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People in the epicenter sufer from emergency medical supplies shortage in the early stage of a public health emergency because of
imbalanced supply-demand in diferent regions or areas, which is a key issue in a major infectious disease. In response to the
severe insufciency of supplies in the epicenter, this study proposed a strategy of distributing supplies from peripheral areas to the
epicenter and gave a supply-side selection model considering the epidemic infuence and supplies condition in the candidate
supply-side areas. First of all, the epidemic spatial-temporal transmission path (STTP) network describing the geographic spread
of disease is obtained using a frst-order conditional dependence approximation algorithm in a dynamic Bayesian network (DBN).
Ten, the structural information of the STTP network and the supplies condition characteristic information are combined using
the Bipartite network embedding (BiNE) method. Finally, a graph convolutional neural network (GCN) is conducted to select the
supply-side areas for peripheral-epicenter supplies distribution based on information achieved from the bipartite graph. Te
results show that the highest supplies allocation accuracy reaches 87%. Validation and supremacy of the proposed methodology
are provided by applying it to the case in Hubei province. Tis study considers crossed-areas supplies distribution strategy and
contributes to select suitable supply-side areas considering the epidemic and supplies condition in the peripheral areas, which is
helpful to both epicenter and peripheral areas.

1. Introduction

Emergency medical supplies provide treatment and care for
patients and protection for medical staf and the general
public in large, resurgent epidemics. However, supplies are
not evenly distributed in each region because of diferent
demographics and structural functions. Some regions have
fewer supplies for emergencies, and there is a possibility that
the regions happen to be the epicenter. Te imbalanced
distribution and demand of emergency medical supplies
may cause serious resource shortages, speeding up outbreak
spread and increasing the severity of the pandemic [1]. Take
Wuhan, China, during the COVID-19 outbreak for example,
it sufered from a severe shortage of emergency medical
supplies, and the production of supplies could not meet the
supply in the short term. In addition, some certain

emergency supplies have a short shelf life and have limited
usage scenarios [2]. For example, the shelf life of medical
protective clothing is about three years [3], and it is used less
in normal times than the abnormal. If these kinds of supplies
could not be used timely, they will expire and will lead to
a lot of waste. At this point, it is particularly important to
dispatch supplies to the worst-hit areas, which has many
advantages including time-saving and higher resources
utilization. For instance, dispatching supplies from the areas
that are not afected by the disasters to the disaster-stricken
areas allows the victims to achieve supplies earlier than
waiting for the production. Te sooner they get the supplies,
the earlier the victims can survive the epidemic. More
importantly, as the contagion characteristics of epidemic,
the medical supplies can help slow the spread of the disease
expanding to other areas, which is a win-win for both
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epicenter and other areas. Last but not least, sharing supplies
is helpful to take advantage of resources and avoid
resource waste.

Te emergency supplies allocation methods can be
categorized into two classes: model conduction and data-
driven. Te model-driven method develops the strategy and
establishes the model of supplies allocation for specifc
scenarios and confguration goals [4]. Wright and Lim [5]
proposed an interior point method to solve the resource
allocation problem of nested constraints. A stochastic op-
timizationmodel for allocating and sharing critical resources
in the case of large epidemics is also proposed [6]. Diferent
frommodel-building methods, data-driven methods achieve
confguration objectives through regression, such as statis-
tical approaches or machine learning algorithms, based on
data. Data-driven methods are more efective for complex
situations where mathematical models are difcult to build.
Some scholars used sociodemographic data [7], socioeco-
nomic factors [8], and land-use intensity [9] to utilize
material supply allocation in specifc regions. Based on
Bayesian decision analysis, Wohlmann et al. [10] con-
structed a decision model of emergency supplies allocation
for the major infectious diseases under fve scenarios against
seven dimensions, including time period, critical events,
transmission dynamics, spatial distribution, infection scale,
information characteristics, and medical supplies.

It is worth noting that the model construction method is
easy to be practiced and understood. However, methods of
this kind require predefned rules and the reasons behind
abnormal results remain unexplained. Moreover, because
there are certainly complexities related to the massive
amount of real-world datasets, data-driven methods with
high statistical order or toomany nonlinearities might be not
available. Besides, these above emergency supplies allocation
studies, however, have mostly concentrated on how emer-
gency medical resources are distributed within regions,
neglecting the signifcance of the coordinated multiregional
distribution of emergency resources in crossed-regional
public emergencies.

Te signifcance of multiregional collaborative materials
allocation planning has steadily caught the attention of
academics, and it is originated from the integrated emer-
gency management decision support system proposed by
Pérez-Rodŕıguez and Holguı́n-Veras [11] to deal with the
hurricane disaster. Although the defnition of the concept
has not been unifed, the understanding has gradually
reached a consensus; that is, urban agglomerations are
composed of several neighboring cities, which are closely
connected with each other. For instance, Boin et al. [12] and
Mehrtash et al. [13] discussed the importance of cross-
regional coordination mechanisms through cost-beneft
analysis under sudden cross-regional disasters. Pescaroli
et al. [14] and Qiu et al. [15] put forward suggestions on how
to construct emergency rescue synergistic processes. Urrutia
et al. [16] used generalized network autoregressive to in-
terdict potential higher infection areas. Similar to the general
emergency materiel allocation, equity [17], risk acceptance
and survivor satisfaction [18], minimal distribution cost, and
delivery time [19] are all optimization objectives for

multiregional collaborative emergency materials allocation.
However, it is noteworthy that the majority of these re-
searches concentrated on the victims’ pleasure in the area of
supply-demand, forgetting to consider the victims’ con-
tentment in the supply areas and rarely involve how to
coordinate resource allocation among emergency response
entities with diferentiated characteristics based on regional
coefcients when considering their decision preferences,
which is exactly one key problem to be solved.

To improve multiregional collaborative emergency
materials allocation, both peri-epidemic and epicenter areas
needed to predict their respective emergency material de-
mands. Defning the pandemic’s spatial and temporal pat-
terns, or the crucial issue of how the epidemic spreads in the
immediate region, is one of the main elements in creating
connections between the epidemic perimeter and the epi-
demic center. Pei et al. [20] predicted the geographical
spread of infuenza using human movement data and en-
semble population models.

Tese techniques, however, need access to a sizable
quantity of surveillance data, including information on
human movement, trafc fow, and other more challenging-
to-obtain data. It takes a lot of time and efort to gather these
data in order to build forecasting and allocation methods for
supplies needs. On the contrary, a dynamic Bayesian net-
work (DBN) uses the time-lag connection between epidemic
surveillance data from diferent places to indicate the
probable transmission route of the epidemic. Terefore, we
utilize DBN to employ the infectious disease transmission
modeling to circumvent the challenges of data collecting
issues.

For better prediction, other than the impact of pandemic
on the supply-side areas, the supplies condition in the peri-
epidemic areas is also rationale. Terefore, research for the
selection of supplies allocation supply-side cities and regions
for epidemic-centered areas and developing methods suit-
able for the scenario combining the advantages of model
construction and data-driven methods are in tremendous
need. To combine the advantages of both model conduction
and data-driven methods, graph embeddings can combine
the structural and parameter information together. Scholars
have constructed many graph embeddings, such as Deep-
Walk [21] and Node2vec [22]. Te DeepWalk algorithm
works on homogeneous networks, whereas a bipartite graph
is an inherently heterogeneous network, with edges con-
necting two diferent types of nodes, left and right. However,
it fails to consider modeling the implicit relationship in the
graph. BiNE [23] is capable of exploiting both structural and
parameter characteristic information to reconstruct fusion
and realize the graph embedding. Tus, we choose the BiNE
algorithm to construct graph embeddings.

Prompted by the above two considerations, this study
considers the selection of the supply-side area around the
epicenter for emergency supplies distribution based on the
epidemic transmission and supplies condition. First, we
developed the infectious disease spatial-temporal trans-
mission path (STTP) from the epidemic center to peripheral
areas using DBN. Ten, the structure of infectious diseases
STTP network and parameters characteristic information
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data of supplies condition is represented as a bipartite graph
for information fusion with the method of BiNE. Finally,
a further step of bipartite graph information learning is
performed based on the graph convolutional neural network
(GNN) method to realize the supplies confguration supply-
side areas selection. Tis method uncovers the hidden re-
lationships between the STTP and supplies allocation
supply-side candidate cities and provides excellent refer-
ences for emergency medical supplies scheduling and do-
nation decision-making. In order to verify the feasibility of
the approach, this study applied the model to Wuhan, Hubei
province, in the early outbreak of COVID-19 as a case study.

Te main contributions of this study are summarized as
follows: (1) this study considers supplies allocation from the
perspective of the spatial-temporal transmission path of
epidemic and provides insights for the efective supply-side
area selection of supplies allocation. (2) Te regional se-
lection strategy of suppliers balances the resource delivery
efciency and the impact of the epidemic on the supply-side
areas, which is a win-win selection. (3) In this study, an
emergency medical supplies allocation model based on
DBN-GCN methods is constructed, which combines the
advantages of data-driven and model-building methods.
Experimental results show that the proposed model achieves
87% accuracy in supplies allocation supply-side areas se-
lection and outperforms in comparison with other methods,
which can provide valuable suggestions for supplies allo-
cation in emergency situations. Tis study can help areas
around epidemic center to better allocate supplies, make
supplies allocation decision reasonably, and improve the
efective utilization rate of supplies. Additionally, the se-
lection of epicenter peripheral areas is conducive to meet the
explosive growth of demand in short term. It is of great value
to urban public health emergency management and emer-
gency risk reduction, and it is of great signifcance to im-
prove the public’s understanding of the importance of
supplies allocation.

2. Related Work

2.1. Model Construction. In response to emergency medical
supplies shortages and high demand in the initial outbreak
of a major infectious disease, this study proposed a strategy
that the surrounding areas distribute supplies to the epi-
center and gave the methodology to select the supply-side
areas. For the candidate supply-side areas, we analyze the
infuenced extent to peripherals by the epidemic center. Te
methodology considers both the impact of the pandemic on
the peri-epidemic areas and supplies condition in the peri-
epidemic areas.

In order to decide the infuence factors from the epi-
center to the peripherals, one of the most crucial steps is the
description of the epidemic spatial-temporal transmission
path (STTP) to mine relationships between the periphery
and the epicenter of the outbreak. Dynamic Bayesian net-
work is employed to learn epidemic STTP network and to
avoid the obstacle of data collection. STTP network in-
vestigates the potential transmission direction of infectious
diseases using epidemic surveillance data. Because DBN is

able to characterize the networkmaking good use of time-lag
relationships of multisource data [24], it can be well applied
to deal with infectious disease surveillance data. Terefore,
DBN is used to learn the structure of infectious disease STTP
network. Te form of the DBN result is structural charac-
teristic information.

Te second step is to collect related data characterizing
the impact factors of emergency medical supplies demand in
peripheral areas, including socioeconomic conditions,
hospital conditions, and emergency medical supplies in-
dustries conditions. Te form of collected data is parameter
characteristic information.

After obtaining both structural and parameter charac-
teristic information on infuence factors from the epicenter
to the peripherals, the next step is to implement information
infusion for predicting supplies demand in the peripherals.
We choose BiNE as the method to implement the in-
formation infusion because BiNE is capable of exploiting
both structural and parameter characteristic information
[23] to reconstruct fusion and realize the graph embedding
of the epidemic STTP network.

Te third and fnal steps are selecting the suitable
emergency supplies allocation areas. To investigate emer-
gency medical supplies demand in the candidate supply-side
areas, regressions are then taken driven by selected datasets.
GCN is used to extract the spatial features of the topology
and learn the multimodel characteristics data. Tat is, the
emergency supplies allocation problem is such transformed
into the edge label classifcation problem in the bipartite
graph of the epidemic STTP.

Terefore, the emergency supplies allocation from pe-
ripherals to epidemic areas model building process consists
of three parts: the epidemic spatial-temporal transmission
path network, graph embedding, and supplies allocation
supply-side areas selection. Te fowchart of the model
building is shown in Figure 1.

Terefore, the EMR allocation model building process
consists of three parts: the epidemic spatial-temporal
transmission path network, graph embedding, and EMR
allocation supply-side areas selection. Te fowchart of the
model building is shown in Figure 1.

2.2. Research Methods. Based on Section 2.1, the details of
three parts including epidemic spatial-temporal trans-
mission path network, graph embedding, and EMR allo-
cation supply-side areas selection modes are described in the
section.

For readability, a brief overview of the parameters de-
scribed in the following model is given in Table 1.

2.2.1. Epidemic Spatial-Temporal Transmission Path (STTP).
To select the suitable supply-side areas for disturbing
emergency medical supplies to the epidemic center, we frst
predict the impact of the pandemic from the epidemic center
to the candidate supply-side areas so that the supplies de-
mand of the peripheral areas can be estimated. Considering
how to predict the efect of the pandemic on the peripheral
areas, we choose epidemic spatial-temporal transmission
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path to form a structural network.Te epidemic STTP refers
to the time-lag correlation of the epidemic spread from place
B (i.e., the epidemic center area) to place D (i.e., the pe-
ripheral of the epidemic) from a statistical point of view,
which can be expressed by B⟶D. Te directional arc
“⟶” between B and D indicates that node A has time-lag
efects on the node B, and this kind of directional arc is
defned as a spatial-temporal path in this study. All arcs will
form a network, when two or more areas exist time-lag
correlations, namely, epidemic spatial-temporal trans-
mission path (STTP) network. Specifcally, networks contain

two types of information: (1) structural information, which
is related to the directional arc; (2) parametric information,
which measures the connection strengths between diferent
nodes. Epidemic spatial-temporal transmission path net-
work can simulate how infectious diseases are spread to the
peripheral areas.

We defne the epidemic STTP network as G � (X, A),
where X is the infectious disease dataset of the numbers of
new daily cases I(i, t) in diferent areas, e.g.,
X � I(i, t){ }, (i � 1, 2, 3, . . . . . .), (t � 1, 2, 3, . . . . . .), for
convenience, Xt is used to display X � I(i, t){ } as follows,
andA is the arc set between any two areas in dataset X. I(i, t)

can be regarded as a time series.Te primary goal of this part
is to simulate the time-lag correlation between two time
series I(i, t) and I(j, t)(i≠ j) using dynamic Bayesian net-
work (DBN) to realize epidemic STTP network structure
learning. Bayesian network is a probabilistic graph model,
which represents a group of random variables and their
conditional dependencies through a directed acyclic graph
(DAG) [25]. Formally, Bayesian networks use nodes to
represent random variables (whose probability is Bayesian
probability). Each node is associated with a node probability
function that takes as input the values of all parent nodes and
gives the probability of the node random variable. Te
process is illustrated in Figure 2.

Te estimated value is the epidemic transmission
probability of city i on city j, and it is obtained by combining
the datasets with the Bayesian formula as shown in the
following equation:

P(I(j) | I(i)) �
P(I(j))P(I(i) | I(j))

P(I(i))
. (1)

Dynamic Bayesian network (DBN) is a dynamic directed
acyclic graph, which uses nodes and arcs to represent the
conditional probability dependence among a group of time
series [26]. In the DBN model, an arc is drawn between two
variables (in our cases, the two successive time points). For
example, the arc from I(i, t − 1) to I(j, t) represents the
numbers of new daily cases in city j at time t which con-
ditionally depends on that in city i at time (t − 1). In this
study, we implemented our estimation using a frst-order
conditional-dependent approximation algorithm initialized
by a DBN model. An overview of the procedure is presented
in Figure 3.

In Figure 3, the probabilities for variance are time-
dependent (t� 1, 2, . . ., n). Te state of variable I(i, t) is
determined by I(j, t) at any time, while the status of esti-
mated values is determined by both I(i, t) and I(j, t). Vt is
the connection strength (trafc fow from city i to city j)
directional arc between city i and city j at time t. Te joint
probability distribution is obtained by the following
equation:

P Xt( 􏼁 � P I(i, t), I(j, t), Vt( 􏼁 � P(I(i, t))P(I(j, t) | I(i, t))P Vt | I(i, t), I(j, t)( 􏼁. (2)

Epidemic spatial-
temporal transmission 

path (STTP)

Supplies condition
data collection

Graph embedding

Emergency medical 
supplies allocation 
supply-side areas 

selection

DBN

BiNE

GCN

Figure 1: Model building fowchart.

Table 1: Parameters in the model.

Parameters Description
G Epidemic STTP network
X � I(i, t){ } Infectious disease dataset
I Te number of new daily cases
i Te label of region or area
t Te time of new daily cases
Vt Te connection strength between two areas at time t

n Te number of statistical days
c Epidemic center area node
a Epidemic peripheral area node
h Embedding matrix
T Te number of convolution layer
e Edge between the nodes
ω Training weight vector
G Bipartite graph
C Nodes set of epicenter areas
A Nodes set of epidemic peripheral areas
m Te number of nodes in C
n Te number of nodes in A
E⊆C × A Te edge of nodes in sets C and A
ei,j ∈ E Te edge connection between the node ci and aj

ωij Edge weight
f Feature vectors
F Feature matrixes
l Edge labels
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And the conditional probability between I(i, t), I(j, t)

and Vt is as follows:

P Vt | I(i, t), I(j, t)( 􏼁 �
P I(i, t), I(j, t) Vt

􏼌􏼌􏼌􏼌􏼐 􏼑P Vt( 􏼁

P(I(i, t))

�
􏽐

n
t�1P Vt, I(i, t), I(j, t)( 􏼁

P(I(i, t))
.

(3)

With the unsupervised learning algorithm for DBN
learning, the training of an epidemic STTP network can be
implemented in two steps. First, encode conditional de-
pendencies in a DAG with the frst-order algorithm. Ten,
infer the epidemic STTP network structure, so that we can
get the result of the epidemic efect on the candidate supply-
side areas in a structural formation. Terefore, the next step
is to assess the efect of the epidemic spread on the peripheral
cities.

2.2.2. Supplies Characteristics Parameters. For better pref-
erence of the prediction of the supplies demand in the
candidate supply-side areas, the characteristics of supplies
demand in supply-side nodes in the epidemic STTP network
are needed. Considering the important factors of medical
supplies in the epidemic STTP network, we select param-
eters including economy, market, and technology from the
perspective of supplies production, consumption, and so on.
Te details of factors and selection reasons are given as
follows:

(i) Sociodemographic factors

(1) Economic development level: Areas with an
opposable high level of economic development
usually display a relatively high density of health

sector and higher demand for medical supplies
in the pandemic. We used gross domestic
product (GDP) to represent the level of eco-
nomic development.

(2) Population: Typically, the larger the number of
populations, the greater the supplies demand for
emergency public health event response.

(ii) Market factors

(1) Industrial structure: In response to supplies
shortages during the early age of public health
emergencies, some manufacturing enterprises
in China, such as car manufacturers, transfer
their main business to supplies production
temporarily. Te industrial structure is expected
to infuence the demand substantially.

(2) Production quantity: Supplies production is
adjusted for public health emergencies but with
time lag. Current total production quantity of
supplies is a signifcant consideration in allo-
cating materials.

(3) Pricing index: Te materials pricing index in-
dicates the infuence on the supplies price of
public health emergencies. Market price de-
pends on demand, and therefore, we consider
the market pricing index a linear function
coefcient.

(4) Transport efciency: It could happen that public
health emergencies have some impact on
transport efciency. For example, the material
transmission pathways are blocked and sub-
jected to natural hazards.

(iii) Technical factors

Te improvement of material production tech-
nology will result in the impact on the production
efciency [27]. In this study, the number of ma-
terial institutions represents the supplies pro-
duction technological level.
Terefore, we select three types of supplies char-
acteristic parameters to refect the emergency
medical supplies condition from both production
and consumption.

2.2.3. Graph Embedding. Te epidemic STTP network is
a structural information, and the characteristic is the pa-
rameter information. To combine the two types of in-
formation together for better estimating the supplies
situation under epidemic in the candidate supply-side areas,
graph embedding is used in many felds to represent con-
nection patterns among complex system components [28]. It
can map nodes to low-dimensional vector space, combine
subsequent graph problems such as node classifcation, and
link prediction and node clustering with existing machine
learning methods on the premise of node representation
vector [29]. Te process captures the topology of the graph,
vertex-to-vertex relationships, and other relevant in-
formation about the graph, subgraph, and vertices, that is,

I (i)

I (j)

Bayesian formula

Estimated value 

Figure 2: Bayesian network model.
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I ( j, t)

BE

t = 2
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I ( j, t)

BE

t = i

I (i, t)

I ( j, t)

BE

t = n

Estimated 
value 

Estimated 
value 

Estimated 
value 

Figure 3: Dynamic Bayesian network model.
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information fusion. Te obtained low-dimensional vector is
used as input information for downstream machine learn-
ing. Te graph embedding method has superior perfor-
mance compared to traditional method such as planar graph
[30, 31].

Bipartite graph is a universal data structure used to
model the relationship between two types of entities, such as
an event graph. Terefore, the STTP network obtained in
Section 2.2.1 is a bipartite graph. We choose BiNE as the
method to implement the information infusion because
BiNE [23] is capable of exploiting to reconstruct fusion and
realize the graph embedding of the epidemic STTP network,
combining both structural and parameter characteristic
information together. It can maintain the long-tail distri-
bution of nodes in a bipartite graph by performing a biased
random walk [32]. In this way, we can get both epidemic
spreading information and supplies condition preparing for
the prediction of supplies situation in peripheral areas.

2.2.4. GCN-Based Emergency Medical Supplies Allocation.
In this section, we will estimate the supply situation in the
peripheral areas to select the suitable candidate supply-side
areas for distributing supplies to the epicenter. Graph
convolutional network (GCN) is a neural network archi-
tecture that can efectively handle embedding graph [33],
mainly for convolution operation of graph structure data.
Te core concept of GCN is to iterate and aggregate the
nodes’ features in the embedding graph. As opposed to other
methods targeted at the processing graph, GCN is more
suitable for processing the bipartite graph with topological
structure and selected for the demand allocation. Based on
these two reasons, GCN is selected to implement the pre-
diction step in our study. We hypothesized that supplies
demand in the periphery of the outbreak could be simulated
by using epidemic information and supplied condition
between regions. GCN-based supplies allocation decision
model is constructed based on the structural and parameter
information obtained from Sections 2.2.1 and 2.2.2 sepa-
rately. Te GCN model construction process is shown in
Figure 4.

Te concrete steps are as follows:

Step 1. Aggregate the adjacent nodes features.

Step 2. Update the initial nodes features through flters.

Step 3. Concatenate the updated features.

Step 4. Edge-labelled classifcation. Te edge embedding
matrix is obtained through Hadamard product [34]:

h(T)
e(ij)􏼔 􏼕

l
� h(T)

ci
􏽨 􏽩

l
· h(T)

aj
􏼔 􏼕

l
, (4)

where h(T)
ci

represents the embedding matrix of epidemic
center area node ci, h

(T)
aj

represents the embedding matrix of
epidemic peripheral area node aj, and h(T)

e(ij) represents the

embedding matrix of edge connecting the node ci and
node aj.

Step 5. SVM classifcation.
Support vector machine (SVM) classifer is used to select

epidemic peripheral area as the allocation supply-side cities
and regions. Specifcally, the label is expressed as follows:

􏽢y � sgn H(T)
e ω􏼐 􏼑, (5)

where sgn(∙) is the sigmoidal function and ω is the training
weight vector.

3. Case Study

Tis section presents a case study of the model established in
Section 2. First, data were collected from the epidemic
diseases COVID-19 in China. After that, the method of
graph embedding BiNE is used to construct a bipartite graph
of the epidemic STTP network. Finally, the selection of
epidemic peripheral areas as the emergency medical supplies
allocation supply-side is based on a graph convolutional
neural network.

3.1. Data Collection and Processing. Te dataset analyzed in
this study includes 16 epidemic-centered areas (from Hubei
province) and 19 epidemic peripheral areas (Anhui,
Chongqing, Shaanxi, Jiangxi, Hunan, Henan, Beijing,
Tianjin, Guangdong, Sichuan, Yunnan, Shanghai, Shan-
dong, Zhejiang, Hainan, Guizhou, Ningxia, Hebei, and
Jiangsu) from January 10, 2020, to March 31, 2020, during
the early outbreak of COVID-19. Te epidemic peripheral
areas are selected with a relatively high level of economic
development or relatively recent geographical distance. Te
daily accumulative number of confrmed cases is obtained
from the National Center for Disease Control and Pre-
vention (CDC). Te division of administrative areas follows
the government’s ofcial zoning principle.

Te purpose of this study is to select some epidemic
peripheral areas as the supply-side based on their supplies
demand, providing decision-making basis for supplies
allocation. Te statistical data were summarized as 304
(16∗19� 304) couples of epidemic-centered areas-
peripheral areas. We represent each label as a pair of
area nodes, for the high and the low supply intention,
respectively. Features of the epidemic-centered and pe-
ripheral areas displayed in Table 2 were collected from the
National Bureau of Statistics of China, China Industry
Information Research network. In addition, the geo-
graphic distance between the epidemic center and the
peripheral area was measured according to [35]. Features
of epidemic peripheral areas, taking Jiangsu Province as
an example, are shown in Table 3.

Te diference in dimensions and orders of magnitude
among the features is prone to errors. Te dataset was
preprocessed using [36] as follows:
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x �

x − Xmin

Xmax − Xmin
, if the attribute of x benefits for supplying,

Xmax−x

Xmax − Xmin
, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

Epidemic-
center areas 

nodes Feature 

Aggreg
ation

Concate
nation

Activation
Fuction

Epidemic-
center areas

nodes
embedding 

matrix
Hc(l)

Peripheral
areas nodes

Feature

Aggreg
ation

Concata
nation

Activation
Fuction

Peripheral
areas nodes
embedding

matrix
Ha(l)

…

Convolutional 
layer 1

Edge 
embedding

matrix
He(T)

SVM
Classifier

Hc(i)

Ha(i)

Hc(T)

Ha(T)

Convolutional
layer i

Convolutional
layer T

Figure 4: GCN-based emergency medical supplies allocation model.

Table 2: Features of epidemic-centered and peripheral areas.

Node type Feature category Feature

Epidemic-centered areas Epidemic status Proportion of the infected population
Emergency medical supplies status Supply/demand ratio

Epidemic peripheral areas

Economic status GDP
Industrial structure

Demographic status Population
Production

Emergency medical supplies status

Logistics efciency
Te number of corresponding research institutions

Market pricing index
Emergency medical supplies demand

STTP
Epidemic status Proportion of infected population

Table 3: Features of epidemic peripheral areas in Jiangsu Province.

Date
GDP

(trillion
RMB)

Industrial
structure

Population
(ten thousand)

Production (ten
million RMB)

Market
pricing
index

Logistics
efciency

(%)

Te number of
corresponding

research institutions

EMR demand
(ten thousand

tons)
2019.9 9.073 12.1 7281 241.95 97.72 46.24 0 87.62
2019.10 8.329 12.12 7028 201.27 98.41 41.72 0 88.71
2019.11 6.870 13.08 6899 330.82 103.47 34.03 6 139.96
2019.12 5.533 13.86 7093 405.89 141.83 39.79 7 146.79
2020.1 4.137 14.67 7405 412.31 132.64 42.87 8 158.65
2020.2 4.543 15.79 7431 437.89 127.95 45.98 9 152.51
2020.3 4.677 16.81 7582 451.67 121.89 47.73 7 147.69
Data source: National Bureau of Statistics of China, China Industry Information Research network.
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where x is the data before being processed and x is the
processed data. And X is a list of data, Xmin is the smallest
data among X, and Xmax is the largest data among X. After
data preprocessing, we can change Table 2 into Table 4 so
that it can be the parameter input of graph embedding. For
readability, we label the dataset from Tables 3 in 4, and we
can see the corresponding data after processing in Table 5.

3.2. Graph Embedding of Epidemic STTP Network.
Epidemic STTP network is obtained based on DBN-based
methods in Section 2.2.1, typically refecting the impact of
epidemic from epicenter to the peripheral areas. Using BiNE
methods, graph embedding can combine information from
both structural information of the epidemic STTP network
and nodes parameter. In the graph embedding process,
dataset of the epidemic-centered and epidemic peripheral
areas can be presented in the form of bipartite graph G �

(C,A,E) and tag its edge label classifcation, as shown in
Figure 5.

In Figure 5, C andA indicate nodes set of epicenter areas
and epidemic peripheral areas, respectively, and ci ∈ C,
aj ∈ A, m � |C|, and n � |A| are the numbers of nodes in C
and A, respectively. E⊆C × A is the edge of nodes in sets C
and A, and ei,j ∈ E indicates the edge connection between
the node ci and aj. Te edge weight ωij is calculated in the
following way:

ωij � exp −distance ci, aj􏼐 􏼑􏼐 􏼑, (7)

where distance(∙) represents the Euclidean distance between
two nodes and exp (∙) represents an exponential function.

Te feature vectors of node ci and aj are symbolized by
fci

and fai
, respectively, and generate the matrixes

Fc � [fc1 ,fc2 , . . . , fcM,]
T and Fa � [fa1,fa2 , . . . , faN,]

T. Let
li,j ∈ −1, 1{ } be the label of edge ei,j (−1� low epidemic
impact in the epidemic peripheral area and 1� high epi-
demic impact in the epidemic peripheral area). Te edge
labels compound set is denoted as L � li,j􏽮 􏽯 and is collected
from the result of DBN in Section 2.2.1. Terefore, we can
combine the structural and parameter information together
in the epidemic STTP network. And then, the matrixes will
be the input of the GCN-based emergency medical supplies
allocation supply-side selection model.

3.3. GCN-Based Emergency Medical Supplies Allocation.
In this study, to solve the issue of supplies allocation supply-
sider selection, we can transform it to an epidemic-centered
and peripheral areas pair label classifcation problem. Based
on the obtained feature of edge embedding in Section 2.2.3,
predict the selection of supplies allocation supply-sider in
the epidemic peripheral areas using the given GCNmodel in
Section 2.2.4.

Te collected datasets are randomly divided into
training, verifcation set, and test sets. Given the features of
the epidemic-centered and peripheral areas Fc and Fa, the
distance between epicentral area and peripheral areas are
given in A seperately. Te labeled Ytrain and Yval account for
10%–80%, and the remaining edge labels Ytest are predicted

based on GCN. In the GCN model, the weight parameters
are initialized using the parameter rectifed linear units
(PReLU) as the activation function, and the momentum of
all convolution layers is set to 0.9. Adam optimizer [37] is
selected as the training model, with the learning rate of 0.01
and the maximum number of training iterations of 500.

4. Results

4.1. Epidemic STTP Network. Te epidemic STTP network
concludes in two parts. Te frst part is the structure of
infuenza STTP achieved from the DBN learning, and the
second part is estimating the impact strength of trafc
distance in the infuenza transmission. Considering the
ofcially given incubation period of the epidemic COVID-19
varying from 1week to 3weeks, we set up three types of lag,
respectively (that is, 1 week, 2 weeks, and 3weeks). For
readability, we transform the type of result from matrix to
graph and draw the results directly in the map.Te results of
the DBN-based epidemic STTP network are presented in
Figure 6 with daily accumulative number of confrmed cases
data 1week, 2 weeks, and 3weeks lag, respectively, con-
sidering the latency of COVID-19. We can see the STTP of
COVID-19 from the epidemic center Hubei to the sur-
rounding areas such as Henan, Hunan, and Jiangxi. Also,
Chongqing is properly controlled in the 1-week lag because
of the trafc infuence. But in the 2weeks and 3weeks lag,
Chongqing is infuenced with no doubt.

In the case of large infectious diseases, some neighboring
cities indicate that there may be some potential stable paths
between these cities, which can help the National Center for
Disease Surveillance locate the key areas for infectious disease
surveillance and provide a reference for the decision of al-
locating emergency medical supplies to epidemic centers.

4.2. GCN Model Training Results. In the GCN model, the
input comprises the integrated bipartite graph data,
encompassing both the topological structure and parameter
features within the epidemic STTP network. Te training
results show that the GCN model could efectively select the
suitable supplies allocation supply-sider and provide a reli-
able decision-making basis for supplies allocation. Te
performance of accuracy rate and F1 values under diferent
test set proportions is provided in Table 6.

It can be observed in Table 4 that the model achieved the
highest accuracy of 87% and a relatively high F1 value with
a test set proportion of 20%. In addition, in order to verify
the reliability of the GCN model, this study selected some

Table 4: Label data in Table 3.

No. I II III IV V VI VII VIII
1 9.073 12.1 7281 241.95 97.72 46.24 0 87.62
2 8.329 12.12 7028 201.27 98.41 41.72 0 88.71
3 6.870 13.08 6899 330.82 103.47 34.03 6 139.96
4 5.533 13.86 7093 405.89 141.83 39.79 7 146.79
5 4.137 14.67 7405 412.31 132.64 42.87 8 158.65
6 4.543 15.79 7431 437.89 127.95 45.98 9 152.51
7 4.677 16.81 7582 451.67 121.89 47.73 7 147.69
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Table 5: Data in the table after processing.

No. I II III IV V VI VII VIII
1 0.99880335 0.998404115 0.039699288 0.968088895 0.98711158 0.993901345 1 0.988443682
2 0.998901477 0.998401477 0.073067792 0.973454234 0.987020575 0.994497494 1 0.988299921
3 0.999093907 0.998274862 0.090081773 0.956367713 0.986353205 0.995511738 0.999208652 0.981540491
4 0.999270245 0.998171986 0.064494856 0.946466631 0.981293854 0.994752044 0.999076761 0.980639673
5 0.999454366 0.998065154 0.023344764 0.945619889 0.982505935 0.994345819 0.998944869 0.979075442
6 0.99880335 0.998404115 0.039699288 0.968088895 0.98711158 0.993901345 1 0.988443682
7 0.998901477 0.998401477 0.073067792 0.973454234 0.987020575 0.994497494 1 0.988299921

C1

C2

Cm

A2

A3

An

A1

Nodes C
epidemic-

centered areas

Nodes A
Peripheral areas

Edge weights
E

Edge labels
L

Epicenter areas 
nodes

Fc Peripheral 
areas nodes

Fa

Figure 5: Bipartite graph of the epidemic-centered and peripheral areas.
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Figure 6: Epidemic STTP network of COVID-19: (a) 1-week lag, (b) 2-week lag, and (c) 3-week lag.

Table 6: Emergency medical supplies allocation in the epidemic center and peripheral areas.

Test set
ratio 10% 20% 40% 60% 80%

Accuracy rate 0.85 0.87 0.84 0.82 0.7
F1 value 0.89 0.88 0.87 0.85 0.84
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traditional machine learning classifers: SVM [38] and GMM
[39], statistical models: HAN [40], and the graph-based
methods: Node2Vec [41] and GraphSAGE [42], as refer-
ences to contrast with GCN method. In Tables 7 and 8, the
emergency medical supplies allocation comparison perfor-
mances are shown in the form of accuracy rate and F1 value.

To better interpret the results, we display the comparison
results in the form of a diagram in Figure 7.

4.3. Emergency Medical Supplies Allocation Supply-Side
Selection. Finally, the trained model was applied to the
adjusted dataset in the early outbreak of COVID-19 in Hubei
province. Data of daily new infections in the epicenter is
provided as adjusted through incubation period length and
subsequent relevant reports to ft with the designed emer-
gency medical supplies allocation model. In the simulation,
epidemic peripheral areas were not only considered as areas
adjacent to the epidemic center but also areas with heavily
interconnected in the context of transportation or developed
economies. Based on the trained GCN-based emergency
medical supplies allocation model, the selection of emer-
gency medical supplies allocation supply-sider was given
with a “high” willingness label to supply the epidemic-
centered areas after the COVID-19 outbreak. Te result is
Beijing, Shaanxi, Henan, Jiangsu, Anhui, Sichuan,
Chongqing, Hunan, Guangdong, Jiangxi, Zhejiang, and
Shanghai and is marked in yellow in Figure 8. Besides, we
also mark the unwanted candidate supply-side cities as blue.
So that we can distinguish emergency medical supplies al-
location supply-sider with high willingness from
unsuitable ones.

4.4. Discussion. As is shown in Figure 7, GCN has the best
overall performance. In terms of accuracy, the GCN model
gained a training accuracy of 2.4–8.0% over other con-
trasting methods with 20–60% of the dataset for the test set.
However, the performance of the GCN model is greatly
degraded due to the infuence of minimally overtraining
when the test ratio reaches 80%. Generally speaking, GCN
has certain advantages over other comparison approaches.
Tere are two main reasons as follows: frst, GCN takes the
features and network structure of the bipartite graph into
account. In contrast, Graph SAGE is designed for single-
partite graphs and is not suitable for bipartite graphs.
Second, the GCN model designed an end-to-end model
optimization based on the cost function. While Node2Vec
and SWM are unsupervised learning methods, they cannot
make full use of the topology of the original graph in the
training set to optimize the model. Terefore, the validity of
emergency medical supplies allocation based on the GNN
model is further verifed.

Te cross marks in Figure 8 indicate the epidemic pe-
ripheral areas, and the central point indicates the central area
of the epidemic. As can be seen from Figure 8, GCN model
gives 13 high willingness to supply the epidemic-centered
areas (Anhui, Chongqing, Shaanxi, Jiangxi, Hunan, Henan,
Beijing, Shanghai, Zhejiang, Guangdong, Sichuan, Hebei,
and Jiangsu) and 6 low supply willingness to supply the

outbreak of the peripheral areas (Yunnan, Hainan, Guizhou,
Ningxia, Shandong, and Tianjin). Tis result makes sense as
epidemic peripheral areas with high supply intentions have
both economic advantages and limited exposure to the
spread of the epidemic. Tis result has important reference
value for the decision-making of supplying from the epi-
demic peripheral areas to the center, which not only con-
tributes to fast response to emergencies in the future but also
makes preparation for public health emergency
management.

Te implications can be given as follows:

(1) Improving the capacity of emergency management
departments or enterprises in diferent regions
should allocate supplies with special emphasis on the
basis of risk assessment, historical lessons, and ex-
perience summary and in accordance with com-
prehensive factors such as the population, social and
economic situation, and trafc fow of the region.

(2) It is important for the government to evaluate the
needs of the amount and types of supplies in the
epidemic peripheral areas. Te premise of regional
supplies mobilization is to meet their own supply,
while the emergency capacity of diferent regions
varies greatly, and it is difcult to achieve a unifed
standard for the type and quantity of supplies. In the
early stage of large-scale public health emergencies,
the allocation of supplies in the peripheral areas can
solve the urgent needs of the disaster areas.

(3) It is better to establish the strategic peripheral areas
allocation mechanism of supplies. Te reserve of
supplies occupies a large number of places, and the
corresponding costs would be high. Some certain
types of supplies only apply to the rare large-scale
infectious diseases and cannot be consumed under

Table 7: Emergency medical supplies allocation accuracy of dif-
ferent methods.

Method
Test set ratio

10% 20% 40% 60% 80%
SVM 0.73 0.71 0.71 0.69 0.66
GMM 0.81 0.85 0.80 0.74 0.78
Node2Vec 0.67 0.57 0.66 0.65 0.61
Graph SAGE 0.66 0.72 0.70 0.70 0.67
HAN 0.64 0.72 0.68 0.66 0.65
GCN 0.85 0.87 0.84 0.82 0.7

Table 8: Emergency medical supplies allocation F1 values of
diferent methods.

Method
Test set ratio

10% 20% 40% 60% 80%
SVM 0.76 0.79 0.75 0.74 0.73
GMM 0.84 0.82 0.84 0.83 0.83
Node2Vec 0.52 0.53 0.48 0.56 0.44
Graph SAGE 0.19 0.40 0.47 0.45 0.38
HAN 0.65 0.72 0.73 0.74 0.80
GCN 0.89 0.88 0.87 0.85 0.84
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normal conditions. Blind reserve may cause a huge
backlog and waste. Terefore, in the event of an
outbreak, the emergency medical supplies allocation
between epidemic centers and peripheral areas can
improve the supplies use efciency.

5. Conclusions

In the present study, an emergency medical supplies allo-
cationmethod based on graph convolutional neural network
(GCN) and bipartite graph of epidemic spatial-temporal
transmission path (STTP) network in major infectious
diseases. Te frst epidemic STTP network was obtained

based on DBN, and then, the method of BiNE was used to
transfer the structure and parameter features information
into a bipartite graph.Te last step of the GCNmodel is used
to learn the epidemic-centered-peripheral areas pair, giving
the decision-making basis for selecting supplies allocation
supply-siders. Te experimental results show that the sup-
plies allocation accuracy is the highest with the loss balance
hyperparameter α 0.1, the number of convolution layers 3,
and the test set 20%. Compared with other classical methods
and applied to a practical case, the reliability of the model is
verifed.

Te main conclusions are presented as follows:

(1) Te DBN-based epidemic STTP network makes full
use of the traditional concept of transmission route
in epidemiology, so as to better solve the problem of
constructing a potential infectious disease spatial
transmission network in the case with limited data.
Most of the latest studies on infectious disease
transmission networks are based on theoretical
physics or Internet disciplines, but few of them are
involved in the construction of infectious disease
spatial transmission networks from the perspective
of spatial and temporal distribution. Terefore, the
STTP not only provides structural information pa-
rameters for learning supplies allocation in this
model but also provides a theoretical basis for further
studying the transmission and prevalence of in-
fectious diseases from the spatial-temporal
dimension.

(2) Te supplies allocation method based on GCN deals
with epidemic STTP network in the form of a bi-
partite graph fully solves the problems of complex
data structures such as high dimension, high noise,
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Figure 7: Results of GCN and comparison methods: (a) accuracy rate and (b) F1 value.

Figure 8: Emergency medical supplies allocation supply-side se-
lection results based on the GCN model.
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and nonlinear. Te combination of DBN and GCN
models can be well applied to complex infectious
disease transmission networks in reality.

Te contribution points of this study are as follows. (1)
Te emergency medical supplies allocation method pro-
posed in this paper considers the epidemic peripheral areas
as a supply-sider. Te strategic assessment involves the
selection of supply-side areas, considering both the impact of
infectious diseases on potential suppliers and the distribu-
tion distances between epidemic center. (2) Tis study
provides a reference for the supplies allocation for public
health emergencies such as large-scale infectious diseases.
Te resource utilization efciency of supplies is improved,
and the possible waste of supplies is avoided. In extreme
situations, such as the shortage of emergency supplies, the
supplies of diferent cities can be fully deployed for emer-
gencies. (3)Tis study is of great signifcance to urban public
health emergency management and emergency risk re-
duction and has practical value in assisting local govern-
ments in making supplies allocation and scheduling
decisions.

Tere are still some defciencies in this study. Te study
gives emergency medical supplies allocation supply-sider
without a specifc list such as allocation pairs and quantity.
In the future, this study is expected to further investigate the
supplies allocation mechanisms.
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