  P(x)logP(x). (A.3)

Te defnition of this concept comes from information
theory and is a way of measuring uncertainty. Shannon’s
entropy measures the amount of uncertainty in the prob-
ability distribution P. If the probabilities are equal and the
uncertainty is maximum, as with the event of fipping a two-
sided coin, where each has a probability of 1/2, then the
entropy is represented by the following equation:

H(x) � −
1
2
log

1
2

  +
1
2
log

1
2

   � −2
1
2

 log
1
2

  � 1. (A.4)

In this case, if all events are equally probable, the un-
certainty and, therefore, the Shannon entropy concerning
the events, is maximum. Te Shannon entropy is zero when
one of the events has probability one and the rest have zero
probability of occurrence. When the events are equiprob-
able, then H (X) would quantify the difculty of prediction,

which in this case is maximum. Entropy is maximum when
it becomes very difcult to make a projection. In
manufacturing or production systems, being able to measure
complexity allows the design of improvement strategies to
improve system performance.

Measuring the distance between two points in space
seems simple but defning amore general idea of the distance
that can capture the diference between a dog and a cat is
more complex. Weitzman posits a fairly general concept of
distance derived from the idea of ancestral taxonomy and an
associated characterisation of the diversity of a population
based on that distance [53].

A.2. Feedback. Tere are no special measures to measure
feedback in a system; however, feedback is intrinsic to
complex systems, since it refers to the self-regulation of
interactions. Its origins go back to the beginnings of cy-
bernetics, but it is a very common concept in automatic
control in engineering. It is widely used in the modelling of
systems in which when the results obtained do not achieve
their objective, the inputs of the system are acted upon
directly in order to control the behaviour schematically.

Complex systems have innumerable interactions be-
tween their parts, and there are permanent adaptations due
to the processes of adaptation or adaptation to the envi-
ronment. System dynamics is a tool for modelling and
analysing these interactions refecting temporal behaviour in
complex environments [30, 31, 54]. It identifes feedback
loops between elements and also the delays in the in-
formation and materials within the system and identifes
level, fow, and auxiliary variables. In this way, the system
dynamics structure through mathematical models of the
dynamics of the behaviour of these systems. A simulation of
these models can currently be performed with the help of
specifc computer programmes such as Powersim [54] or
AnyLogic [90]. Te specifcation of requirements is per-
formed through causal diagrams that are then converted to
blocks in the chosen software tool. Its applications can be in
the industrial and service felds, as well as in the ecological
systems. A well-known problem is that of the Lotka Volterra
equations, also known as predator-prey or prey-predator
equations. Tese are a pair of nonlinear frst-order difer-
ential equations used to describe the dynamics of biological
systems in which two species interact, one as the prey and
the other as the predator. Tese equations were in-
dependently proposed by Lotka in 1925 and Vito Volterra in
1926. Such equations are defned as

dx

dt
� αx − βxy,

dy

dt
� ƍxy − yc,

(A.5)

whereY is the number of some predator (e.g., a wolf ), x is the
number of its prey (e.g., rabbits), dx/dt and dy/dt represent
the growth of the two populations over time, and t represents
time. Te frst equation means that the growth of prey per
unit time is proportional to the amount of prey existing at
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that time, minus the interaction between them. Te second
equation represents the growth of predators that is pro-
portional to the level of prey minus the natural death of
the prey.

A.3. Computational Measures. Tese measures, which are
theoretical, help us to establish concepts that allow us to
capture some characteristics of a complex system that will
help us to understand the meaning of a complex system and
the importance of incorporating measurements that enable
us to better understand its behaviour. Lloyd compiles more
than 40 measures that permit viewing diferent aspects of
a complex system but not a general conception [51]. Some
measures that have been studied historically and that have
inspired some practical applications will be reviewed.

A.4. Termodynamic Depth. Lloyd and Pagels defne
a measure of complexity for macroscopic states of physical
systems. Tis is universal, applying to all physical systems.
Termodynamic depth considers the most probable

sequence of scientifcally determined events leading to the
object itself and measures the total amount of thermody-
namic and informational resources used to constitute the
object itself [56]. Mitchell adds that, in order to determine
the thermodynamic depth of the human genome, we could
start with the genome of the frst creature that lived and list
all the evolutionary genetic events (random mutations, re-
combinations, gene duplications, etc.) which drove modern
humans. Probably, since mankind evolved billions of years
later than amoebae, its thermodynamic depth is much
greater [33].

From the more formal point of view, let us consider that
the physical state of a system at time n and tn, is sn [36]. Also,
the trajectory, defning the states of a system between t1 and
tn-1, is not unique. If we assign a probability to all states
involved in the trajectory Pr (s1, s2,. . ., sn−1| sn), then the
thermodynamic depth of the state sn is defned as −k ln Pr (s1,
s2,. . ., sn−1| sn) averaged over all possible trajectories of s1, s2,.
. . and sn – 1. It follows that

D sn(  � −k 

s1,....... sn|sn

Pr s1, s2 . . . . . . . . . ..sn−1Isn( ∗ ln Pr s1, s2 . . . . . . . . . ..sn−1( ( ,
(A.6)

where k is the Boltzmann constant. It is a difcult measure to
implement, but there are many articles in the literature that
refer to this subject.

A.5. Statistical Complexity. Tis measure has its origin in
computational mechanics established by physicists James
Crutch feld and Karl Young [36], who summarised the
principles of that measure. It is assumed that a complex
system is an entity that stores and processes information.
Tis occurs in nature; for example, our brain stores processes
and information, and this structures all our behaviour, so the
result of the behaviour of a system will always be the result of
a computation. Te measurement of the behaviour of this
system assumes that its result is manifested in sequences;
these sequences will be measured through instruments and
procedures that will depend on the nature of the problem,
where the main regularities of the chain are represented
through an algorithm. Te data from these sequences are
what you see of the system, so the challenge is to fnd the
static and dynamic structure of the system refected in
a model and thus determine its complexity.

Its principles inspired by computational mechanics al-
low us to directly address the problems of pattern, structure,
and organisation and to infer a model of the hidden process
that generated the observed behaviour. Tis representation,
the state machine, captures the patterns and regularities in
the observations in a way that refects the causal structure of
the process. In addition, this machine is the unique model of
maximum efciency of the observed data generation
process.

Te causal states that the equivalence classes of behaviours
and the structure of the transitions between causal states
defne the state machine. Te sizes of these automata defne
the statistical complexity of the system based on the in-
formation delivered. Tis set of causal states S and proba-
bilistic transitions between them, summarised in the so-called
minimal and optimal machine, represents our ability to
predict the future behaviour of the process [36]. Te math-
ematical structure of the machine is that of a hidden Markov
model or a fnite-state stochastic automaton.

A.6. Efective Complexity. A concept introduced by Murray
Gell-Mann and Seth Lloyd (1996) states that, in a non-
technical way, one can defne the efective complexity (EC)
of an entity as the length of a highly compressed description
of its regularities, which is the part of the chain that is
considered for the efective complexity; the rest is considered
to be random characters [57]. It is useful to encode the entity
description in a bit string. Although the choice of an
encoding scheme depends on the context, researchers have
proposed alternatives to entropy as a measure of complexity.
Andrey Kolmogorov and, independently, Gregory Chaitin
and Ray Solomonof propose that, for such strings, one can
use the concept of algorithmic information content (AIC),
which is a kind of minimum description length. Te AIC is
a bit string of the entity describing it. It is assimilated to the
length of the shortest programme that will cause a given
universal computer U to print the string and then stop. Te
efective complexity ε (s) of a string is defned as the al-
gorithmic complexity of the set E of which it is a typical
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member, ε (s)�K U (E). Tus, the set of a string that is
perfectly random is the set of all strings of the same length
[36], where K U (s) is the algorithmic complexity of string s
in a particular description. A chain that has many regu-
larities on diferent length scales, which is what we believe to
be a complex system, will be assigned a high efective
complexity. Tis concept is close to Kolmogorov’s com-
plexity and from a more practical point of view assimilated
to Lempel Ziv’s complexity [91]. Te expected length of the
shortest binary computer description of a random variable is
approximately equal to its entropy [91].

Tus, the description of a shorter computer programme
acts as a universal code that is uniformly good for all
probability distributions. In this sense, algorithmic com-
plexity is a conceptual precursor to entropy.

To understand the complexity of Kolmogorov [91]and
Mitchell [33], let us review these three following chains:

(A) 010101010101010101010101010101010101010101010
1010101010101010101010

(B)
011010100000100111100110011001111111001110111100
1100100100001000
(C) 11011111010101111101111111111101010101110111

0111111101010101110111011111111111010

What are the shortest binary computer programmes for
each of these sequences? Te frst sequence is defnitely
simple. It consists of thirty-two 01s. Te second sequence
looks random and passes most tests for randomness, but it is
the initial segment of the binary expansion of root (2) 1. Te
third one looks random; however, it is not as simple as the
other two sequences, which have programmes of constant
length. In fact, its complexity is proportional to log (n) +H
(K/n) bits, H (x) Shannon entropy.

A.7. Logical Depth. Te logical depth of an object is
a measure of how difcult it is to construct that object [58]. A
highly ordered sequence of A, C, G, and T is obviously easy
to construct; likewise, if I asked you to give me a random
sequence of A, C, G, and T, it would be fairly easy, with the
help of a coin I could fip or a dice I could roll. Mitchell adds
in agreement with Bennett; logically, deep objects contain
internal evidence of having been the result of a long com-
putation or a slow dynamic process to simulate and could
not have originated otherwise [33]. Or as Seth Lloyd says “It
is an attractive idea to identify the complexity of a thing with
the amount of information processed in the most plausible
method of its creation.”

Bennett and Herken draw on algorithmic information
theory, proposing that the shortest program to generate
a string represents the most viable and logically compre-
hensible priori description, while a “print” programme, on
the contrary, ofers no explanation and is equivalent to
saying “it just happened” and so is efectively a null
hypothesis [58].

Ten, the logical depth of the system, represented as
a string, depends on the execution time of the programmes
that produce it [5, 36]. Bennett’s example of π digits

illustrates the diference between algorithmically complex
and logically “deep.” A “print” programme could have
a great complexity of algorithmic logic, but logically it is very
“shallow” because it runs very fast, whereas an algorithm
that calculates the digits of π is a comparatively short
programme but has a longer execution time.

In addition to considering the duration of a programme
as a measure of causal history, Bennett also takes into ac-
count the execution time of the programme. A programme
that runs for a long time before generating a result means
that the chain has a complicated order that needs to be
untangled. Te defnition of logical depth is the following.
Let x be a fnite string and K (x) be its algorithmic com-
plexity. Te logical depth of x at a signifcance level s is
defned as the minimum time T (p) required for programme
p to compute x. A way to defne logical depth compre-
hensively is to let x be a fnite string and Ku (x) be its al-
gorithmic complexity [5]. Te logical depth of x at
a signifcance level s is defned as the minimum time T (p)
required for the programme p to compute x, and then, we
stop where the length of the programme p, l (p), cannot difer
from Ku (x) by more than s bits.
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“ICE de la Universidad de Barcelona Pensamientos Con-
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ujanos, vol. 83, no. 1, pp. 81–86, 2015.

[76] S. E. Wallis and B. Wright, “Integrative propositional analysis
for understanding and reducing poverty,” Kybernetes, vol. 48,
no. 6, pp. 1264–1277, 2019.

[77] P. F. Katina, C. B. Keating, and L. M. Magpili, “A systems-
based framework for design and analysis of an R and D
structure,” Systems, vol. 5, no. 3, p. 44, 2017.

[78] A. Laszlo, P. Luksha, and D. Karabeg, “Systemic innovation,
education and the social impact of the systems sciences,”
Systems Research and Behavioral Science, vol. 34, no. 5,
pp. 601–608, 2017.
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