
Research Article
Nash Equilibrium of Stochastic Partial Differential Game with
Partial Information via Malliavin Calculus

Gaofeng Zong

School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014, China

Correspondence should be addressed to Gaofeng Zong; zonggf@sdufe.edu.cn

Received 10 March 2023; Revised 21 September 2023; Accepted 29 September 2023; Published 26 October 2023

Academic Editor: Hassan Zargarzadeh

Copyright © 2023 Gaofeng Zong. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we consider the Nash equilibrium of stochastic diferential game where the state process is governed by a controlled
stochastic partial diferential equation and the information available to the controllers is possibly less than the general in-
formation. All the system coefcients and the objective performance functionals are assumed to be random. We fnd an explicit
strong solution of the linear stochastic partial diferential equation with a generalized probabilistic representation for this solution
with the beneft of Kunita’s stochastic fow theory. We use Malliavin calculus to derive a stochastic maximum principle for the
optimal control and obtain the Nash equilibrium of this type of stochastic diferential game problem.

1. Introduction

Let (O,B(O), m) be a measure space with fnite measure,
here, O is a bounded, open subset of Rn with C1 regular
boundary zO, and m is the Lebesgue measure. Suppose the

dynamics of a state process Xt(x) � X
(u,v)
t (ω, x), t ∈

[0, T],ω ∈ Ω and x ∈ O is a controlled stochastic process in
R of the form

Xt(x) � X0(x) + 􏽚
t

0
LsXs(x) + b ω, s, x, Xs(x),∇xXs(x), us(x), vs(x)( 􏼁􏼈 􏼉ds

+ 􏽚
t

0
σ ω, s, x, Xs(x),∇xXs(x), us(x), vs(x)( 􏼁dBt,

(1)

with boundary condition Xt(x) � ζ(t, x), (t, x) ∈ (0, T)

× zO, where the coefcients

b ω, t, x, c, c
′
, u, v􏼒 􏼓: Ω ×[0, T] × O × R × R

n
× U × U⟶ R,

σ ω, t, x, c, c
′
, u, v􏼒 􏼓: Ω ×[0, T] × O × R × R

n
× U × U⟶ R,
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X0(x): O⟶ R,

ζ(t, x): (0, T) × zO⟶ R.
(2)

are Borel measurable functions, where U ⊂ R is a closed
convex set, and L is a partial operator of order m and ∇x is
the gradient acting on the space variable x ∈ Rn. Here, Bt �

Bt(ω) is a one-dimensional Brownian motion on a given
fltered probability measure space (Ω,F, Ft􏼈 􏼉t≥0, P). Te
stochastic processes u: Ω × [0, T] × O⟶ U, v: Ω × [0, T] ×

O⟶ U are two control processes and have values in a given
closed convex set U ⊂ R for all t ∈ [0, T], for a given fxed
T> 0. Also, ut, vt are adapted to a given fltration Et􏼈 􏼉t≥0,
where Et ⊂ Ft, for every t ∈ [0, T]. Et􏼈 􏼉t≥0 represents the
information available to the controller at time t. For example,
we could take

Et � F(t− Δ)+ ; t ∈ [0, T],Δ> 0 is a constant, (3)

meaning that the controller gets a delayed information
compared to Ft. We refer to [1, 2] for more details about
optimal control under partial information or partial
observation.

Let li: Ω × [0, T] × O × R × U × U⟶ R and hi: Ω×

O × R⟶ R, i � 1, 2 are given measurable functions, for
every (ω, t, x, u, v), the functions c⟼ li(ω, t, x, c, u, v) and
c⟼ li(ω, x, c), i � 1, 2 are bounded continuously difer-
entiable functions. Suppose we are given two performance
functionals of the following form, for u, v ∈ Et ⊗B(R),

J1(u, v) � E 􏽚
T

0
􏽚
O

l1 ω, t, x, Xt(x), ut(x), vt(x)( 􏼁m(dx)dt􏼢 􏼣 + E 􏽚
O

h1 ω, x, XT(x)( 􏼁m(dx)􏼔 􏼕,

J2(u, v) � E 􏽚
T

0
􏽚
O

l2 ω, t, x, Xt(x), ut(x), vt(x)( 􏼁m(dx)dt􏼢 􏼣 + E 􏽚
O

h2 ω, x, XT(x)( 􏼁m(dx)􏼔 􏼕,

(4)

where m is a fnite Lebesgue measure on the above given
measurable space (O,B(O)), E � EP denotes the expecta-
tion with respect to the probability measure P. Let Au,Av

denote the given family of controls u, v, which are contained

in the set of Et ⊗B(R)-adapted controls, such that (1) has
a unique strong solution up to time T and for all
u ∈ Au, v ∈ Av, i � 1, 2

E 􏽚
T

0
􏽚
O

li ω, t, x, Xt(x), ut(x), vt(x)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌m(dx)dt + 􏽚
O

hi ω, x, XT(x)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌m(dx)􏼢 􏼣<∞. (5)

Te partial information nonzero-sum stochastic partial
diferential game problem under consideration is stated as
follows:

Find u∗ ∈ Au and v∗ ∈ Av such that

J1 u
∗
, v
∗

( 􏼁 � sup
u∈Au

u, v
∗

( 􏼁,

J2 u
∗
, v
∗

( 􏼁 � sup
v∈Av

J2 u
∗
, v( 􏼁.

(6)

Such a control (u∗, v∗) is called a Nash equilibrium. Te
intuitive idea is that there are two players, Player I and Player
II. While Player I controls u, Player II controls v. Given that
each player knows the equilibrium strategy chosen by the
other player, none of the players has anything to gain by
changing only his or her own strategy (i.e., by changing
unilaterally). Note that since we allow b, σ, li, hi to be sto-
chastic processes and also because our controls are required
to beEt-adapted, this problem is not of Markovian type and
hence cannot be solved by dynamic programming. In this
paper, we use Malliavin calculus techniques, see [3, 4] to
obtain a maximum principle for this general non-Markovian

stochastic partial diferential game with partial information.
Our approach still works when any fnite number of players
instead of two-player formulation.

Te problem of fnding sufcient conditions for opti-
mality for a stochastic optimal control problem with
infnite dimensional state equation, most along the lines of
the Pontryagin maximum principle was already addressed
in the early 1980s in the pioneering paper by [1]. Te
Pontryagin maximum principle for the dynamic systems
modeled by stochastic partial diferential equations
(SPDEs) is a well-known result, and we refer to [1, 5–11],
and therein, for more details about the maximum principle
for SPDEs. Despite of the fact that the fnite dimensional
case has been completely solved by [12], the infnite di-
mensional case requires at least one of the following three
assumptions, see [13, 14]:

(i) Te control domain is convex;
(ii) Te difusion does not depend on the control;
(iii) Te state equation and performance functional are

both linear in the state variable.
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So, the maximum principle for the infnite dimensional
case still has important open issues both on the side of the
generality of the abstract model and on the side of its ap-
plicability to systems modeled by SPDEs. In this paper, let us
suppose that the difusion is dependent on the control, the
state equation and performance functional are both non-
linear in the state variable, but we will assume that the
control domain U is convex. Tat is to say, we just assume
that (i) holds, and we do not need (ii) and (iii) to hold.

But there are few references about the maximum
principle for stochastic diferential games of systems de-
scribed by stochastic partial diferential equations. In the
present paper, we use Malliavin calculus techniques to
obtain a maximum principle for this general non-Markovian
stochastic diferential game with partial information of
systems described by stochastic partial diferential equations,
without the use of backward stochastic diferential equa-
tions. To use Malliavin calculus, a strong solution of sto-
chastic partial diferential equations with a generalized
probabilistic representation will be given with the beneft of
Kunita’s stochastic fow theory. Tis approach of stochastic
fow has been used to derive optimal control of stochastic
partial diferential equations with jump in [15], and at the
same time, the ideas of [15] give us great inspiration. Our
paper is related to the recent paper [16], where a maximum
principle for stochastic control problem (NOTfor stochastic
diferential game problem) with partial information is dealt
with. However, the approach in [16] needs the solution of the
backward stochastic diferential equation for the adjoint
processes. Tis is often a difcult point, particularly in the
partial information case.

We summarize the main contributions of this paper as
follows: (i) we fnd a strong solution of a stochastic partial
diferential equation, which follows from the theory of

stochastic fows for stochastic processes; (ii) all coefcients of
the controlled stochastic partial diferential equation we are
studying in this paper are all random, and the coefcients of
the objective performance functionals are also random; (iii)
with the help of Malliavin calculus for Brownian motion, we
get the Nash equilibrium for our stochastic partial difer-
ential game with partial information, as obtained by
establishing the corresponding stochastic maximum prin-
ciples for the stochastic optimal controls. It is worth noting
that our difusion term in the controlled stochastic partial
diferential equation can be dependent on two control
variables from two players and the controlled stochastic
partial diferential equation or the objective performance
functionals need not be linear in the state variable.

Te article is organised in the following way: in Section 2,
we present the explicit strong solution of a stochastic partial
diferential equation with the beneft of stochastic fow
theory for stochastic processes. In Section 3, we provide
some properties of Malliavin calculus for Brownian motion,
especially the chain rule and duality formula of theMalliavin
derivative. In Section 4, we give the Nash equilibrium for our
stochastic partial diferential game with partial information
with the help of the explicit strong solution and Malliavin
calculus via a stochastic maximum principle. Finally, in
Section 5, an example is given to illustrate our main results,
and the conclusion is given in the fnal section.

2. Strong Solution of Linear SPDE

In this section, we recall some defnitions of stochastic fows
and preliminary results, more details about stochastic fows
see [17, 18]. Let m ∈ N, δ ∈ (0, 1]. Denote by Cm,δ the space
of all m-times continuously diferentiable functions
f: Rn⟶ R such that

‖f‖m+δ;K � ‖f‖m;K + 􏽘
|α|�m

sup
x,y∈K,x≠y

D
α
f(x) − D

α
f(y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

‖x − y‖
δ <∞, (7)

where

‖f‖m;K ≔ sup
x∈K

|f(x)|

1 +‖x‖
+ 􏽘

1≤|α|≤m
sup
x∈K

D
α
f(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (8)

for all compact sets K ⊂ Rn. For the multiindex of non-
negative integers α � (α1, . . . , αd), the operatorDα is defned
as

D
α

�
z | α|

zx
1

􏼐 􏼑
α1

· · · zx
d

􏼐 􏼑
αd

, (9)

where |α| ≔ 􏽐
d
i�1αi. Further, introduce for sets K ⊂ Rn, the

norm

‖g‖
∗
m+δ;K ≔ ‖g‖

∗
m;K + 􏽘

|α|�m

D
α
xD

α
yg

�����

�����
∗

δ;K

, (10)
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where

‖g‖
∗
m;K ≔ sup

x,y∈K

|g(x, y)|

(1 +‖x‖)(1 +‖y‖)
+ 􏽘

1≤|α|≤m
sup

x,y∈K
D

α
xD

α
yg(x, y)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

‖g‖
∗
δ;K ≔ sup

x,x′ ,y,y′∈K
x≠y,x′ ≠y′

g(x, y) − g x
′
, y􏼒 􏼓 − g x, y

′
􏼒 􏼓 + g x

′
, y
′

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

x − x
′

�����

�����
δ

y − y
′

�����

�����
δ .

(11)

We will simply write ‖g‖‖∗m+δ for ‖g‖‖∗m+δ;Rn . Defne

􏽥b(t, x) �
z

zc
b ω, t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁,

􏽥σ(t, x) �
z

zc
σ ω, t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁,

bi
′(t, x) �

z

zci
′
b ω, t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁, i � 1, . . . , n,

σi
′(t, x) �

z

zci
′
σ ω, t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁, i � 1, . . . , n,

bu(t, x) �
z

zu
b ω, t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁,

σu(t, x) �
z

zu
σ ω, t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁.

(12)

Set

Fi(x, dt) ≔ bi
′(t, x)dt + σi

′(t, x)dB(t), i � 1, · · · n, (13)

Fn+1(x, dt) ≔ 􏽥b(t, x)dt + 􏽥σ(t, x)dB(t). (14)

Defne the symmetric matrix function Aij(t, x, y)1≤i,j≤n+1
as

A
ij

(t, x, y) � σi
′(t, x)σj

′(t, y), i, j � 1, . . . , n,

A
i,n+1

(t, x, y) � σi
′(t, x)􏽥σ(t, y), i � 1, . . . , n,

A
n+1,n+1

(t, x, y) � 􏽥σ(t, x)􏽥σ(t, y).

(15)

We assume that, for some m≥ 3 and δ > 0,

􏽘

n+1

i,j�1
􏽚

T

0
A

ij
���� (t, ·, ·)‖

∗
m+δdt<∞,

􏽚
T

0
􏽘

n

i�1
bi
′(t, ·)

����
����m+δ +‖􏽥b(t, ·)‖m+δ

⎡⎣ ⎤⎦ds<∞, a.e.

(16)

For all u, v, β ∈ Au, the stochastic process
Y(t, x) � Yβ(t, x) � d/dyXu+yβ,v(t, x)|y�0 exists and

LY(t, x) �
d
dy

LX
u+yβ,v

(t, x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
,

∇xY(t, x) �
d
dy
∇xX

u+yβ,v
(t, x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
.

(17)
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Further, suppose that Y(t, x) follows the SPDE.

Y(t, x) � 􏽚
t

0
LsY(s, x) + Y(s, x)􏽥b(s, x) + ∇xY(s, x)b

′
(s, x)􏼔 􏼕ds

+ 􏽚
t

0
Y(s, x)􏽥σ(s, x) + ∇xY(s, x)σ′(s, x)􏼔 􏼕dBs

+ 􏽚
t

0
β(s, x)bu(s, x)ds + 􏽚

t

0
β(s, x)σu(s, x)dBs,

(18)

with obviously initial condition Y(0, x) � 0, x ∈ O, and
boundary condition

Y(t, x) � 0, (t, x) ∈ (0, T) × zO, (19)

where (t, x) ∈ [0, T] × O, and ∇x � (z/zx1, . . . , z/zxn).

In the following, we assume that the diferential operator
L in the above SPDE (18) is of the form.

LtΦ � L
(1)
t Φ + L

(s)
t Φ, (20)

where

L
(1)
t Φ ≔

1
2

􏽘

n

i,j�1
G

ij
(t, x)

z
2

zxizxj

Φ + 􏽘
n

i�1
f

i
(t, x)

z

zxi

Φ + d(t, x)Φ,

L
(2)
t Φ ≔

1
2

􏽘

n

i,j�1
A

ij
(t, x)

z
2Φ

zxizxj

+ 􏽘
n

i�1
A

i,n+1
(t, x, x) +

1
2
Ci(t, x)􏼒 􏼓

zΦ
zxi

+
1
2

D(t, x) + A
n+1,n+1

(t, x, x)􏼐 􏼑Φ,

(21)

where d(t, x) is a continuous function in (t, x), belongs to
Cm,δ for some m≥ 3, δ > 0 and d/(1 + ‖x‖) is bounded from
the above. Here,

Ci(t, x) ≔ 􏽘
n

j�1

zAij

zyi

(t, x, y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�x

, i � 1, . . . , n,

D(t, x) ≔ 􏽘
n

j�1

zAi,n+1

zyi

(t, x, y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�x

.

(22)

Furthermore, we require the following condition,

(L-i) L
(1)
t is an elliptic diferential operator.

(L-ii) Tere exists a non-negative symmetric contin-
uous matrix function (Gij(t, x, y))1≤ i,j≤ n such that
Gij(t, x, y) � gi(x, t)gj(y, t), hence

G
ij

(t, x, y) � G
ji

(t, x, y),

􏽘

n

i,j�1
G

ij
(t, ·, ·)

����
����m+1+δ ≤K,

(23)

for all s, for a constant K and some m≥ 3, δ > 0.
(L-iii) Te functions fi(t, x), i � 1, . . . , n are continu-
ous in (t, x) and satisfy

􏽘

n

i�1
fi(t, ·)

����
����m+δ ≤C, for all s, (24)

for a constant C and some m≥ 3 and δ > 0.
(L-iv) Te function 􏽥b, 􏽥σ, Gij and d are uniformly
bounded.

Here, the operator L(1) does not depend on controls u

or v, that is, there are no controls in Gi,j and fi. In this
section, aided by a stochastic fow theory, we will give
a probabilistic representation of the explicit strong solution
of the above linear SPDE (18).

Now, we derive the announced probabilistic represen-
tation of a solution Y(t, x) of linear SPDE (18). Let Υ(x, t) �

(Υ1(x, t), . . . ,Υn(x, t)) be a Ck,c-valued Brownian motion,
that is a continuous process Υ(t, ·) ∈ Ck,c with independent
increments on another probability space ( 􏽢Ω, 􏽢F, 􏽢P). Assume
that this stochastic process has local characteristic
Gij(x, y, t) and mi(x, t) � fi(t, x) − ci(t, x), where the
correction term ci(t, x) is given by

c
i
(t, x) �

1
2

􏽚
t

0
􏽘

n

j�1

zGij

zxj

(s, x, y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
y�x

ds, i � 1, . . . , n. (25)

For instance, Υ(x, t) has a decomposition

Complexity 5



Υ(x, t) � M(x, t) + B(x, t), (26)

where

〈Mi
(x, t), M

j
(y, t)〉 � 􏽚

t

0
G

ij
(x, y, s)ds,

B
i
(x, t) � 􏽚

t

0
m

i
(x, s)ds,

M
i
(x, t) � 􏽚

t

0
g

i
(x, s)dW(s).

(27)

Here,W(s) is a Brownianmotion defned on an auxiliary
probability space ( 􏽢Ω, 􏽢F, 􏽢P).

Ten, let us consider the SPDE on the product space
(Ω × 􏽢Ω, 􏽢F × F, P × 􏽢P):

Φ(x, t) � 􏽚
t

0
LsΦ(x, s)ds + 􏽘

n

i�1
􏽚

t

0
Υ∗i (x, ds)

z

zxi

Φ(x, s) + 􏽘
n

i�1
􏽚

t

0
Fi(x, ds)

z

zxi

Φ(x, s)

+ 􏽚
t

0
Φ(x, s)Fn+1(x, ds) + Fn+2(x, t),

(28)

where Υ∗(x, t) � (Υ∗1(x, t), . . . ,Υ∗n (x, t)) is the martingale
part of Υ(x, t) and

Fn+2(x, t) ≔ 􏽚
t

0
β(s, x)bu(s, x)ds

+ 􏽚
t

0
β(s, x)σu(s, x)dBs.

(29)

So, taking the expectation E􏽢P
to both sides of (28) gives

the following representation for the solution to linear SPDE
(18):

Theorem 1. Under the above specifed conditions, the fol-
lowing probabilistic representation of the solution to linear
SPDE (18) holds:

Y(t, x) � E􏽢P
[Φ(x, t)]. (30)

Proof. Taking the expectation E􏽢P
to both sides of equation

(28), we can obtain

E􏽢P
[Φ(x, t)] � E􏽢P

􏽚
t

0
LsΦ(x, s)ds􏼢 􏼣 + 􏽘

n

i�1
E􏽢P

􏽚
t

0
Υ∗i (x, ds)

z

zxi

Φ(x, s)􏼢 􏼣

+ 􏽘
n

i�1
E􏽢P

􏽚
t

0
Fi(x, ds)

z

zxi

Φ(x, s)􏼢 􏼣 + E􏽢P
􏽚

t

0
Φ(x, s)Fn+1(x, ds)􏼢 􏼣

+ E􏽢P
􏽚

t

0
β(s, x)bu(s, x)ds + 􏽚

t

0
β(s, x)σu(s, x)dBs􏼢 􏼣.

(31)

Since Υ∗(x, t) is the martingale part of Υ(x, t) in the
probability space ( 􏽢Ω, 􏽢F, 􏽢P), the second term in the right side
of (31) equals zero; hence, by Fubini’s theorem, we arrive at

E􏽢P
[Φ(x, t)] � 􏽚

t

0
LsE􏽢P

[Φ(x, s)]ds

+ 􏽘
n

i�1
􏽚

t

0
Fi(x, ds)

z

zxi

E􏽢P
[Φ(x, s)] + 􏽚

t

0
E􏽢P

[Φ(x, s)]Fn+1(x, ds)

+ 􏽚
t

0
β(s, x)bu(s, x)ds + 􏽚

t

0
β(s, x)σu(s, x)dBs.

(32)
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Hence, by using (49) and (60) in (32), we fnd

E􏽢P
[Φ(x, t)] � 􏽚

t

0
LsE􏽢P

[Φ(x, s)]ds

+ 􏽘
n

i�1
􏽚

t

0

z

zxi

E􏽢P
[Φ(x, s)] bi

′(s, x)ds + σi
′(s, x)dBs( 􏼁

+ 􏽚
t

0
E􏽢P

[Φ(x, s)] 􏽥b(s, x)ds + 􏽥σ(s, x)dBs􏼐 􏼑

+ 􏽚
t

0
β(s, x)bu(s, x)ds + 􏽚

t

0
β(s, x)σu(s, x)dBs

� 􏽚
t

0
LsE􏽢P

[Φ(x, s)] + E􏽢P
[Φ(x, s)]􏽥b(s, x) + ∇xE􏽢P

[Φ(x, s)]b
′
(s, x)􏼔 􏼕ds

+ 􏽚
t

0
E􏽢P

[Φ(x, s)]􏽥σ(s, x) + ∇xE􏽢P
[Φ(x, s)]σ′(s, x)􏼔 􏼕dBs

+ 􏽚
t

0
β(s, x)bu(s, x)ds + 􏽚

t

0
β(s, x)σu(s, x)dBs,

(33)

here, b′(s, x) ≔ (b1′(s, x), . . . , bn
′(s, x)), σ′(s, x) ≔ (σ1′(s, x),

. . . , σn
′(s, x)) and

∇x ≔
z

zx1
, . . . ,

z

zxn

􏼠 􏼡. (34)

Terefore, let Y(t, x) � E􏽢P
[Φ(x, t)] in (33), we can see

Y(t, x) solve the linear SPDE (18). □

Remark 2.

(i) For the probabilistic representation of the solution to
linear SPDE, we also refer to Teorem 6.2.5 in [18].
Diferent from Teorem 6.2.5 in [18], the linear
SPDE (18) contains the derivative of the
control term.

(ii) Using the defnition of Υ(x, t) and noting that Υi

(x,t) and Fi(x, t) are independent, the above linear
SPDE (28) can be recast as a frst-order SPDE in the
sense of the Stratonovich integral using the sto-
chastic fows theory:

Φ(x, t) � 􏽘
n

i�1
􏽚

t

0

z

zxi

Φ(x, s) Υi(x, °ds) + Fi(x, °ds)( 􏼁

+ 􏽚
t

0
Φ(x, s) d(s, x)ds + Fn+1(x, °ds)( 􏼁 + Fn+2(x, t).

(35)

Te connection between the Itô and Stratonovich in-
tegral of semimartingale f with respect to semimartingale g

is given by

􏽚
t

0
f(s− ) ° dg(s) � 􏽚

t

0
f(s− )dg(s) +

1
2
[f, g]

c
t , (36)

the notation ∘ is called the Itô circle, °dt stands for nonlinear
integration in the sense of the Stratonovich integral. For
more details about Stratonovich integral, see [19].

In order to use this probabilistic representation (30) in
the proof of our general stochastic maximum principle for

stochastic partial diferential games, we proceed to develop
an expression for Φ(x, t) in Teorem 1. Let Zs,t be the
solution of the Stratonovich SDE.

Z
x
s,t � x − 􏽚

t

s
G Z

x
s,r, °dr􏼐 􏼑, (37)

where G(x, t) ≔ (Υ1(x, t) + F1(x, t), . . . ,Υn(x, t) + Fn

(x, t)) and °dt stands for nonlinear integration in the sense
of the Stratonovich integral. Ten, by the formula (86) of
Section 6.1 in [18] (where f � 0 in (76) of Section 6.1 in
[18]), we obtain the following representation of Φ(x, t):
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Φ(x, t) � 􏽚
t

0
Γ(s, t) · β(s, x)bu(s, x)ds + β(s, x)σu(s, x) ° 􏽢dBs􏽨 􏽩, (38)

where

Γ(s, t) � exp 􏽚
t

s

􏽥b r, Z
t,x
r􏼐 􏼑dr + 􏽚

t

s

􏽥σ r, Z
t,x
r􏼐 􏼑􏽢dBr􏼨

+ 􏽚
t

s
d r, Z

t,x
r􏼐 􏼑dr􏼩,

(39)

􏽢d denotes backward integration and Zt
s is the inverse fow of

the stochastic fow Zs,t.

For the general case, we consider the case with general
initial condition ζ(x), that is,

Y(0, x) � ζ(x), x ∈ O,

Y(t, x) � 0, (t, x) ∈ (0, T) × zO,
(40)

holds, where ζ ∈ Cm,δ. Ten, Φ(x, t) in the probabilistic
representation, (30) is described by

Φ(x, t) � ζ(x) + 􏽚
t

0
LsΦ(x, t)ds + 􏽘

n

i�1
􏽚

t

0
Υ∗i (x, ds)

z

zxi

Φ(x, s)

+ 􏽘
n

i�1
􏽚

t

0
Fi(x, ds)

z

zxi

Φ(x, s) + 􏽚
t

0
Φ(x, s)Fn+1(x, ds)

+ Fn+2(x, t),

(41)

and using the same reasoning as above we obtain:

Φ(x, t) � Γ(0, t)ζ Z
t,x
0􏼐 􏼑

+ 􏽚
t

0
Γ(s, t) · β(s, x)bu(s, x)ds + β(s, x)σu(s, x) ° 􏽢dBs􏽨 􏽩,

(42)

where Γ(s, t) is given by (39).

3. Malliavin Calculus for Brownian Motion

In this section, we recall the basic defnition and properties
of Malliavin calculus for Brownian motion related to this
paper, for reader’s convenience. A natural starting point is

the Wiener–Itô chaos expansion theorem, which states that
any ξ ∈ L2(F, P) can be written as

ξ � 􏽘
∞

n�0
In fn( 􏼁, (43)

for a unique sequence of symmetric deterministic functions
fn ∈ L2(λn), where λ is a Lebesgue measure on [0, T] and

In fn( 􏼁 � n! 􏽚
T

0
􏽚

tn

0
· · · 􏽚

t2

0
fn t1, t2, . . . , tn( 􏼁dB t1( 􏼁dB t2( 􏼁 · · · dB tn( 􏼁, (44)

(the n-times iterated integral of fn with respect to B(·)) for
n � 1, 2, · · · and I0(f0) � f0 when f0 is a constant. Here, we
use λ as the measure on time variable t, m as the measure on
spatial variable x.

Moreover, we have the isometry

E ξ2􏽨 􏽩 � ‖ξ‖
2
L2(p) � 􏽘

∞

n�0
n! fn

����
����
2
L2 λn

( )
. (45)

We frst present the Malliavin derivative Dtξ with respect
to BrownianmotionB(·) at t of a givenMalliavin diferentiable
random variable ξ(ω);ω ∈ Ω, and then we present some basic
properties about Malliavin derivative related to this paper.

Let D denote the set of all random variables which are
Malliavin diferentiable with respect to Brownian motion
B(·), precisely, let D be the space of all ξ ∈ L2(F, P) such
that its chaos expansion satisfes
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‖ξ‖
2
D � 􏽘
∞

n�1
nn! fn

����
����
2
L2 λn

( )
<∞. (46)

Defnition 3. For any ξ ∈ D, defne the Malliavin derivative
Dt(ξ) of ξ at t, t ∈ [0, T] with respect to Brownian motion
B(·) as

Dt(ξ) � 􏽘
∞

n�1
nIn− 1 fn(·, t)( 􏼁, (47)

where the notation In− 1(fn(·, t)) means that we apply the
(n − 1)-times iterated integral to the frst n − 1 variables
t1, t2, . . . , tn− 1 of fn(t1, t2, . . . , tn) and keep the last variable
tn � t as a parameter.

It is easy to check that

E 􏽚
T

0
Dtξ( 􏼁

2
dt􏼢 􏼣 � 􏽘

∞

n�1
nn! fn

����
����
2
L2 λn

( )
,

� ‖ξ‖
2
D,

(48)

so (t,ω)⟶ Dtξ(ω) belongs to L2(λ × P).
Some basic properties of the Malliavin derivative Dt are

the following (a) chain rule and (b) duality formula.

(a) Suppose ξ1, . . . , ξm ∈ D and that f: Rm⟶ R is C1

with bounded partial derivatives. Ten,
f(ξ1, . . . , ξm) ∈ D and

Dtf ξ1, . . . , ξm( 􏼁 � 􏽘
m

i�1

zf

zxi

ξ1, . . . , ξm( 􏼁Dt ξi( 􏼁. (49)

(b) Suppose φ(t) is Ft-adapted with

E 􏽚
T

0
φ2

(t)dt􏼢 􏼣<∞, (50)

and let ξ ∈ D. Ten,

E ξ 􏽚
T

0
φ(t)dB(t)􏼢 􏼣 � E 􏽚

T

0
φ(t)Dt(ξ)dt􏼢 􏼣. (51)

4. Nash Equilibrium of Nonzero-Sum
SPD Games

In this section, we use Malliavin calculus to derive Nash
equilibrium of a nonzero-sum stochastic partial diferential
game by establishing a stochastic maximum principle. After
some assumptions and notations, we introduce the sto-
chastic Hamiltonian function and then the maximum
principle for nonzero-sum stochastic partial diferential
games with partial information is stated and proved.

4.1. Assumptions and Stochastic Hamiltonian Function.
We now return to the partial information nonzero-sum
stochastic partial diferential game problem given in the
introduction. We make the following assumptions:

(A1) For all s, r, t ∈ (0, T), t≤ r, and all bounded
Et ⊗B(R)-measurable random variables α � α(ω,

x), ξ � ξ(ω, x), the controls

βi
α(s, x) ≔ αi

(ω, x)I[t,r](s),

ηi
ξ(s, x) ≔ ξi

(ω, x)I[t,r](s); s ∈ [0, T],
(52)

Belong toAu andAv, respectively, where I[t,T] denotes
the indictor function on [t, T].
(A2) For all u, β ∈ Au; v, η ∈ Av with β and η are
bounded, there exists δ > 0 such that the controls
u(t, x) + yβ(t, x) and v(t, x) + zη(t, x), t ∈ [0, T], be-
long to Au and Av, respectively, for all y, z ∈ (− δ, δ),
and such that the families

zl1

zc
t, x, X

(u+yβ,v)
t (x), u(t, x) + yβ(t, x), v(t, x)􏼐 􏼑

d

dy
X

(u+yβ,v)
t (x)􏼨

+
zl1

zu
t, x, X

(u+yβ,v)
t (x), u(t, x) + yβ(t, x), v(t, x)􏼐 􏼑β(t, x)􏼩

y∈(− δ,δ)

,

zl2

zc
t, x, X

(u,v+zη)
t (x), u(t, x), v(t, x) + zη(t, x)􏼐 􏼑

d

dz
X

(u,v+zη)
t (x)􏼨

+
zl2

zv
t, x, X

(u,v+zη)
t (x), u(t, x), v(t, x) + zη(t, x)􏼐 􏼑η(t, x)􏼩

z∈(− δ,δ)

,

(53)

are λ × P × m-uniformly integrable and the families
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zh1

zc
x, X

(u+yβ,v)

T (x)􏼐 􏼑
d

dy
X

(u+yβ,v)

T (x)􏼨 􏼩
y∈(− δ,δ)

,

zh2

zc
x, X

(u,v+zη)

T (x)􏼐 􏼑
d

dz
X

(u,v+zη)

T (x)􏼨 􏼩
z∈(− δ,δ)

.

(54)

Are P × m-uniformly integrable.
(A3) For all u, β ∈ Au; v, η ∈ Av with β and η are
bounded, the process

Y
β
(t, x) �

d

dy
X

(u+yβ,v)
(t, x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
,

Y
η
(t, x) �

d

dz
X

(u,v+zη)
(t, x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�0
.

(55)

Exist. Further, Yβ(t, x) follows the SPDE, for
(t, x) ∈ [0, T] × O

Y
β
(t, x) � 􏽚

t

0
LY

β
(s, x) +

zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y

β
(s, x)􏼨

+ ∇xY
β
(s, x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zu
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁β(s, x)􏼩ds

+ 􏽚
t

0

zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y
β
(s, x)􏼨

+ ∇xY
β
(s, x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zu

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁β(s, x)􏼩dBs.

(56)

And for all x ∈O, Yβ(0, x) � 0 and for all
(t, x) ∈ (0, T) × zO, Yβ(t, x) � 0; Yη(t, x) follows the
SPDE, for (t, x) ∈ [0, T] × O

Y
η
(t, x) � 􏽚

t

0
LY

η
(s, x) +

zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y

η
(s, x)􏼨

+ ∇xY
η
(s, x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zv
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁η(s, x)􏼩ds

+ 􏽚
t

0

zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y
η
(s, x)􏼨

+ ∇xY
η
(s, x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zv

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁η(s, x)􏼩dBs.

(57)
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And for all x ∈O, Yη(0, x) � 0 and for all
(t, x) ∈ (0, T) × zO, Yη(t, x) � 0.

(A4) For all (u, v) ∈ Au × Av, the following processes,
i � 1, 2:

ni(t, x) ≔
z

zc
hi(x, X(T, x)) + 􏽚

T

t

z

zc
li(s, x, X(s, x), u(s, x), v(s, x))ds,

ΨLi (s, x) ≔ ni(s, x) L +
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼠 ,

+∇∗x∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼡,

+ Ds ni(s, x)( 􏼁
zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 ,

+∇∗x∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼣,

mi(s, x) ≔ ΨLi s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Γ(t, s),

(58)

Are well defned and where Γ(t, s), Zs,x
t are defned as in

the proof, where the operator ∇∗x stands for the adjoint
of ∇x.

We now defne the Hamiltonians for this general sto-
chastic partial diferential game problem as follows:

Defnition 4. Te general stochastic Hamiltonians for the
stochastic partial diferential game are the functions

Hi t, x, c, c
′
, u, v,ω􏼒 􏼓: [0, T] × O × L(R;R) × L R;R

n
( 􏼁 × U × U ×Ω⟶ R, (59)

defned by

Hi t, x, c, c
′
, u(t, x), v(t, x),ω􏼒 􏼓

≔ li(t, x, c, u, v) + ni(t, x)b ω, t, x, c, c
′
, u, v􏼒 􏼓 + Dt ni(t, x)( 􏼁σ ω, t, x, c, c

′
, u, v􏼒 􏼓

+ 􏽚
T

t
E􏽢P

mi(s, x)b ω, t, Z
s,x
t , c Z

s,x
t( 􏼁, c
′

Z
s,x
t( 􏼁, u, v􏼒 􏼓􏼔

+ Dt mi(s, x)( 􏼁σ ω, t, Z
s,x
t , c Z

s,x
t( 􏼁, c
′

Z
s,x
t( 􏼁, u, v􏼒 􏼓􏼕ds, i � 1, 2.

(60)

4.2. Stochastic Maximum Principle for Nonzero-Sum Games

Theorem  

(i) Let (u∗, v∗) ∈ Au × Av be a Nash equilibrium with
the corresponding state process X∗(t, x) � X(u∗,v∗)

(t, x), that is,

(a)J1 u, v
∗

( 􏼁≤ J1 u
∗
, v
∗

( 􏼁, for all u ∈ Au,

(b)J2 u
∗
, v( 􏼁≤ J2 u

∗
, v
∗

( 􏼁, for all v ∈ Av.
(61)

Assume that for all random variables F(ω),ω ∈ Ω, its
Malliavin derivative with respect to B(·) at t exists.
Ten,
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EP

z

zu
H1 t, x, X

u,v∗( )
(t, x),∇xX

u,v∗( )
(t, x), u(t, x), v

∗
(t, x),ω􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 u�u∗Et􏼢 􏼣 � 0, (62)

EP

z

zv
H2 t, x, X

u∗ ,v( )
(t, x),∇xX

u∗,v( )
(t, x), u

∗
(t, x), v(t, x),ω􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 v�v∗Et􏼢 􏼣 � 0. (63)

For a.a. t, x,ω.
(ii) Conversely, suppose that there exists (u∗, v∗) ∈ Au ×

Av such that equations (62) and (63) hold.
Ten,

z

zy
J1 u
∗

+ yβ, v
∗

( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� 0, for all β,

z

zz
J2 u
∗
, v
∗

+ zη( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�0
� 0, for all η.

(64)

If J1(u, v∗) and J2(u∗, v) are concave with respect to u

and v, respectively, then (u∗, v∗) is a Nash equilibrium.

Proof. (i) Suppose (u∗, v∗) ∈ Au × Av is a Nash equilib-
rium. Since (a) and (b) hold for all u and v, (u∗, v∗) is
a directional critical point for Ji(u, v), i � 1, 2, in the sense
that for all bounded β ∈ Au and η ∈ Av, there exist δ > 0
such that u∗ + yβ ∈ Au, v∗ + zη ∈ Av, for all y, z ∈ (− δ, δ).
For simplicity of notation, we write u∗ � u, v∗ � v, X∗ � X

and Y∗ � Y in the following. For ease in writing, asterisks on
optimal functions will sometimes be omitted where the
meaning is clear from the context.

By the defnition of J1(u, v), we have

z

zy
J1(u + yβ, v)|y�0

� E 􏽚
T

0
􏽚
O

zl1

zc
(t, x, X(t, x), u(t, x), v(t, x))Y(t, x)􏼢 􏼨

+
zl1

zu
(t, x, X(t, x), u(t, x), v(t, x))βt􏼩m(dx)dt􏼣

+ E 􏽚
O

zh1

zc
(x, X(T, x))Y(T, x)m(dx)􏼢 􏼣,

(65)

where

Y(t, x) � Y
(β)

(t, x) �
d

dy
X

(u+yβ)
(t, x)|y�0

� 􏽚
t

0
L(s, x)Y(s, x) +

zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y(s, x)􏼨

+ ∇xY(s, x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zu
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩ds

+ 􏽚
t

0

zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Ys(x)􏼨

+ ∇xY(s, x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zu

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩dBs,

(66)

with initial condition

Y0(x) ≡ 0, x ∈O, (67)

and boundary condition

Y(t, x) � 0, (t, x) ∈ (0, t) × zO. (68)
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By the duality formulae, we get

E 􏽚
O

zh1

zc
(x, X(T, x))Y(T, x)m(dx)􏼢 􏼣

� E 􏽚
O

zh1

zc
(x, X(T, x)) 􏽚

T

0
L(s, x)Y(s, x){􏼠􏼢

+
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y(s, x)

+ ∇xY(s, x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zu
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩ds

+ 􏽚
T

0

zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y(s, x)􏼨

+ ∇xY(s, x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zu

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩dBs􏼡m(dx)􏼣

� E 􏽚
T

0
􏽚
O

zh1

zc
(x, X(T, x)) L(t, x)Y(t, x){􏼢

+
zb

zc
t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁Y(t, x)

+ ∇xY(s, x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zu
t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁βt􏼩m(dx)dt􏼣

+ E 􏽚
T

0
􏽚
O

Dt

zh1

zc
(x, X(T, x))􏼠 􏼡

zσ
zc

t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁Y(t, x)􏼨􏼢

+ ∇xY(s, x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zu

t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁βt􏼩m(dx)dt􏼣.

(69)

Similarly, we get
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E 􏽚
T

0
􏽚
O

zl1

zc
􏼠 􏼡 t, x, Xt(x), u(t, x), v(t, x)( 􏼁Yt(x)m(dx)dt􏼢 􏼣

� E 􏽚
T

0
􏽚
O

zl1

zc
􏼠 􏼡 t, x, Xt(x), u(t, x), v(t, x)( 􏼁 􏽚

t

0
L(s, x)Ys(x)􏼠 􏼈􏼢

+
zb

zc
􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Ys(x)

+ ∇xY(s, x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zu
􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩ds

+ 􏽚
t

0

zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Ys(x)􏼨

+ ∇xY(s, x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zu

􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩dBs􏼡m(dx)dt􏼣

� E 􏽚
T

0
􏽚
O

􏽚
t

0

zl1

zc
􏼠 􏼡 t, x, Xt(x), u(t, x), v(t, x)( 􏼁 L(s, x)Ys(x)􏼈􏼢

+
zb

zc
􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Ys(x)

+ ∇xY(s, x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zu
􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩ds m(dx)dt􏼣

+ E 􏽚
T

0
􏽚
O

􏽚
t

0
Ds

zl1
zc

􏼠 􏼡 t, x, Xt(x), u(t, x), v(t, x)( 􏼁􏼠 􏼡􏼢

·
zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Ys(x)􏼨

+ ∇xY(s, x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zu

􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩ds m(dx)dt􏼣

� E 􏽚
T

0
􏽚
O

􏽚
T

s

zl1
zc

􏼠 􏼡 t, x, Xt(x), u(t, x), v(t, x)( 􏼁dt􏼠 􏼡 L(s, x)Ys(x)􏼈􏼢

+
zb

zc
􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Ys(x)

+ ∇xY(s, x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zu
􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩m(dx)ds􏼣

+ E 􏽚
T

0
􏽚
O

􏽚
T

s
Ds

zl1

zc
􏼠 􏼡 t, x, Xt(x), u(t, x), v(t, x)( 􏼁􏼠 􏼡dt􏼨 􏼩􏼢

·
zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Ys(x)􏼨

+ ∇xY(s, x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zu

􏼠 􏼡 s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩m(dx)ds􏼣

� E 􏽚
T

0
􏽚
O

􏽚
T

t

zl1

zc
􏼠 􏼡 s, x, Xs(x), u(s, x), v(s, x)( 􏼁ds􏼠 􏼡 L(t, x)Yt(x)􏼈􏼢

+
zb

zc
􏼠 􏼡 t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁Yt(x)

+ ∇xY(t, x)∇c′b t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁

+
zb

zu
􏼠 􏼡 t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁βt􏼩m(dx)dt􏼣

+ E 􏽚
T

0
􏽚
O

􏽚
T

t
Dt

zl1

zc
􏼠 􏼡 s, x, Xs(x), u(s, x), v(s, x)( 􏼁􏼠 􏼡ds􏼨 􏼩􏼢

·
zσ
zc

t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁Yt(x)􏼨

+ ∇xY(t, x)∇c′σ t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁

+
zσ
zu

􏼠 􏼡 t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁βt􏼩m(dx)dt􏼣.

(70)
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Here, in the last equality, we changed the notation s to t. Now, we defne

n1(t, x) ≔ 􏽚
T

t

zl1

zc
s, x, Xs(x), u(s, x), v(s, x)( 􏼁ds +

zh1

zc
x, XT(x)( 􏼁. (71)

Since

z

zy
J1(u + yβ, v)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� 0, (72)

we have, using (65), (69), and (70),

E 􏽚
T

0
􏽚
O

n1(t, x) L(t, x)Yt(x)􏼈􏼢

+
zb

zc
t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁Yt(x)

+ ∇xY(t, x)∇c′b t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁

+
zb

zu
t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁βt􏼩m(dx)dt􏼣

+ E 􏽚
T

0
􏽚
O

Dt n1(t, x)( 􏼁􏼈 􏼉
zσ
zc

t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁Yt(x)􏼨􏼢

+ ∇xY(t, x)∇c′σ t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁

+
zσ
zu

t, x, X(t, x),∇xX(t, x), u(t, x), v(t, x)( 􏼁βt􏼩m(dx)dt􏼣

+ E 􏽚
T

0
􏽚
O

zl1
zu

t, x, Xt(x), u(t, x), v(t, x)( 􏼁βtm(dx)dt􏼢 􏼣 � 0.

(73)

Next, we apply the above to β � βα ∈ Au of the form

βα(s) � αI[t,t+h](s), (74)

for some t, h ∈ (0, T), t + h≤T, where α � α(ω, x) is
bounded and Et ⊗B(R)-measurable random variable.
Ten, we have
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Y
βα
s (x) � 0, for all s ∈ [0, t], (75) and hence (73) becomes

0 � E 􏽚
T

t
􏽚
O

n1(s, x) L(s, x)Y
βα
s (x)􏽮􏼢

+
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y

βα
s (x)

+ ∇xY
βα
s (x)∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zb

zu
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βαs 􏼩m(dx)ds􏼣

+ E 􏽚
T

t
􏽚
O

Ds n1(s, x)( 􏼁􏼈 􏼉
zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y
βα
s (x)􏼨􏼢

+ ∇xY
βα
s (x)∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zσ
zu

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βαs 􏼩m(dx)ds􏼣

+ E 􏽚
T

t
􏽚
O

zl1

zu
s, x, Xs(x), u(s, x), v(s, x)( 􏼁βαs m(dx)ds􏼢 􏼣

� E 􏽚
T

t
􏽚
O

n1(s, x) L(s, x) +
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 􏼣Y

βα
s (x)􏼨􏼢

+∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽯

+ Ds n1(s, x)( 􏼁
zσ
zc

s, x, Xs(x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y
βα
s (x)􏼢

+∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽩m(dx)ds􏽩

+ E 􏽚
t+h

t
􏽚
O

n1(s, x)
zb

zu
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 􏼨

+ Ds n1(s, x)( 􏼁
zσ
zu

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zl1

zu
s, x, Xs(x), u(s, x), v(s, x)( 􏼁􏼩α(x)m(dx)ds􏼣

≕ A1 + A2.

(76)

Note that, by (66), with Ys(x) � Yβα
s (x) and s≥ t + h, the

process Ys(x) follows the following dynamics:
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Ys(x) � Yt+h(x) + 􏽚
s

t+h
L(τ, x)Yτ(x) +

zb

zc
τ, x, Xτ(x),∇xXτ(x), uτ , vτ( 􏼁Yτ(x)􏼨 􏼩dτ

+ 􏽚
s

t+h
∇xYτ(x)∇c′b τ, x, Xτ(x),∇xXτ(x), uτ , vτ( 􏼁dτ

+ 􏽚
s

t+h

zσ
zc

τ, x, Xτ(x),∇xXτ(x), uτ , vτ( 􏼁Yτ(x)dBτ

+ 􏽚
s

t+h
∇xYτ(x)∇c′σ τ, x, Xτ(x),∇xXτ(x), uτ , vτ( 􏼁dBτ .

(77)

By Teorem 1 and (42), we know that the previous
dynamics has an explicit strong solution.

Ys(x) � E􏽢P
Yt+h Z

s,x
s( 􏼁 exp 􏽚

s

t+h

zb

zc
τ, Z

s,x
s− τ , Xτ Z

s,x
s− τ( 􏼁,∇xXτ Z

s,x
s− τ( 􏼁, uτ , vτ( 􏼁dτ􏼨􏼢

+ 􏽚
s

t+h

zσ
zc

τ, Z
s,x
s− τ , Xτ Z

s,x
s− τ( 􏼁,∇xXτ Z

s,x
s− τ( 􏼁, uτ , vτ( 􏼁dBτ

+
1
2

􏽚
s

t+h

zσ
zc

τ, Z
s,x
s− τ , Xτ Z

s,x
s− τ( 􏼁,∇xXτ Z

s,x
s− τ( 􏼁, uτ , vτ( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dτ􏼩􏼣,

(78)

the process Zs,x
τ􏼈 􏼉τ ≥ 0 is the inverse fow of the stochastic fow

Zτ,s. Here, Zτ,s solves the following Stratonovich SDE:

Z
x
τ,s � x + 􏽚

s

τ
G Z

x
τ,r, °dr􏼐 􏼑, (79)

where G(x, t) ≔ (Υ1(x, t) + F1(x, t), . . . ,Υn(x, t) + Fn

(x, t)), Υi(x, t), Fi(x, t) defned in Section 2. In fact, one
could verify that Zτ,s solves the following Itô SDE,

dZ
x
τ,s � x + 􏽘

n

i�1
􏽚

s

τ
f

i
Z

x
τ,r, r􏼐 􏼑dr + 􏽘

n

i�1
􏽚

s

τ
g

i
Z

x
τ,r, r􏼐 􏼑dWr

+ 􏽘
n

i�1
􏽚

s

τ

zb

zci
′

Z
x
τ,r, r􏼐 􏼑dr + 􏽘

n

i�1
􏽚

s

τ

zσ
zci
′

Z
x
τ,r, r􏼐 􏼑dBr,

(80)

Wr is a Brownian motion defned on an auxiliary probability
space ( 􏽢Ω, 􏽢F, 􏽢P).

We rewrite (78) as, for s≥ t + h,

Ys(x) � E􏽢P
Yt+h Z

s,x
s( 􏼁Γ(t + h, s)􏼂 􏼃, (81)

here,

Γ(t, s) � exp 􏽚
s

t

zb

zc
τ, Z

s,x
s− τ , Xτ Z

s,x
s− τ( 􏼁,∇xXτ Z

s,x
s− τ( 􏼁, uτ , vτ( 􏼁􏼨 􏼠

+
1
2

zσ
zc

τ, Z
s,x
s− τ , Xτ Z

s,x
s− τ( 􏼁,∇xXτ Z

s,x
s− τ( 􏼁, uτ , vτ( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼡dτ

+ 􏽚
s

t

zσ
zc

τ, Z
s,x
s− τ , Xτ Z

s,x
s− τ( 􏼁,∇xXτ Z

s,x
s− τ( 􏼁, uτ , vτ( 􏼁dWτ􏼩.

(82)
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We now deal with (A1) in (76). Diferentiating with
respect to h at h � 0, we get

d

dh
A1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌h�0

�
d

dh
E 􏽚

t+h

t
􏽚
O

n1(s, x) L(s, x) +
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 􏼣Y

βα
s (x)􏼨􏼢

+∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽯

+ Ds n1(s, x)( 􏼁
zσ
zc

s, x, Xs(x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y
βα
s (x)􏼢

+∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽩m(dx)ds􏽩

h�0

+
d

dh
E 􏽚

T

t+h
􏽚
O

n1(s, x) L(s, x) +
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 􏼣Y

βα
s (x)􏼨􏼢

+∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽯

+ Ds n1(s, x)( 􏼁
zσ
zc

s, x, Xs(x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y
βα
s (x)􏼢

+∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽩m(dx)ds􏽩

h�0.

(83)

For frst term in (83), s ∈ [t, t + h), since Y
βα
t (x) � 0, we

have

d

dh
E 􏽚

t+h

t
􏽚
O

n1(s, x) L(s, x) +
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 􏼣Y

βα
s (x)􏼨􏼢

+∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽯

+ Ds n1(s, x)( 􏼁
zσ
zc

s, x, Xs(x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Y
βα
s (x)􏼢

+∇c′σ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽩m(dx)ds􏽩

h�0

� 0.

(84)

For s≥ t + h, by (81) and (84), we have
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d

dh
A1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌h�0

�
d

dh
E 􏽚

T

t+h
􏽚
O

n1(s, x) L(s, x) +
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 􏼣Y

βα
s (x)􏼨􏼢

+∇c′b s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY
βα
s (x)􏽯

+ Ds n1(s, x)( 􏼁
zσ
zc
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where, the operator ∇∗x stands for the adjoint of ∇x, and we
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By (66) and β(s) � αI[t,t+h](s), we have
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After putting (87) in (85), we get
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and
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For the latter term in (88), i.e., (90), since Yβα
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For (A1′), by the duality formulae, we have
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(92)

Combining (88)–(92), we obtain
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Terefore, diferentiating (76) with respect to h at h � 0,
we obtain the following equation from (93) and (94):
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then, the above equation (95) can be written as follows:
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′ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY(s, x)

+
zb

zv
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩ds

+ 􏽚
t

0

zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁Ys(x)􏼨

+
zσ

zc
′ s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁∇xY(s, x)

+
zσ
zv

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁βs􏼩dBs.

(100)
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and Y0(x) ≡ 0, x ∈O and boundary condition Y(t, x) �

0, (t, x) ∈ (0, t) × zO.
By using similar arguments as J1, we get

E
z

zv
H2 t, x, X(t, x),∇xX(t, x), u(t, x), v( 􏼁

􏼌􏼌􏼌􏼌 v�v(t,x) Et

􏼌􏼌􏼌􏼌􏼢 􏼣 � 0.

(101)

Tis completes the proof of assertion (i).
(ii) Conversely, suppose that there exists (u, v) ∈ Au ×

Av such that (62) and (63) hold. In fact, the proof of the
opposite direction is divided into two steps.

Firstly, consider s ∈ [t, t + h). If (62) holds, then we
obtain that (75) holds for all βαs � αI(t,t+h](s), that is,

0 � E 􏽚
T

t
􏽚
O

n1(s, x) L(s, x) +
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼠 􏼡􏼢 􏼨

+ Ds n1(s, x)( 􏼁
zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼩Y
βα
s (x)m(dx)ds􏼣

+ E 􏽚
T

t
􏽚
O

n1(s, x)
zb

zu
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 􏼨

+ Ds n1(s, x)( 􏼁
zσ
zu

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zl1

zu
(s, x, X(s, x), u(s, x), v(s, x))􏼩βαs m(dx)ds􏼣,

(102)

for all t, h ∈ [0, T] with t + h≤T and some bounded
Et ⊗B(R)-measurable random variable α.

Similarly, for all ηξs � ξI(t,t+h](s), we have

0 � E 􏽚
T

t
􏽚
O

n2(s, x) L(s, x) +
zb

zc
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼠 􏼡􏼢 􏼨

+Ds n2(s, x)( 􏼁
zσ
zc

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼩Y
ηξ
s (x)m(dx)ds􏼣

+ E 􏽚
T

t
􏽚
O

n2(s, x)
zb

zu
s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁􏼢 􏼨

+ Ds n2(s, x)( 􏼁
zσ
zu

s, x, X(s, x),∇xX(s, x), u(s, x), v(s, x)( 􏼁

+
zl2

zu
(s, x, X(s, x), u(s, x), v(s, x))􏼩ηξsm(dx)ds􏼣,

(103)

for all t, h ∈ [0, T] with t + h≤T and some bounded
Et ⊗B(R)-measurable random variable ξ.

Secondly, consider s ∈ [t, T]. Tese equalities above
(102) and (103) hold for all linear combinations of such βαi

and ηξi . For any β ∈ Au and η ∈ Av, since all bounded
β ∈ Au and η ∈ Av can be approximated pointwise
boundary in (t, x,ω) by such linear combinations, it follows
that (102) and (103) hold for all bounded β ∈ Au and η ∈ Av,
that is, for any β ∈ Au, we can approximate β by

βn � 􏽘
n

i�1
liβ

αi

i (x,ω)I[t,t+ih)(s), s ∈ [t, T], (104)

where li is the coefcient, t, t + h, . . . , t + nh � T{ } is
a partition of the interval [t, T], αi is a boundary random
variable, and this approximation procedure is uniformly for
(t, x,ω). Hence, we obtain (73) holds for any β ∈ Au, in the
interval [t, T].

Taking t � 0, we conclude that (73) holds for all bounded
β ∈ Au, and this is equivalent to
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z

zy
J1(u + yβ, v)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� 0, (105)

for all bounded β ∈ Au. Similarly, we get that
z

zz
J1(u, v + zη)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�0
� 0, (106)

for all bounded η ∈ Av. □

5. Numerical Simulations for the Linear SPDE

A strong solution of the linear stochastic partial diferential
equation with a generalized probabilistic representation has
been given with the beneft of Kunita’s stochastic fow
theory. Tis section is concerned with the numerical sim-
ulations of solutions to the linear stochastic partial difer-
ential equations. First of all, we consider one space
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Figure 1: Y(0, x) � 1/2 sin πx and Y(t, 0) � Y(t, 5) � 0.
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Figure 2: Y(0, x) � 1/2 sin πx and Y(t, 0) � Y(t, 5) � 0.
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dimensional in the following linear stochastic partial dif-
ferential equations:

Ys(x) � Y0(x) + 􏽚
s

0
L(τ, x)Yτ(x) +

zb

zc
τ, x, Xτ(x),∇xXτ(x), uτ , vτ( 􏼁Yτ(x)􏼨 􏼩dτ

+ 􏽚
s

0
∇xYτ(x)∇c′b τ, x, Xτ(x),∇xXτ(x), uτ , vτ( 􏼁dτ

+ 􏽚
s

0

zσ
zc

τ, x, Xτ(x),∇xXτ(x), uτ , vτ( 􏼁Yτ(x)dBτ

+ 􏽚
s

0
∇xYτ(x)∇c′σ τ, x, Xτ(x),∇xXτ(x), uτ , vτ( 􏼁dBτ ,

(107)

where L(τ, x) has the form

L(t, x)Φ �
1
2

G(t, x)
z
2

zx
2Φ + f(t, x)

z

zx
Φ + d(t, x)Φ. (108)

5.1. Example 1: Stochastic Equation with Volatility Y(t, x).
In this example, we solve the linear stochastic partial dif-
ferential equation (107) on the domain (t, x) ∈
[0, 0.5] × [0, 5]. Te space and time steps are chosen as Δx �

5/30 and Δt � 0.5/30, respectively. Te initial value Y0(x) �

1/2 sin πx and boundary value Y(t, 0) � Y(t, 5) � 0, zb/
zc � ∇c′b � ∇c′σ � 0, zσ/zc � 1, and the functions G(t, x)

� f(t, x) � 1, d(t, x) � 0. Te solutions of these linear
stochastic partial diferential equations are shown in Fig-
ure 1. In this case, the linear stochastic partial diferential
equation is

Y(s, x) �
1
2
sin πx + 􏽚

s

0

1
2

z
2

zx
2 Y(τ, x) +

z

zx
Y(τ, x)􏼢 􏼣dτ

+ 􏽚
s

0
Y(τ, x)dBτ , (s, x) ∈ [0, 0.5] ×[0, 5],

Y(s, 0) � Y(s, 5) � 0, s ∈ [0, 0.5].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(109)

5.2. Example 2: Stochastic Equation with Volatility∇xY(t, x).
In this example, we solve the linear stochastic partial dif-
ferential equation (107) on the domain (t, x) ∈ [0, 0.5]

×[0, 5]. Te space and time steps are chosen as Δx � 5/30
and Δt � 0.5/30, respectively. Te initial value Y0(x)

� 1/2 sin πx and boundary value Y(t, 0) � Y(t, 5) � 0,
zb/zc � ∇c′b � zσ/zc � 0,∇c′σ � 1, and the functions
G(t, x) � f(t, x) � 1, d(t, x) � 0. Te solutions of these
linear stochastic partial diferential equations are shown in
Figure 2. In this case, the linear stochastic partial diferential
equation is

Y(s, x) �
1
2
sin πx + 􏽚

s

0

1
2

z
2

zx
2 Y(τ, x) +

z

zx
Y(τ, x)􏼢 􏼣dτ

+ 􏽚
s

0
∇xY(τ, x)dBτ , (s, x) ∈ [0, 0.5] ×[0, 5],

Y(s, 0) � Y(s, 5) � 0, s ∈ [0, 0.5].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(110)

6. Conclusion

In this paper, we consider a Nash equilibrium of stochastic
diferential game where the state process is governed by
a controlled stochastic partial diferential equation. Te
problem of fnding sufcient conditions for Nash equilib-
rium of stochastic diferential game can be transformed into
optimality conditions for a stochastic optimal control
problem with infnite dimensional state equation. Applying
Kunita’s stochastic fow theory, we fnd an explicit strong
solution of the linear stochastic partial diferential equation,
and this solution has a probabilistic representation. Te
probabilistic representation of solution and Malliavin cal-
culus imply a stochastic maximum principle for the optimal
control and obtain the Nash equilibrium of this type of
stochastic diferential game problem. We would like to point
out that it is meaningful to consider a Nash equilibrium of
stochastic diferential game when the state process is gov-
erned by a controlled stochastic partial diferential equation
with jump-difusion, which is a valuable future research
direction.
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