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Collective motion models most often use self-propelled particles, which are known to produce organized spatial patterns via their
collective interactions. However, there is less work considering the possible organized spatial patterns achievable by non-self-
propelled particles (nondriven), i.e., those obeying energy and momentum conservation. Moreover, it is not known how the
potential energy interaction between the particles afects the complexity of the patterns. To address this, in this paper, a collective
motion model with a pairwise potential energy function that conserved the total energy and momentum of the particles was
implemented.Te potential energy function was derived by generalizing the Lennard–Jones potential to reduce to gravity-like and
billiard-ball-like potentials at the extremes of its parameter range. Te particle model was simulated under a number of pa-
rameterizations of this generalized potential, and the average complexity of the spatial pattern produced by each was computed.
Complexity was measured by tracking the information needed to describe the particle system at diferent scales (the complexity
profle). It was found that the spatial patterns of the particles were the most complex around a specifc ratio in the parameters.Tis
parameter ratio described a characteristic shape of the potential energy function that is capable of producing complex spatial
patterns. It is suggested that the characteristic shape of the potential energy produces complex behavior by balancing the
likelihood for particles to bond. Furthermore, these results demonstrate that complex spatial patterns are possible even in an
isolated system.

1. Introduction

Te phenomenon of pattern formation or the emergence of
complex organizations in a system has been studied in
various types of systems (e.g., biological, economic, and
social) and in various aspects (e.g., spatial and temporal)
[1–3]. When the system is composed of discrete particles and
their spatiotemporal patterns at various scales are of interest,
models of collective motion are used [4–7]. Tese methods
model discrete particles explicitly, which makes analytical
representations challenging, and so they are often explored
via simulation. Typically, these models are interested in the
patterns formed by a medium number of particles and how

the pattern is formed through dynamics at and between
diferent scales in the system. Collective motion models
typically consider “self-propelled” particles, which means
that particles efectively have a source of energy which they
can use to afect their motion in ways that real physical
particles cannot. Energy andmomentum conservation is not
of relevance in these models, as they are primarily interested
in producing complex patterns, which are known to be more
prominent in driven systems [8]. On the other hand, mo-
lecular dynamics (MD) models are largely concerned with
creating physically realistic simulations of molecular be-
havior at the microscopic scale but are primarily concerned
with diferent questions. For example, they may be used to
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understand molecular processes relevant to biology, such as
protein-folding [9, 10], but are not usually concerned with
general principles of organization [11].

Tus, it can be asked what the range of collective patterns
producible by a physically realistic system is and how it
depends on the basic forces between particles. To investigate
this, the present work considers a minimal system that still
produces complex spatial patterns. Specifcally, it considers
a collective motion model with a conservative pair-wise
interparticle potential energy function and analyzes how
this afects the spatial complexity of the collective patterns
produced. While some models have explored pattern for-
mation in a similar sense in physical-like particle systems,
these have not specifcally investigated changing the con-
servative potential or quantifed the spatial complexity. For
instance, it has been examined how the introduction of
nonconservative forces on a Lennard–Jones substance
changes the equilibrium state spatial distribution [12];
however, it did not consider variations of the conservative
potential form. Similarly, previous work has used MD to
simulate Rayleigh–Bénard convection [13], which examined
collective pattern formation, but only considered billiard-
ball like interactions between particles (elastic collisions with
no long-ranged force). Interestingly, other work did com-
pute the complexity of temporal patterns of the particles in
a MD simulation [14] but limited its investigation to the
specifc interactions of water. Additionally, numerous
equations-of-state for a Lennard–Jones substance have been
developed, and while some approaches do derive macro-
scopic behavior from microscopic rules, they often focus on
a specifc interaction potential and homogeneous macro-
scopic properties such as heat capacity, speed of sound, or
isothermal compressibility [15].

Additionally, in collective motion studies, the collective
patterns are often considered qualitatively; that is, by in-
spection, it is clear that some outcomes are more complex
than others. Tere are many quantitative measures of
complexity that have been employed to make this charac-
terization more precise and principled, but there is no
general consensus on how complexity should be measured
[16, 17].

Tis paper thus implements a discrete particle dynamics
model, where the form of the potential energy was varied
across runs to observe diferences in the macroscopic pat-
terns formed. Te model was conservative and isolated, in
order to determine the efect on pattern formation by the
potential alone. Te potential energy function was derived
by combining three physically relevant potential functions
(gravity, billiard-ball, and Lennard–Jones) into a single,
general potential function, where each behavior is re-
coverable via parameter changes. Each of the selected re-
alistic potentials represents qualitatively diferent patterns:
ordered, homogeneous, and complex, respectively. Tus, the
generalized potential relates physically relevant forces to the
extremes of spatial pattern complexity. Since there is no
consensus on how to measure complexity, a suitable com-
plexity measurement based on the complexity profle [1, 18]
was developed to quantify the complexity of the formed
patterns.

It is found that the model produces a range of spatial
clustering behavior depending on the parameters, ranging
from simple to complex structures. Te complexity measure
developed has a strong nonlinear correlation with the pa-
rameters, and the patterns it identifes as complex match
with intuition. Lastly, the parameterizations of the potential
that produce the maximally complex behavior are those with
a specifc ratio among the parameters, describing a charac-
teristic shape of the potential function that produces
complex patterns. Tis indicates that complex patterns are
produced when a balance between the interactions in the
system is met.

2. Methods

2.1. Particle Simulation Model. Te motion of abstract
particles under diferent interaction rules was numerically
integrated and their motion visualized and analyzed. A 200
particle system was used as it achieved a balance between
computational speed and the formation of collective be-
haviors. Te microscopic rules defning how particles
interacted with each other were defned by a pair-wise
potential energy function. Tis defned the potential en-
ergy between any two particles, as a function of the distance
between them, and thus also defned the pair-wise forces via
F � − ∇V. Te space the particles moved in was 2D for
simplicity and with periodic boundary conditions to avoid
possible additional efects on collective behavior from
a refecting boundary. Initial conditions for the system were
chosen randomly so that particle positions were evenly
distributed across the space and their velocities were evenly
distributed in all directions and between the magnitudes of
0 and 1. Arbitrary units were used and were chosen so that
the system’s qualitative behavior could easily be explored.
Diferent densities of the particles were simulated by
adjusting the volume of the space, and it was observed that
denser confgurations produced more complex collective
behavior: higher density caused a higher rate of particle
interactions, which increased the probability of bonds
(“Bonds” is meant not in a chemical bond sense but in
whether the particle has enough energy to escape its partner)
forming. Tus, only the most dense confguration tested of
an average initial interparticle distance of ≈ 2 distance units,
corresponding to a density of 0.0625 particles per unit area,
is reported in this paper.

Energy and momentum were conserved to a sufcient
degree to produce accurate qualitative behavior by tailoring
the numerical integration timestep to the system’s dynamics,
which was verifed by computing the root-mean-square
error from the initial condition at a subset of timesteps
(∆E ≈ − 3%,∆p ≈ 1.78 × 10− 12%). Te position Verlet
method [19] was used for numerical integration. Tis spe-
cifc method was chosen due to its computational speed and
adequate energy conservation properties in this case. Each
simulation was run for 25,000 timesteps with
a ∆t � 4 × 10− 3. Te system was kept isolated from an en-
vironment in this study in order to make clear how the
potential energy function itself afected the collective be-
havior. All simulation code was written in the Julia
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programming language (an open-source language under the
MIT license) [20] and is available online (see Data Avail-
ability section).

Te form of the potential energy function was varied
across simulation runs in order to fnd relationships between
microscopic rules and macroscopic behavior. Each pa-
rameter confguration was run on nine diferent, randomly
generated initial conditions to smooth out statistical vari-
ation in behavior.

2.1.1. Interaction Potential. Complexity is sometimes de-
fned as a mean between completely coherent and com-
pletely homogeneous behavior [18]. Tus, potential energy
functions were chosen to produce behavior between these
extremes. Gravity is an example of interaction rules that may
produce completely coherent behavior, as it tends to bring
all of the particles into one location. Te “billiard-ball”
potential, which produces purely elastic collisions with no
long-range interactions, is an example of interaction rules
that may produce completely random behavior, similar to
the behavior of the particles in an ideal gas; particles will
wander randomly until they bounce of of each other. Tis
random behavior approximates homogeneous behavior. It
was hypothesized that the mean behavior between these two
extremes would be induced by bonding behavior between
particles. Tus, the Lennard–Jones potential was selected.

Using these potentials as boundary behavior, they were
then generalized into a single equation where each char-
acteristic shape can be recovered via specifc parameter
settings. Tus, by varying the parameters of this generalized
potential, specifc aspects of the potential function can be
associated with certain types of collective behavior. Te
generalized potential equation, obtained by generalizing the
Lennard–Jones potential form, is as follows:

V(x) � sign(d)s
|d|

1 − s
􏼠 􏼡

(1− (1/s))

(px)
− a⎡⎣ ⎤⎦ − (px)

− sa
,

(1)

p �
1 − s

|d|
􏼠 􏼡

(1/s)

s
(1− s)− 1

⎡⎣ ⎤⎦

a− 1

, (2)

where s ∈ (0, 0.8), d ∈ (− ∞, 0), (0,∞), and a ∈ (1,∞). s, d,
and a control, respectively, the range of the potential, the
presence and depth of the potential well, and the magnitude
of the forces generated, although the efects of each pa-
rameter are not entirely independent. Te smaller s is, the
more long-range the potential becomes and vice versa.
When d< 0, there is no minimum in the potential, and so
the force is only ever attractive (e.g., gravity) (generally, in
physics, the convention is to give attractive forces a negative
potential energy, where particles are said to be bound if
their total energy is negative and they escape when it is
positive. Te selection of zero as the cutof point is arbi-
trary; the actual value of the potential does not matter for
many applications, it being the diferences in potential that
drive motion), and the more negative d is, the sooner the
potential becomes deeper. When d is very small but

positive, the minimum is very shallow, and thus it ap-
proximates the billiard-ball potential. As d> 0 increases,
the minimum becomes deeper, representing stronger
bonds between particles. Te larger a is, the sharper the
potential well (if d> 0) or the faster the potential drops of
(if d< 0); in both cases, the magnitude of the force in-
creases. Scaling the x-axis by p, V(1) � 0 when d> 0,
making the efective “particle size” constant—though the
location of the minimum shifts slightly with diferent
s—making comparison of behavior across confgurations
more meaningful, as the magnitude of the distances be-
tween particles matters for visual inspection. Figure 1
shows equation (1) for diferent values of s and d, which
demonstrates the full range of its relevant behavior. In all
simulations, a � 10. Lastly, equation (1) recovers the
Lennard–Jones potential at a � 12, s � 0.5, d � ε> 0.
Equation (1) recovers only Lennard–Jones potentials with
σ � 1, due to p, which fxes the “particle size.” Note that for
d< 0, when interparticle distance is less than 1, the po-
tential energy was artifcially truncated in the code to
become constant. Tis was performed to defne the be-
havior of collisions among the particles under this pa-
rameter value, choosing to make the particles pass through
each other. Without modifcation, particles that collided
would experience a very large force (singularity in the
potential), making energy-conserving simulation
intractable.

2.2. Quantifcation of Spatial Patterns. To quantify the
complexity of the spatial patterns, a complexity measure
called the “complexity profle” [1] was used. Tis method
tracks the information needed to describe a system as
a function of observation scale, producing not a single
number but a curve that monotonically decreases with
scale. Te shape of this curve corresponds to the system’s
complexity. Complex systems can be conceived as those
systems that spread out the information it takes to describe
them across scales [1]. Te rationale for this is that simple
systems either have no correlation between their parts
(homogeneous) or complete correlation between their
parts (ordered), allowing their behavior to be encapsulated
by a few high-level variables. However, when the corre-
lation between the parts of the system is in between these
extremes, the system is complex and encapsulation by a few
variables is difcult. Scale is considered because it accounts
for the irrelevance of some parts for the description of the
system. Intuitively, scale has the efect of blurring; on
a larger scale, coarse descriptions of a system are sufcient.
For example, describing the Earth on a large scale would
only need to describe the general regions of land and water.
However, describing it on a smaller scale would require
more detail about the terrain, weather, geology, and forms
of life present. Tus, in this sense, smaller scale descriptions
require more information. Complex systems, since they
spread information out across scales, are those that resist
easy description even as irrelevant details are “blurred out.”
While previous work [1] provides this conceptual framing
of complexity, it does not provide a concrete measure
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applicable here. Te remainder of this section describes
a complexity measure developed here inspired by this
approach.

2.2.1. Spatial Information Measure. By plotting the in-
formation as a function of scale, the complexity of a system is
contained in the shape of the resulting curve. Tus, the
nature of the informationmeasure used determines precisely
which aspect of the system is being analyzed. Te efect of
increasing the scale of observation makes behavior below
a certain level of coherence unobservable. In terms of
a spatial distribution, this is similar to lossy image com-
pression: if there is correlation between the color of nearby
pixels, less information needs to be stored to reproduce
a picture that has preserved the most coarse structures. Te
compressed image is diferent, pixel to pixel, but the essential
parts of the image are still there; the large scale structure of
the image is the same. As the amount of compression is
increased, it is blurring the image more, which efectively
says that only the largest scale information is relevant, and
the amount of information needed is lower.

Tus, in the particle model considered here, the in-
formation needed to describe the spatial arrangement at
a given scale was approximated by the number of clusters
present, L(x), and scale was defned as the minimum
number of particles defning a cluster, x. Tis defnition was
chosen because, when particles are dispersed, it is necessary
to specify each of their locations, but when they are clus-
tered, only the locations of each cluster need to be specifed.
Tus, the efect of scale is emulated by increasing the
minimum number of particles that defne a cluster.

2.2.2. Spatial Complexity Measure. Te complexity of
a profle’s curve can be computed by considering how it

changes over scale. Specifcally, complex systems will have
higher information content at all scales except for the
smallest and largest. So, two curves can be compared by
considering which one has more at intermediate scales. Tis
means that both the information measure and the scale
should grow logarithmically because this de-emphasizes
efects at large values. It does so by reducing the area
contributed by larger scales and the initial maximum of
information present in all systems at small scales. Tus, the
complexity of a given curve on the complexity profle was
quantifed using

C � 􏽚 I(σ)dσ, (3)

where σ is scale and I(σ) is the spatial information needed to
describe the system at scale σ.

Applying this framework to the way information and
scale were defned in this model gives σ � log2 x and
I(σ) � log2 L(x) � log2 L(2σ), and thus,

C ≈ 􏽘
m

x�1

log2 [L(x)]

x ln 2
, (4)

where m is the maximum minimum cluster size considered
(in this case, 100). In implementation, log2 L(x) � 0 was
stipulated for x≤ 1. To compute C, clusters were identifed
using the DBSCAN algorithm [21] and implemented in the
Julia package “Clustering.jl,” part of the JuliaStats package
(the software package is available from https://github.com/
JuliaStats/Clustering.jl, under an MIT license). ε, which
controls the density that defnes a cluster, was set to 2,
approximately twice the particle size. minPts, which defnes
essentially the minimum size of a cluster, was un-
conventionally set to 1 so that even isolated particles counted
as a cluster rather than noise. For each parameterization and
initial condition, 12 frames spread uniformly over the
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Figure 1: Te generalized potential energy function (equation (1)): (a) d is varied, while s is held constant and (b) s is varied as d is held
constant. Te x-axis is the distance between two particles. Te y-axis is the potential energy that exists between the two particles. In all cases,
a � 10.
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second half of the simulation run (to ensure a dynamic
equilibrium was reached) were selected. DBSCAN was ap-
plied to these frames individually, and then a complexity
profle was computed for each by counting the number of
clusters above a certain size, for all sizes (up to m � 100).
Tese 12 profles were then averaged together, and C was
computed on this, defning the complexity of each pa-
rameterization and initial condition.

In order to calibrate C with respect to the least and most
complex particle patterns, reference particle distributions
(also with 200 particles in the same size space) were arti-
fcially generated and examined. Homogeneous and co-
herent distributions should be the least complex: these are
patterns that are evenly spread out or concentrated in one
clump, respectively.

Complex systems are those where the information it
takes to describe them resists decreasing as the scale of
observation increases. Tis corresponds to more area under
the complexity profle curve and so should produce a higher
C. Power-law behavior is generally associated with com-
plexity, and so it was hypothesized that a power-law dis-
tribution in the size of the clusters would correspond with an
intuitive evaluation of complexity. Specifcally, clusters were
randomly placed in the space, where their size was chosen
according to the power-law probability density function as
follows:

ρ(x) �
1 − c

m
1− c

− 1
x

− c
, (5)

where m is the maximum cluster size considered, x is the size
of the cluster, and c is the exponent of the power-law. In
order to increase the area under the complexity profle curve,
a small c was used (c � 1.1).

Twenty complex reference distributions were generated,
and just one of each homogeneous and coherent was gen-
erated, as these latter ones do not vary. Representative
images of the particle distributions are shown in Figure 2,
and their C values are shown in Table 1.

3. Results

3.1. Particle Simulation. Te particle model was simulated
under diferent potential function parameter combinations,
and videos of the particle’s movements were produced.
Table 2 presents the parameter values used; all combina-
tions of these parameters were simulated under nine initial
conditions, resulting in 1,683 diferent simulations. Fig-
ure 5 shows representative frames from a subset of pa-
rameter confgurations and initial conditions. Tere were
basically three types of resultant collective behavior: the
particles either clustered into one large mass (coherent
regime), did not cluster at all (homogeneous regime), or
they formed a number of smaller coexisting clusters
(complex regime). Figure 6 depicts the potential energy
function representative of each region. Note that the
particles remained in constant motion in all cases,
achieving a dynamic equilibrium in terms of the type of
spatial patterns produced.

Te coherent regime occurred when s< 0.30 and
d≠ 0.01, making the interparticle potential long ranged, and
it did not matter whether d was either negative or positive: in
either case, gravity-like behavior was exhibited. Tis oc-
curred because the long-ranged potential allowed particles
far apart from each other to experience attraction, and |d|

was large enough for stable bonds to be formed between
particles.

Te homogeneous regime occurred when d � 0.01,
across all values of s. Tis means that, when the potential was
shallow, it did not matter how long-ranged the potential was
and the particles did not form clusters. Tis makes sense, as
this parameter region makes the attractive force between
particles weak, and so the dominant mechanic is elastic
collisions (or pass-through), recovering billiard-ball
behavior.

Te complex regime occurred when s≥ 0.30 and
d≠ 0.01, forming a number of local clusters that became
tighter and larger proportionally to |d|. Tis occurred be-
cause the larger s reduced the range of the potential so that
distant particles were not drawn together, and the magni-
tude of d increased the strength of the potential between
nearby particles. Tus, particles local to each other formed
tight clumps and would interact with other clusters only if
their incidental trajectories collided. Note that both negative
and positive d allowed local clusters to form, but their
clusters had diferent characteristics: d< 0 produced tighter
clusters because the purely attractive force between them
allowed smaller separations to occur, whereas d> 0 main-
tained a larger distance between particles via repulsion at the
“particle-size” (Figure 1(b)).

3.2. Complexity Ranking. Figure 4(a) shows the complexity
profle for a subset of all simulation runs (5% for visual
clarity), constructed using the information measure de-
scribed in Section 2.2.1 previously. Each line corresponds to
a specifc initial condition and parameterization of the
potential energy. Curves that have a greater number of
clusters at intermediate minimum cluster sizes correspond
to more complex spatial arrangements of particles. Curves
that correspond to less complex arrangements either start
high and drop of at small scales or start low and remain low
until large scales. C (equation (4)) was computed for each
curve, and each curve was colored accordingly. Specifcally,
the upper and lower bounds of the color scale were defned
by the maximum and minimum C observed across both the
benchmark and simulated distributions.

Figures 4(b) and 4(c) show the average complexity
profle for each regime in simulation and in the benchmark
distribution. As expected, the power-law benchmark is the
most complex according to C and has the highest values at
intermediate scales. Te complex regime in simulation is
close to this curve, and it can be seen that as C increases, the
curves approach the shape of the power-law benchmark
curve. Note that the homogeneous and coherent regimes in
simulation have much higher C than their benchmark
counterparts.Tis shows that the ideal simple behavior is not
achieved completely by the simulation, but this nevertheless
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shows the meaning of changes in C on the spatial
distribution.

Note that the power-law benchmark curve does not
appear as a power-law in Figures 4(b) and 4(c). Tis is
because at each point, the number of clusters greater than or
equal to the scale is shown. Te number of clusters having
exactly the size of the scale at each point can be recovered by
taking the discrete diference, in which a power-law is re-
covered. Tis is shown in Figure 3, and the c of a ftted
power-law for each of these average curves is given in
Table 1.

Te C values of each curve from simulation and the
corresponding parameters are shown in Figure 7. Te three
regimes of behavior seen in Figure 5 are mirrored in Figure 7,
and they occur in the same parameter regions. Both the
coherent and homogeneous regimes have low complexity,
while the complex regime has high complexity. Furthermore,
Welch’s unequal t test was conducted on the hypothesis that
each pair of these three regimes actually comes from the same
distribution, and it was found to strongly support the

alternative in all cases (see Table 3). Te regimes’ distribution
over C are shown in Figure 8, depicting the clear separation
between the complex and the simple (coherent and homo-
geneous) regimes. Tus, C aligns with intuitions about what
constitutes a complex pattern and is well mapped into
contiguous parameter regions.

Note that s and d have diferent impacts on C. Tere is
a sharp change inC as s increases around s � 0.225, as well as
when |d| increases from its minimum value. Overall, C

depends on both parameters, but s has a stronger individual
efect on it. To quantify this, a linear regression model was ft
between each parameter and C separately, where the pa-
rameter values were frst normalized.Temodel found that s

has R2 � 0.56 with a slope of 0.05(C/%s) and d has R2 �

0.0001 with a slope of 0.0008(C/%s). Tis means that s

explains much more of the variance than d does
(Figures 9(b) and 9(c)) and that on average a percent change
in s changes C more than d does. However, the relationship
is very nonlinear, and both variables are needed to explain
the data well. Most notably, while s controls C more, the
precise value of s that maximizes C depends on d, as can be
seen in Figure 7.

Signifcantly, the most complex behavior occurs when
a certain relationship between s and d is true. Namely, as s

increases, |d| must also increase in order to produce complex
behavior. Tis can be seen in Figure 7 as a trend of lighter
colored regions around a diagonal in s and d. Tis trend is
shown more explicitly in Figure 9(a), which plots C against
the ratio of the parameters. Here, it is clear that complexity is
maximized around a very particular value of the ratio and
drops of when moving away from this value. Note that the
curve is not symmetric about (s/d) � 0. Tis is because
positive values correspond to molecular-bonding-like be-
havior and negative values to gravity-like behavior, which
produced slightly diferent spatial distributions of particles.
Te gravity-like parameter settings achieve a slightly higher
maximum complexity than the molecular-bonding-like
parameters, and their curve drops of quicker. Tis shows
that complexity caused by molecular-bonding-like behavior
is somewhat less sensitive to the parameter ratio: those
patterns are slightly more robust.

Te ratio that maximizes the complexity is found to be
|s/d| ≈ 0.17. Tis was computed as the mean of the top 10
most complex parameter settings for d< 0 and d> 0, which
yields − 0.18 and 0.16, respectively. Te dashed lines in
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Figure 9(a) are drawn at these values, and they roughly
approximate the center of the maximum clusters. If
|s/d|< 0.17, the complexity is likely to be either very high or
very low and then quickly drops of to always be low. If
|s/d|> 0.17, the complexity slowly decays. Figure 10 plots the
potential energy function for the s value that maximizes and

minimizes C at each d value. Tese potentials can be seen to
have a characteristic shape that difers for positive versus
negative d and which is described by the ratio 0.17. For d< 0,
the most complex potentials are neither those with the
sharpest drop of, nor the shallowest, but those in between,
but with a bias towards the sharper curves. A curve is sharper
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profles for a subset (5%), for visual clarity, of all simulation runs. Curves are colored by their C values. (b) Average complexity profle of the
three observed regimes (solid) and the three benchmark distributions (dashed). Curves are colored by their regime. (c) Average complexity
profle of the three observed regimes (solid) and the three benchmark distributions (dashed). Curves are colored by their C.
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when |s/d| is smaller because the ratio of the depth of the well
to the range of the force is greater. Similarly, for d> 0, the
most complex potentials are those with an intermediate
sharpness to their minimum, though this balance is also
biased towards the sharper curves. Note that the most
signifcant diference between the maximum and minimum
complexity curves is their range: the minimum complexity
curves extend much further out. Tis corresponds with the
low complexity regions found at low s values in Figure 7.

4. Discussion

Tis analysis showed that the potential energy function
has a substantial efect on the visual appearance and
spatial complexity of the particles. Specifcally, the peak in
the complexity, C (Figure 9(a)), is relatively sharp and
centered around the value |s/d| ≈ 0.17.Tis corresponds to
a characteristic shape of the potential energy function that
causes the most complex behavior, seen in Figure 10. Tis
characteristic shape means that a complex spatial distri-
bution is produced at a specifc balance between the depth
of the potential well and the range of the force. If the
potential well is deep, particles are more likely to stay
together, and if the force is long-ranged, particles are more
likely to interact with each other.Tus, if the potential well
is deep and the force is long-ranged, the particles will form
one large clump. However, if the potential well is shallow
and the force short-ranged, particles will not cluster much
at all. When a balance between these is struck, clusters of
varying sizes tend to form, and it is this kind of distri-
bution that appears complex and which increases the
value of C.

Other particle aggregation models have explored how
balancing aggregation mechanisms afect the resultant
patterns. For example, it was found that a balance between
deposition and difusion rates creates a “morphology phase
diagram,” with unique patterns developing when the two
rates are comparable [22]. Furthermore, a lattice model of
particle aggregation [23] and the preferential attachment
network growth algorithm [24] show that aggregation can
result in a power-law distribution in the size of the clusters/
connections. In the former model, it is interesting to note
that one of the main parameters that control the degree of

the power-law is essentially the range of local interactions,
similar to s in the present work. Furthermore, that model
fnds that increasing the range of interactions (β) results in
a power-law mass distribution with a larger (negative) ex-
ponent (α). According to C as a measure of complexity, this
would mean that longer-range interactions produce less
complex patterns. While there are signifcant diferences
between this model [23] and the present work, these fndings
are in accordance. Tis may aid speculation on the efect of
density in the present work, as it seems that the interaction
range needs to be at some mean value relative to the system
size: if the interaction becomes comparable to the system
size, all particles may simply clump together. However, the
most important feature of these models is that they require
the input of particles to sustain their complexity; they are
open systems. Preferential attachment without the input of
nodes shows power-law behavior transiently but converges
to a complete network [24], and similarly, all particles will
clump together without continual injection in the lattice
model [23]. A similar result is likely if only difusion is
allowed in [22]. It is likely that these models need to be open
because they do not allow clusters to break apart once
formed. Consider the present work, which was isolated (no
energy change and no particle changes), but allowed clusters
to break apart, and which resulted in power-law cluster size
distributions (Figure 3 and Table 1), at statistical equilib-
rium. More generally, this result shows that complex spatial
patterns can be produced in an isolated physical system at
equilibrium depending on particle interactions. Tis is in-
teresting because most work focuses on complexity pre-
sumed to be due to the open aspect of systems. While
openness is likely necessary for high degrees of complexity, it
should be considered what degree can be achieved without
external exchanges. Furthermore, being isolated, the sys-
tem’s entropy must have increased (or stayed the same), and
yet coherent structures are spontaneously formed. Tis il-
lustrates that entropy is not equivalent to disorder [25].

Additionally, this model shows that there is continuity
among gravity-like, molecular-bonding-like, and billiard-
ball forces, and there is continuity in the complexity of
their collective behavior. Te dimension the continuity
between the forces runs along is essentially the degree to
which the parts of the system infuence each other, and the

Table 1: Mean and standard deviation of C for each behavior regime in both the benchmark distributions and the simulations, as well as the
c (equation (5)) that best fts the average profle of each (Figure 3).

Regime Benchmark (std) Simulation (std) Benchmark c Simulation c

Homogeneous 10.99 (0) 17.02 (0.16) 76 60
Complex 20.37 (0.09) 19.57 (0.68) 1.12 1.99
Coherent 0 (0) 15.13 (1.1) 0 2.49

Table 2: Parameter values used for equation (1), producing 187 diferent parameter confgurations. Nine diferent initial conditions were
used per confguration, producing 1,683 diferent simulation runs.

Parameter Values
s 0.01, 0.08, 0.15, 0.225, 0.30, 0.375, 0.45, 0.525, 0.60, 0.675, 0.75
d − 4, − 3.5, − 3, − 2.5, − 2, − 1.5, − 1, − 0.5, 0.01, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4
a 10
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most complex behavior was observed at intermediate values
of this infuence. Te exact value of this balance likely de-
pends on other aspects of the systems, such as the density or
the boundary conditions; the balance producing complex
behavior is likely a function of the other properties of the
system.

While there is no consensus on how to measure com-
plexity, C has several merits as a measure. One issue is
specifying exactly where the middle between order and
homogeneity is. C takes a relatively objective approach that

does not depend on the specifc values of the system by
transforming the curve to the log-log space. Tis has the
efect of emphasizing information content at intermediate
scales by reducing the area contributed by larger scales and
the initial maximum of information present in all systems at
small scales. Furthermore, C has an intelligible meaning:
since it is grounded in the use of scale, it measures how
“compressible” the spatial distribution of the system is, being
maximal when the system resists compression and minimal
when it is easily compressible. Lastly, C aligns well with
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online (see Data Availability section). Note that periodic boundary conditions were used. Te particles are in a dynamic equilibrium (see
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Table 3: Results of Welch’s unequal t test, where the null hypothesis was that each behavior regime actually came from the same dis-
tribution. Values of approximately 0 are reported because the machine precision of foating point numbers was exceeded by the smallness of
the p value.

Regime 1 Regime 2 Test-statistic p value
Complex Homogeneous 94.15 ≈ 0
Complex Coherent − 87.76 ≈ 0
Homogeneous Coherent − 38.85 1.50 × 10− 173
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intuitions about spatial complexity matching what a visual
ranking of complexity might show.

However, C only captures a subset of what could in-
fuence the perception of spatial complexity. For instance, C

would not refect the diferences in the complexity of several

clusters that were colinear versus the same that were not
colinear. Te many aspects of a system make it difcult to
capture all types of patterns with a single measure; in this
case, an argument can be made either way for whether the
colinear or noncolinear clusters are more complex. One
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Figure 9: (a) C vs. the ratio of s and d. Te dashed vertical lines are the average value of the x-axis of the top 10 most complex pa-
rameterizations, for positive and negative d, separately. (b) s vs. C. Te error bar is standard deviation. (c) d vs. C. Te error bar is standard
deviation.
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Figure 10: Equation (1) plotted for the s value that maximizes and minimizes C at each d value. Color indicates C. (a) positive d values
(Lennard–Jones-like potential) and (b) negative d values (gravity-like potential). Tis shows the characteristic shape of the potential that
produces the most complex and least complex behavior.
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argument in accordance with the kind of information used
in this paper would say that the colinear clusters are cor-
related because knowing two narrows down the positions of
the others and C could be extended to include this in-
formation. However, other basic conceptions of what exactly
constitutes a complex spatial pattern are very likely possible.

As a general remark, it is very likely that the relationships
found in this work would change given diferent model
assumptions. Specifcally, these results depend on it being an
isolated system, the density of the system, and the energy of
the system relative to the potential energy parameters. Te
density is important because it afects the rate of the in-
teraction between particles, which could change the patterns
formed. Similarly, if the system’s internal energy were much
higher relative to the depth of the potential, stable bonds
would not form as often between the particles and clustering
would also not be as coherent. Being an isolated system, it
evolves without interference; being nonisolated could in-
crease the complexity, decrease it, or change the type of
pattern that occurs. For instance, only varying types of
clustering patterns were observed in this work. If the system
were driven, other patterns may be possible. Additionally,
a modeling choice was made to truncate the potential at zero
distance for d< 0 (Section 2.1.1), which likely enabled
complex patterns to form under a gravity-like potential by
efectively introducing a minimum in the potential. Other
choices, such as aggregating the particles on collision and
preserving momentum, would likely produce diferent
behavior types.

5. Conclusion

Tis work simulated a collective motion model and varied
the microscopic interaction rules to explore the range of
collective behavior produced. It then formalized intuitive
notions about the system’s complexity and ranked the
collective behavior accordingly. Te most complex spatial
patterns were produced for parameterizations of the po-
tential energy that corresponded to a specifc balance be-
tween the depth of the potential well and the range of the
force, described by the ratio |s/d| ≈ 0.17. Additionally, the
complexity measure developed, C, was argued to be
a meaningful measure of the spatial complexity due to its
relatively nonarbitrary method of specifying where the mean
between order and homogeneity is, its use of the concept of
scale, and its good alignment with an intuitive recognition of
complex spatial patterns. Furthermore, a strong relationship
between C and the parameters of the potential energy
function was found, thus establishing a continuous re-
lationship between gravity-like and billiard-ball like po-
tentials, with a Lennard–Jones-like potential in the middle.
Finally, these results show that power-law cluster distribu-
tions are possible in an isolated system if, it was speculated,
clusters are able to break apart.

Data Availability

All simulation code is available at https://github.com/austin-
marcus/collective_motion_LJ. All videos and a subset, due

to storage constraints, of time-series data are available at
https://osf.io/dxywj/?view_only=6093fbdb2bf743a4b89610f
c724e9c96. Te additional data are available from the cor-
responding author upon request.
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