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Drought is one of the most multifaceted hydrologic phenomena, afecting several factors such as soil moisture, surface
runof, and signifcant water shortages. Terefore, monitoring and assessing drought occurrences based on a single drought
index are inadequate. Te current study develops a multiscalar weighted amalgamated drought index (MWADI) to
amalgamate multiple drought indices. Te MWADI is mainly based on the normalized average dependence posterior
probabilities (ADPPs). Tese ADPPs are obtained from Bayesian networks (BNs)-based Markov Chain Monte Carlo
(MCMC) simulations. Results have shown that the MWADI correlates more with the standardized precipitation index (SPI)
and the standardized precipitation temperature index (SPTI). As proposed, the MWADI synthesizes drought characteristics
of diferent multiscalar drought indices to reduce the uncertainty of individual drought indices and provide a compre-
hensive drought assessment.

1. Introduction

Drought has complex nature and slow onset characteristics
that have severe impacts on several sectors worldwide [1].
Te vulnerabilities of drought difer from other natural
hazards in numerous ways [2]. Te abrupt and enigmatic
features of drought make it the costliest and least understood
hazard [3]. Te American Meteorological Association
classifed drought into four categories including meteoro-
logical, hydrological, agricultural, and socioeconomic [4, 5].
Each drought category has diferent causes and conse-
quences [6, 7]. For instance, meteorological drought occurs
due to a lack of precipitation. It signifcantly impacts various
sectors such as ecology, agricultural productions, and in-
dustrial productions [8]. It causes serious environmental and

socioeconomic issues at regional and global scales [9, 10].
Meteorological drought can trigger linked climatic hazards
such as pollution and heatwave [11]. Precise drought
monitoring of drought requires reliable information, as-
sessment, and evidence-based decisions [12]. Moreover,
drought indices play a vibrant role in risk assessment for
accurately identifying drought occurrence, severity, and
spatial extent [13].

Drought indices are essential for quantifying drought
duration, severity, and spatial extent [14, 15]. Various
drought indices based on single and multiple climatic pa-
rameters have been developed to monitor and assess the
drought characteristics [16]. Te widely used drought in-
dices are the Palmer drought severity index (PDSI) [17], the
surface water supply index (SWSI) [8, 18], the standardized
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precipitation index (SPI) [19], the efective drought index
(EDI) [20], the standardized precipitation and evapotrans-
piration index (SPEI) [21], and the standardized pre-
cipitation temperature index (SPTI) [22]. Moreover, the SPI
is the most well-known drought index proposed by the
World Meteorological Organization (WMO). However, the
selection and calculation of drought indices depend on the
availability of data-related input climatic indicators [23].
Furthermore, due to the complex nature of hydroclimatic
parameters, traditional meteorological drought indices
cannot obtain full information for accurate drought
characterization [24].

Individual drought indices have certain defciencies in
assessing drought severities [25]. Te substantial complexity
of the hydrological process depends upon multiple climatic
factors such as precipitation, temperature, and evapo-
transpiration [26]. Single drought indices are incapable of
considering certain drought-induced causes, leading to in-
accurate drought assessment [27]. However, a very few
composite and hybrid drought indices have been observed in
recent decades [28]. Te vegetation drought response index
(VegDRI) is one of the best examples of a comprehensive
drought index based on the SPI, the PDSI, and the NDVI
[29]. Numerous drought indices are constructed using linear
combinations, principal component analysis, and entropy
weight method by considering a linear relationship among
standardized drought indices [30]. However, regardless of
the type of drought, the interactions among the numerous
infuencing factors in the environment should be considered
for drought monitoring. Generally, drought conditions are
associated with multiple meteorological and climatic vari-
ables [31]. Terefore, a comprehensive drought index based
on a strong probabilistic structure can provide more ac-
curate information about drought monitoring and assessing
drought conditions.

Bayesian networks (BNs) are powerful probabilistic
graphical models that explicitly capture the known de-
pendence structure among stochastic variables such as
drought indices (DIs) with probabilities through directed
acyclic graphs (DAGs) [32]. Te BNs have wide applications
in various felds, viz., computer science [33], business an-
alytics [34], agriculture [35], genetics [36], and environ-
mental sciences [37, 38]. BNs are appropriate methods to
estimate climate change impact and drought risk assessment
[39]. Te researchers have used the BN algorithm to develop
new frameworks in diferent felds. For instance, it is used for
food prediction [40] and forecasting the dependence
structure among health outcomes and hazardous pollutants
[41]. Shin et al. (2020) used BNs to propagate the re-
lationships of hydrological drought in diferent time in-
tervals. Ávila and Ballari [42] used BNs to develop new
homogeneous climate zone indices. Appraisal of the latest
literature indicated that BNs are emerging in meteorological
and climatic studies. Te potential of probabilistic graphical
models based on BNs for drought assessment and de-
veloping new comprehensive drought indices could be
helpful. Since droughts are a slowly evolving phenomenon,
a robust spatial and temporal relationship exists among
drought indices [43]. Terefore, they can be amalgamated

using BNs to combine the strengths of several drought
indices.

Te current study aims to develop a comprehensive
drought index to improve the monitoring and assessment of
drought. For this purpose, the current research uses the BN
theory to synthesize drought monitoring characteristics of
three standardized drought indices, including the SPI, the
SPEI, and the SPTI. Te proposed framework based on the
Bayesian network theory also integrates the seasonal com-
ponent of several seasonally segregated drought indices. It
provides a scientifc basis for an efective drought mitigation
plan [44]. Moreover, the Gilgit-Baltistan province is selected
to validate the current research.

2. Materials and Methods

2.1. Data Description and Study Area. Te six synoptic
gauged meteorological stations have been selected, in-
cluding Astore, Bunji, Chilas, Gilgit, Gupis, and Skardu.
Te monthly time series data of precipitation and tem-
perature (maximum and minimum) have been used to
develop the MWADI. Te input data for 47 years ranging
from 1970 to 2016 have been acquired from the Karachi
Data Processing Center (KDPC) through the Pakistan
Meteorological Department (PMD). Te spatial distri-
bution map and location information of selected mete-
orological stations of Gilgit-Baltistan province is shown
in Figure 1. Te study area lies between
34.5125°N–37.0826°N latitude and 72.508°E–77.01°E
longitude. Te terrain feature of the study area is high-
elevation mountainous. Te GB province comprises the
upper catchment areas of the Indus River and its major
tributaries. Te source of precipitation in GB is the
typical continental monsoon in summer and the western
depression in winter. Te average annual rainfall in GB
province is 231.5 inches. However, the region’s temporal
and spatial distributions of precipitation are not ho-
mogenous. Te mean average annual precipitation at
these selected meteorological stations signifcantly var-
ies, as shown in Table 1. According to the above char-
acteristics of topography, hydrology, and
geomorphology, the region’s climate is classifed into
diferent categories. Te climate classifcation of selected
meteorological stations is given in the last column of
Table 1. Tese climate classifcations are known as
Kӧppen climate classifcations [45]. Köppen [46] clas-
sifed the climate of any region into fve categories, which
were further divided into subcategories. According to
Köppen classifcation, the climate of Astore is considered
humid-continental, and Gilgit and Bunji are considered
cold desert, while Chilas, Gupis, and Skardu are classifed
as cold semiarid. Te descriptive statistics of spatial
variables (longitude, latitude, and elevation) and mete-
orological variables (precipitation and minimum and
maximum temperature) are given in Table 1. It includes
the mean and standard deviation (SD) of the average
annual precipitation of selected meteorological stations.
It provides varying features of the minimum and max-
imum temperature.
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2.2. A Brief Description of Multiscalar Standardized Drought
Indices. Standardized drought indices (SDIs) play a vibrant
role in drought risk assessment and the sustainable devel-
opment of water resources [9]. Terefore, defning drought
features specifc to drought intensity, duration, and patterns
is very important [21].Tus, the multiscaler drought indices,
such as the SPI, the SPEI, and the SPTI, are selected as input
hydroclimatic variables to develop the MWADI. Te

standardized precipitation index (SPI) is the most widely
used drought index applied to regional and global studies.
TeWorldMeteorological Organization (WMO) ratifed the
SPI for meteorological drought [47]. It is a probabilistic and
spatially invariant indicator for a diferent type of drought
analysis [48]. Te SPI utilizes only precipitation and has the
inherited capability to be calculated at various time scales
[49]. Te standardized precipitation evapotranspiration
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Figure 1: Te map of the study region and distribution of meteorological stations.

Table 1: Descriptive statistics of average annual meteorological variables (precipitation and minimum and maximum temperature),
regional spatial characteristics, and climate (Kӧppen classifcation).

Station
Precipitation Temp. min Temp. max

Latitude Longitude Elevation (m) Climate
Mean SD Min Max Min Max

Astore 471.8 129.3 2.36 5.23 13.90 17.47 35.3570°E 74.8624°N 2546 Humid continental
Bunji 163.4 61.5 9.57 13.6 22.33 25.48 35.6431°E 74.6342°N 1453 Cold desert
Chilas 190.6 93.9 12.32 15.53 24.57 27.97 35.4222°E 74.0946°N 1265 Cold semiarid
Gilgit 140.7 49.4 6.15 9.26 22.45 25.92 35.8819°E 74.4643°N 1500 Cold desert
Gupis 190.4 145.2 4.19 8.33 16.99 20.54 36.2274°E 73.4421°N 3030 Cold semiarid
Skardu 231.9 95.5 3.31 6.17 16.29 20.81 35.3247°E 75.551°N 2228 Cold semiarid
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index (SPEI) is a climatic water balance variant of the SPI
based on precipitation and potential evapotranspiration. It
possesses the multiscalar capability of the SPI by considering
its simple mathematical procedure and utilizing temperature
variability. Te computation procedure of the SPEI is fol-
lowed by guidelines provided in [50]. Te standardized
precipitation temperature index (SPTI) is another multi-
scalar drought selected as the input climatic indicator of our
proposed framework. Te calculation procedure of the SPTI
is quite like the SPI and the SPEI.

Te above-stated drought indices are standardized, i.e.,
cumulative distribution function (CDF) values of a normal
probability distribution. For any time scale, the zero value of
SDIs (the SPI, the SPEI, and the SPTI) stated that there is no
deviation from the average precipitation. A positive value
indicates that the precipitation is higher than the average
precipitation. In contrast, a negative value of drought shows
that precipitation is smaller than the average precipitation.

2.3. Seasonality of Drought Indices. Drought predictions
using seasonally integrated drought indices are helpful in
freshwater resource management and ecological preserva-
tion [51]. Seasonal segregation of drought indices can
compute hybrid and comprehensive drought indices for
precise drought characterization [52, 53]. Te seasonal cli-
mate forecast usually ranges from a few weeks to a year but is
mainly selected at a monthly scale [54], as various hydro-
logical and climatological studies are based on monthly
defned seasonal indices [55, 56]. Similarly, current study
indorses monthly defned seasonal drought indices as input
variables.

2.4.BayesianNetworks (BNs). Bayesian networks (BNs) are
probabilistic graphical models that can describe concise
conditional dependence structures among a set of ran-
dom variates through directed acyclic graphs (DAG) [57].
A DAG consists of nodes representing random variables
and arcs or edges that quantify the conditional de-
pendence of random variates (nodes) [39, 58]. Te di-
rection of edges or arcs represents the causal relationship
among the random variables, and if nodes did not con-
nect through some arc, they are considered conditionally
independent. Te conditional independence of nodes
enables BNs to efciently represent complex probability
distributions [59]. Te causal relationship between ran-
dom variables (nodes) is defned as conditional proba-
bility based on prior information or statistically observed
correlations [60]. Each node possesses signifed states or
levels [61]. BNs are constructed for the identifcation of
the dependence structure among random variables. Te
learning of BNs from data for inference and decision-
making is based on Markov Chain Monte Carlo (MCMC)
algorithms [62, 63] using an improved Metropo-
lis–Hastings sampler [64, 65].

In the Bayesian network theory, to learn the Bayesian
networks from some observed dataset E, the posterior
probability of network G can be computed using the Bayes
rule.

P(G|E) �
P(E|G)P(G)

P(E)
, (1)

where P(E|G) is the marginal likelihood function of ob-
served data given the DAG′G′, P(G) is the prior density of
DAG, and P(E) is the normalizing factor. Ten, the pos-
terior probability of any hypothesis of interest can be
computed by averaging all networks. For a detailed de-
scription of Bayesian learning, the Bayesian model average
approach, and marginal posterior of features (edges),
see [66].

2.5. Proposed Framework for the Bayesian Network-Based
Generalized Weighting Scheme for Amalgamation of Multi-
ple Drought Indices. Te main objective of this study is to
introduce a Bayesian network-based new weighting scheme
for amalgamating multiple seasonal drought indices to
develop a new comprehensive drought index. Te central
part of the study is based on three standardized drought
indices (the SPI, the SPEI, and the SPTI) and the Bayesian
network procedure. Te details of these methodologies have
already been discussed in Sections 2.2 and 2.3. A schematic
diagram of the proposed framework is shown in Figure 2.
Further implication and execution of the framework com-
prise diferent phases, which are as follows.

Phase 1. Selection and calculation of SDIs (the SPI, the SPEI,
and the SPTI):Te selection of drought indices can infuence
the obtained information about drought monitoring, its
areal extent, and duration. Most of the SDIs are region-
specifc and have inherited complexities. Terefore, single
and multiple meteorological variables based on drought
indices (the SPI, the SPEI, and the SPTI) have been selected
for the current study, and their calculation procedure is
briefy described in Section 2.2.

Phase 2. Seasonal segregation of SDIs: In this phase, full-
length time series datasets of already calculated SDIs are
separated with respect to months by considering eachmonth
as a season for seasonal, temporal formation [56, 67]. Tese
seasonal drought indices are then considered as input
variables for structural BNs.

Phase 3. Te implication of BNs to obtain potion quantities
(weights): Te key objective of the current study is to es-
timate the probabilistic dependence structure of seasonal
standardized drought indices (the SPI, the SPEI, and the
SPTI) at each selected meteorological station. Te marginal
posterior probabilities of feature edges (nodes/variables) are
approximated through Markov Chain Monte Carlo
(MCMC) simulations. Tree independent MCMC simula-
tions have run on each time series dataset to obtain con-
vergence, and the marginal posterior probabilities are
averaged. Te marginal posterior probabilities describe the
dependence structure among input variables (seasonal
SDIs).

Let SDIj be the list of candidate standardized drought
indices and Yijt be the time series data of ith season (month)
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related to jth SDI at any individual meteorological station,
where t shows the time index and
(i � 1, 2, . . . , 12), (j � 1, 2, 3). Tis step aims to calculate
potion quantities being used as normalizing weights of the
proposed framework to calculate the new seasonally syn-
thesized amalgamated drought index. Te realization of
nodes (SDIj) and edges are defned as follows:

f yi1, yi2, yi3( 􏼁 � P Yi1 � yi1, Yi2 � yi2, Yi3 � yi3( 􏼁. (2)

Equation (2) describes the relative importance of each
seasonal SDI through marginal posterior probabilities,
which can also be defned as dependence probability. A
single run of MCMC simulation gives the following result:

SPI SPEI SPTI
SPI

SPEI

SPTI

π11 π12 π13

π21 π22 π23

π31 π32 π33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Te average dependence probability (ADP) for a single
MCMC simulation of jth seasonal SDI is denoted by π.j

which is defned as follows:

π.j �
π1j + π2j + π3j

3
. (4)

Te grand average dependence probability (GADP) of
jth SDI is denoted by ωj, fnally obtained through averaging
for all three MCMC simulations, and is mathematically
defned as follows:

ωj �
π.j1

+ π.j2
+ π.j3

􏼐 􏼑

3
. (5)

Tese grand averaged dependence probabilities are the
actual probabilistic relative importance of SDIs at each
meteorological station. Furthermore, these are considered as
potion quantities to calculate normalizing weights ωj

′ de-
fned as follows:

SDI1, SDI2,..., SDIn

Start

Selection and calculation of different
drought Indices

i = 1, 2,..., 12
Seasonal segregation of SDIs

Implication of BNs to
obtain AMPPs

Implication of Proposed Framework MWADIi

MWADIDesegregation of seasonal time
series data sets to get MWADI

End

SDI2i SDIniSDI1i

Figure 2: Graphical representation of the proposed framework.
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ωj
′ �

ωj

􏽐
3
j�1ωj

, (6)

where ωj
′ are the estimated parameters of the proposed

model defned in equation (6). Tese parameters are esti-
mated through the probabilistic dependence structure of
BNs analytically evaluated through MCMC simulations.

Phase 4. Te execution of the proposed model to obtain the
seasonal MWADI:

In this phase, a probabilistic model is defned to syn-
thesize information from diferent SDIs. In numerous
studies, stochastic models such as copulas were employed to
combine drought characteristics of diferent drought indices
[68–70]. But BNs are structural probabilistic and powerful
graphical algorithms to produce dependence probabilities of
stochastic variates utilizing every bit of information
[40, 63, 71]. Terefore, this study proposes a probabilistic
model defned in equation (7), which synthesizes in-
formation obtained from seasonal multiscalar standardized
drought indices.

MWADIi � ω1′SPIi + ω2′SPEIi + ω3′SPTIi, (7)

where MWADIi is a linear combination of
SPIi, SPEIi, and SPTIi. Te linear combination is a mathe-
matical way to combine diferent drought indices to syn-
thesize the meteorological information related to drought
characterization. Te most innovative feature of MWADIi is
that the weights (parameters) are calculated through
a probabilistic structure of BNs using MCMC simulations.
Te weights calculated using BNs defne the role of diferent
drought indices.Te proposedmodel defned in equation (7)
results in seasonal MWADIi (Jan–Dec) at each station using
probabilistic weights or parameters associated with diferent
drought indices. After obtaining the seasonal MWADIi
(Jan–Dec), all 12-time series datasets will be combined to
obtain the fnal MWADI. Te outcome of the algorithm is
a comprehensive multiscalar weighted amalgamated
drought index (MWADI).

3. Results and Discussion

Te latest development of drought indices emphasized in-
corporating complete information readily available in
standardized drought indices. Terefore, three multiscalar
standardized drought indices (the SPI, the SPEI, and the
SPTI) have been used as input indicators to construct the
proposed MWADI. Te main steps involved in the con-
struction and development of the MWADI are explained
and executed in sequence.

3.1. Selection and Estimation of Input Variables (SDIs).
Te SPI, the SPEI, and the SPTI are estimated using their
input meteorological variables for full-length time series
data of precipitation and temperature (minimum and
maximum) at selected meteorological stations. Tese
drought indices are calculated using a parametric approach
by selecting appropriate probability distributions [50]. Te

Bayesian information criterion (BIC) has been used to de-
termine appropriate distribution using the propagate R
Package (Spies, 2014). Detailed calculation procedures of
these SDIs at these selected meteorological stations can be
seen in [66]. Afterward, the datasets of these SDIs are further
seasonally (monthly defned) segregated to integrate sea-
sonal components. In this study, six meteorological stations
have been selected, and 36 seasonal datasets have formed at
each station. Hence, 216 seasonal datasets have been used as
input variables to execute MCMC simulations.

3.2. Te Implication of BNs for the Estimation of Parameters
(Normalizing Weights). Te Bayesian network theory has
been applied tomonthly separated time series data of various
drought indices (the SPI, the SPEI, and the SPTI) for cal-
culating their relative importance through the dependence
probability structure. BN-based MCMC simulations were
performed using seasonal SDIs at each selected meteoro-
logical station. BNs sorted out causal relationships between
nodes (variable) through DAGs. In this study, seasonal SDIs
are considered as nodes, and the arc’s direction shows the
hydrologic causality (conditional dependence) between
nodes (SDIs). Tree independent MCMC simulation runs
are carried out on monthly separated time series datasets of
the SPI, the SPEI, and the SPTI with 200,000 iterations to
obtain experimental results. Te marginal posterior prob-
abilities or dependence probabilities for each simulation run
are obtained using equation (2) for all 12 seasons (Jan–Dec)
at each station. Te average dependence probabilities
(ADPs) are calculated using equation (4). Moreover, ADPs
obtained through these independent simulation runs have
not shownmuch variation, which shows the consistency and
convergence of MCMC simulation runs. For more precise
results, equation (5) calculates grand averaged dependence
probabilities (GADPs) by averaging ADPs for all three
simulation runs. Tables 2 and 3comprise average marginal
posterior probabilities already named ADPs of three sim-
ulation runs and GADPs for January and February seasons
at all meteorological stations. Tese GADPs show the rel-
ative importance of seasonal SDIs (the SPI, the SPEI, and the
SPTI) over each other. Te GADPs of the SPI, the SPEI, and
the SPTI for January are 0.9907, 0.6528, and 0.6620, re-
spectively, showing the SPI’s dominance at the Astore sta-
tion. While at Bunji station, these results are 0.7245, 0.6429,
and 0.9184, respectively. Here, the SPTI dominates other
indices, showing that the relative importance of SDIs sub-
stantially varies from station to station.

Furthermore, we have checked across seasonal proba-
bilistic relative importance of SDIs (the SPI, the SPEI, and
the SPTI). Te GADPs for the February season at Astore
station are 0.9814, 0.6643, and 0.6829, respectively. Te
comparison of GADPs across seasons shows that at Astore
station, the SPI’s dominance persisted. While at Bunji sta-
tion for the February season, these probabilities are 0.8510,
0.6119, and 0.7608, respectively, depicting that dominance
changed from the SPTI to the SPI. Te spatial and seasonal
variations of conditional relevance of diferent SDIs are
shown in Figure 3. It indicates that SDIs have signifcant
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seasonal and spatial relevance at some meteorological sta-
tions.TeGADPs (probabilistic relative importance) of SDIs
are further normalized according to equation (6) to obtain
the fnal potion quantities of the algorithm considered as
estimates of the parameters of the proposed model. Results
for all the 12 seasons (Jan–Dec) and all selected stations are
given in Table 4. For ease of understanding, the presentation
of experimental results is presented only for the specifc
season; however, the results for the other seasons can be
presented accordingly.

3.3. Execution of the Proposed Model. Te proposed model
defned in equation (7), theMWADI, is a linear combination
of three multiscalar standardized drought indices whose
weights (parameters) are calculated using probabilistic
structural BNs. Te results of these estimated parameters of
the proposed model for all the seasons (Jan–Dec) at selected
stations are presented in Table 4. Te outcome of the
proposed model is also the seasonal MWADI for a specifc
season at each meteorological station. After calculating
seasonal MWADIs (Jan–Dec), all 12-time series are then
desegregated to obtain an outcome named MWADI. Te
process is repeated at each meteorological station to obtain
the MWADI. Te outcome of the proposed algorithm is
a seasonally integrated multiscalar amalgamated drought
index (MWADI) for any individual meteorological station.
Te MWADI and input SDIs can be calculated at various
temporal scales to monitor drought conditions, but for
convenience, results are given for a one-month time scale.

A validation experiment was carried out to assess the
accuracy of the drought severity characterized by the
MWADI by comparing the count plots, scatter plots,
temporal plots, and correlation coefcients. Figures 4–6
show the scatter plots of seasonal MWADI with the SPI,
the SPEI, and the SPTI for all seasons Jan–Dec at the Astore
station. TeMWADI is highly correlated with these drought
indices, and the correlation test was applied, and it is ob-
served that the MWADI is signifcantly correlated with all
other SDI’s at p value <0.001. Figure 7 shows that the
MWADI is slightly less correlated with the SPEI while
strongly correlated with the SPI and the SPTI. Te overall
correlation coefcient values between the MWADI and
other SDIs (the SPI, the SPEI, and the SPTI) are 0.93, 0.84,
and 0.98, respectively. Results related to the correlation
coefcient between the MWADI and other SDIs for all
seasons at selected stations are presented in Table 5. Te
strong relationship between the MWADI and other mete-
orological SDIs refects that the MWADI can more precisely
monitor and characterize meteorological drought.

Te drought occurrence frequency is one of the im-
portant factors of drought characterization. Drought se-
verity is classifed into seven mutually exclusive categories.
Several studies already endorse these classifcations
[19, 21, 72, 73]. Te comparison of diferent drought cate-
gories characterized by the MWADI and other SDIs is
presented by count plots, as shown in Figure 8. Te fre-
quency of diferent drought categories signifcantly varied
from one SDI to another and seemed quite uncertain. Be-
cause diferent drought indices give contradictory outcomes

January

SPI

SPI

SPEI

SPEI

SPTI

SPTI

February

The GADPs of SDIs (SPI, SPEI and SPTI)
0.6263 0.6884 0.7505 0.8128 0.8747 0.9368 0.9989

Figure 3: Spatial and seasonal dominance of diferent SDIs (the SPI, the SPEI, and the SPTI).
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related to drought characterization. Furthermore, inaccurate
drought characterization may mislead to drought mitigation
policymakers. As the MWADI synthesized the climatic and
meteorological characteristics of diferent SDIs (the SPI, the
SPEI, and the SPTI), the drought characterization through
the MWADI is considered more reliable. It reduces the
uncertainty of drought characterization through diferent
drought indices. Te near normal (NN) drought class has
a signifcantly higher proportion than other extreme classes.
Extreme dry and extreme wet classes have comparatively
lower count proportions but still can be catastrophic for
linked ecosystems.

Te temporal behavior of the MWADI and other SDIs
(the SPI, the SPEI, and the SPTI) for the Astore station is
shown in Figure 9.Te SPI, the SPEI, and the SPTI were used
to characterize short and long-term drought conditions. Te
graphical representation shows the evolution and

termination of dry and wet conditions during 1970–2016.
Te red spikes and patches show the severity and duration of
drought similarly; some blue spikes represent a few high
precipitation events producing wet spells that cause fash
food events. Te MWADI, the SPI, and the SPTI showed
similar drought trends from 1970 to 2016, indicating the
high correlation among these indices. Tis graphical evi-
dence also clarifes the variation in defning drought clas-
sifcations by the MWADI and other SDIs. Te temporal
behavior of the MWADI for a one-month time scale at all
selected meteorological stations is presented in Figure 10.
Tese statistical and graphical results indicate that the main
advantage of the MWADI is its probabilistic graphical
feature for characterizing and analyzing drought conditions.
As the probabilistic structure of BNs is based on the cause-
and-efect relationship between climatic and meteorological
indicators therefore, a comprehensive drought index

January

February

March

April

R = 0.9971, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPI-1

R = 0.9344, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPEI-1

R = 0.9887, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPTI-1

R = 0.9976, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPI-1

R = 0.944, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPEI-1

R = 0.9908, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPTI-1

R = 0.9954, p < 0.001

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPI-1

R = 0.986, p < 0.001

0

1

2

3

M
W

A
D

I-
1

0 1 2 3-1
SPEI-1

R = 0.9928, p < 0.001

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPTI-1

R = 0.9934, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPI-1

R = 0.9703, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPEI-1

R = 0.9927, p < 0.001

-1

0

1

2

M
W

A
D

I-
1

0 1 2-1
SPTI-1

Figure 4: Te scatter diagram and correlation coefcient R values between the seasonal MWADI and the SPI, the SPEI, and the SPTI
(January–April) at Astore.
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calculated through probabilistic structural and graphical
algorithms reduces the uncertainties. Te newly developed
MWADI comprises various characteristics inherited by its
multiple input multiscalar meteorological indicators. Te
MWADI can be easily implemented to display drought
conditions across higher-order time scales. Te temporal
behavior of the MWADI at 6-month and 12-month time
scales is presented in Figures 11 and 12 simultaneously.
However, the proposed MWADI could be easily generalized
by using more hydroclimatic and agricultural indicators as
input variables for hydrological and agricultural drought

assessment. Drought is a recurring threat to linked eco-
systems, creating issues related to freshwater resources. Te
Bayesian network-basedMWADI seemsmore promising for
drought characterization to cope with such kinds of
challenges.

Te current study uses the SPI, the SPEI, and the SPTI as
input indicators. Tese meteorological indicators are based
on precipitation and mean monthly temperature, which
defnes the limits of the MWADI. Te scope of the proposed
index can be enhanced by using more input indicators based
on soil moisture and remote sensing data. Similarly, diferent
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Figure 5: Te scatter diagram and correlation coefcient R values between the seasonal MWADI and the SPI, the SPEI, and the SPTI
(May–August) at Astore.
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Figure 8: Count plots of MWADI-1, SPI-1, SPEI-1, and SPTI-1 at all stations.
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Figure 10: Temporal behavior of the MWADI at one-month time scale at all stations.
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Figure 11: Temporal behavior of the MWADI at 6-month time scale at all stations.
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Figure 12: Temporal behavior of the MWADI at 12-month time scale at all stations.
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drought indices could be combined using alternative sto-
chastic and multivariate algorithms such as copulas and
principal component analysis (PCA), which can be con-
sidered as future directions.

4. Conclusion

Te use of a single drought index provides insufcient in-
formation related to the drought assessment. Due to the
complex nature and widespread impacts of drought, ap-
plying a single index creates uncertainty for drought as-
sessment and monitoring. Terefore, a new comprehensive
procedure is required to minimize the uncertainty of
drought evaluation. In this regard, the current study pro-
poses a new framework, known as the multiscalar weighted
amalgamated drought index (MWADI), that synthesizes
information from multiple drought indices. Te MWADI is
mainly based on the ADPPs. Furthermore, these ADPPs are
based on Bayesian networks (BNs)-based Monte Carlo
Markov Chain (MCMC) simulations. Te MWADI recon-
ciles diferent drought indices and helps decision-makers to
understand drought-related uncertainties. Te drought se-
verity and episodes estimated by the MWADI are compared
and verifed by temporal plots, count plots, and correlation
charts. Moreover, the results of the MWADI are compared
with the SPI, the SPEI, and the SPTI to estimate the drought
events (impacts). Te associated outcomes of the MWADI
show a positive relationship with the SPI and the SPTI.
Terefore, the MWADI can capture small changes in
drought patterns and comprehensive drought risk assess-
ment at the selected climatic zone.
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