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Proper description of the return distribution is crucial for investment practitioners. Te underestimation of the tail risk may lead to
severe consequences, even for assets with moderate fuctuations. However, many empirical studies found that the distribution tails of
many fnancial assets drop of more slowly than the Gaussian distributions. Terefore, we intend to model and calibrate the heavy
tails observed in fnancial fuctuations in this study. By maximizing the Varma entropy with value-at-risk and expected shortfall
constraints, we obtain the probability distribution of stock return and observe that the tail of stock return distribution is a power law.
Since the variance of the real stock portfolio may be a random variable, using the mean-VaR-ES constraints to maximize the Varma
entropy efectively avoids the problem of assuming that the variance is a constant value under the traditional mean-variance
constraint.Terefore, the deduced theoretical model would bemore consistent with the real market. Using high-frequency data from
China’s stock markets, we calibrate our theoretical model and give the concrete form of probability density distribution p(x) for
diferent time intervals. Te calibration results show that the tail of the stock return distribution is a power law with most of the
power-law orders between −2 and −7. We prove the robustness of our results by calibrating the Varma entropy for S&P 500 of the
USA stock market and diferent stock market indices in China’s A-share market. Our research’s fndings not only ofer a theoretical
perspective for researchers but also give investing professionals a theoretical foundation on which to base their decisions.

1. Introduction

One of the most important conditions for every new fnancial
investment is risk assessment. Te underestimation of the tail
risk may lead to severe consequences, even for assets with
moderate fuctuations. Terefore, modeling the probability
density distribution function accurately is crucial for fnancial
investors.

Te well-known Markowitz model assumes that the
return on fnancial assets follows a Gaussian distribution.
Nevertheless, it is observed that many stock indices do not
follow the randomwalk [1] and the distribution tails of many
fnancial assets drop of more slowly than the Gaussian
distributions [2].

Various models have been proposed to improve the
probability density distribution function of fnancial assets.

Some scholars have proposed that empirical fnancial asset
volatility should be a random quantity, not a constant one
like in the Black–Scholes model [3]. For instance, ARCH
models [4] use earlier time’s real error term to describe the
current error term’s variance, and GARCH models [5] as-
sume the variance of the error term to be an autoregressive
moving average. Tese models are frequently used in the
fnancial market to describe the time-varying and clustering
volatility of fnancial assets.

Particularly, fnancial assets’ power-law tails have been
widely researched [6]. Mandelbrot [7] was the frst to notice
the power-law characteristics of fnancial asset price dis-
tributions. He modeled the logarithmic price increments
with the Lévy fight, a stable distribution with a heavy-tailed
distribution. A stable distribution is a sort of distribution
that occurs when n independent and identically distributed
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random variables are added together. Its characteristic is that
its functional form remains unchanged for diferent values of
n [8]. Tis process, according to Mandelbrot, might explain
why the aggregated return distribution did not converge to
the normal distribution predicted by the central limit the-
orem (CLT). Since then, a series of studies have been done
analyzing theoretically or empirically the power-law tails of
fnancial assets. Gopikrishnan et al. [9] used a sample of 40
million data in three major US stock markets to analyze the
probability distribution of stock price changes. Tey dis-
covered that the cumulative distribution had asymptotic
power-law behavior with an exponent alpha of about 3,
which is beyond the Lévy regime of 0< alpha< 2. Te au-
thors developed the so-called “inverse-cubic law” as a result
of the stock markets’ unexpected conduct. Plerou et al. [10]
further studied the stock price fuctuations of individual
companies for US stock markets systematically using stock
price returns of time scales Δt from 5minutes up to four
years. Teir observation showed that for time periods be-
tween 5minutes and 16 days, a power-law decay may ac-
curately depict the distribution’s tails. Te exponent of
power law is between 2.5 and 4. Gopikrishnan et al. [11]
conducted a parallel research using stock price indices. Tey
observed that the distributions for the S&P 500 index for Δt
shorter than 4 days exhibit a power-law asymptotic behavior,
with the exponent around 3, well outside the stable Lévy
regime 0< alpha< 2. NIKKEI index and Hang-Seng index
also showed similar characteristics for time scales shorter
than 4 days. Wątorek et al. [12] also identifed the power-law
behaviors of the tails using recent data on cryptocurrencies,
exchange rates, and contracts for diferences (CFDs). By
contrasting their fndings with those from past research, they
concentrate on the ftted function parameters and how they
evolve through time. Teir fndings showed that the so-
called “inverse-cubic power law” was still a suitable global
reference on time scales of up to a few minutes. In fact,
comparable statistical traits were discovered by other re-
searchers using information from diferent stock markets
[13–19].

Terefore, for a stock market with a heavy tail in return
distributions, it is necessary to use a new uncertainty measure
that does not depend on a particular distribution. Entropy can
be applied to measure uncertainty in probability theory. As
a measure of diversity, the concept of entropy, especially the
principles of maximum entropy, has been widely used in asset
pricing and portfolio selection.Te idea of entropywas initially
used for portfolio selection by Philippatos andWilson [20]. To
optimize projected portfolio return and reduce portfolio en-
tropy, they created the notions of individual entropy, joint
entropy, and conditional entropy. Te derived probability
density distribution model matched the single-index and full
covariance models. Since then, this feld has achieved a lot of
advancements. A mean-hybrid entropy model, for instance,
was given by Xu et al. [21] to address the portfolio selection
issue with asset risk resulting from both randomness and
fuzziness. A mean-variance-skewness-entropy portfolio se-
lection model (MVSEM) was created by Usta and Kantar [22]
and outperformed conventional portfolio selection models in
several out-of-sample experiments. To create a well-diversifed

asset portfolio, Jana et al. [23] incorporated an additional
entropy objective function to the multiobjective portfolio-
based model and the probabilistic mean value and variance
of continuous distribution. A possibilistic mean-semivariance-
entropy model including return, risk, transaction cost, and
portfolio diversity level was developed by Zhang et al. [24] for
multiperiod portfolio selection. Zhou et al. [25] introduced
a portfolio selection model based on information entropy-
incremental entropy-skewness (EESM), with information
entropy measuring portfolio risk. Tey evaluated the perfor-
mance of the EESM and found that the EESM performs well
relative to traditional portfolio selection models. Huang [26]
created two kinds of credibility-based fuzzy mean-entropy
models: a straightforward approach for determining the av-
erage entropy front and a fuzzy average entropy model. By an
information theoretical inference mechanism, Rödder et al.
[27] established a novel theory for determining portfolio
weights under maximum entropy and minimum relative
entropy. Anton and Afoarei Nucu [28] investigated the credit
default swap (CDS) and stock markets using the idea of en-
tropy. Teir empirical fndings revealed a shift of risk entropy
from the private to public sectors during the whole period and
respectively. In summary, some studies used the entropy
model to determine the portfolio weights, to identify themean-
entropic frontier, or to analyze portfolio selection with
transaction costs. Some of them proposed diferent forms of
entropy, such as the more generalized incremental entropy,
hybrid entropy, or information entropy like the Renyi entropy
[29, 30], please see [31] for a full review of the use of entropy in
portfolio selection.

In this paper, we use Varma entropy constrained by value-
at-risk and expected shortfall to build the probability density
distribution of the fnancial assets return. We especially want
to model and calibrate the heavy tails observed in the fnancial
fuctuations. Since the tail region of stock price distribution
follows the power law [32, 33], which is signifcantly diferent
from the normal distribution, it does not make sense to
discuss variance in these circumstances. In order to avoid the
use of variance as a constraint when optimizing portfolio
entropy, following [34, 35], we apply the value-at-risk and
expected shortfall constraints instead of the variance con-
straint. In this way, the probability density distribution of
return is more theoretically reasonable. It is found that the tail
of stock return distribution is a power law by maximizing the
Varma entropy with VaR and ES constraints. Ten, we use
high-frequency data of stock market indices from China to
USA to calibrate the Varma entropy. With the real-world
data, we fnd that the tail region of the stock market index
return distribution is a power law with most of the power-law
exponents between −2 and −7. With the increase of the time
interval of return lag, the power-law exponents are mostly
tending to decrease. Tis is consistent with the principle of
maximum entropy as entropy tends to increase when the
system approaches its equilibrium value. With the calculated
value-at-risk and the expected shortfall values, we fx the four
Lagrangian multipliers in the theoretically deduced proba-
bility density distribution and thus give the numerical form of
our theoretical model for diferent stock market indices with
diferent time intervals.
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Te rest of this paper is arranged as follows: In Section 2,
using mean-VaR-ES constraints to maximize the Varma
entropy, we deduce theoretically the probability density dis-
tribution of stock return. In Section 3, we use high-frequency
data from China’s stock market index to calibrate our the-
oretical model. In Section 4, we do the robustness tests using
data from diferent stock markets. Finally, Section 5 draws
conclusions.

2. Varma Entropy and the Power Law

In the real world, value-at-risk (VaR), developed by J.P.
Morgan in the late 1980s [36], is a statistic in risk man-
agement that quantifes the risk of an asset portfolio into
a numerical value. It describes the possible maximum loss
over a certain period of time within a fxed confdence level.
Te value-at-risk (VaR) level K describes the greatest pos-
sible losses over a specifc time frame with a (1 − ϵ) level of
confdence.

P(x ≤K) � 
K

−∞
p(x)dx � ϵ. (1)

Te concept of expected shortfall (ES) was frst in-
troduced by Rappoport and later developed by Artzner et al.
[37, 38]. Expected shortfall is defned as the conditional
expectation of loss when the loss exceeds the VaR threshold
K, and it gauges how much one can lose on average in states
beyond the selected level of VaR K. ES is derived by aver-
aging all returns in the distribution that are less than the
value-at-risk (VaR) level K during a certain time period with
a (1 − ϵ) degree of confdence:

ES � 
K

−∞
xp(x)dx, (2)

where p(x) represents the probability density distribution of
the return and K represents the preselected VaR level.

Te two-parameter Varma entropy [39] with continuous
probability density distribution p(x) is defned as follows:

Hab �
1

b − a
ln
∞

−∞
p(x)

a+b− 1dx, (3)

with the normalization constraint:


∞

−∞
p(x)dx � 1. (4)

Given the mean value of the portfolio μ, the global mean
constraint takes the following form:

E(x) � 
∞

−∞
xp(x)dx � μ. (5)

We set K as the preselected VaR level and defne the tail
probability as

P(x ≤K) � 
K

−∞
p(x)dx � ϵ. (6)

Te expected shortfall may be stated as follows:

ES(x ≤K) � 
K

−∞
xp(x)dx � ϵν. (7)

Te expected shortfall and tail probability may be for-
mally rewritten as follows:

P(x ≤K) � 
K

−∞
gTail(x)p(x)dx � ϵ, gTail(x) �

1, x ≤K,

0, x >K,


(8)

ES xIx≤K(  � 
∞

−∞
gES(x)p(x)dx � ϵν, gES(x) �

x, x ≤K,

0, x >K.


(9)

In order to maximize the Varma entropy of equation (3),
we construct the Lagrangian of the portfolio as follows:

LVarma
�

1
b − a

ln
∞

−∞
p(x)

a+b− 1dx − λ0 
∞

−∞
p(x)dx − 1  − λ1 

∞

−∞
xp(x)dx − μ 

− γTail 
∞

−∞
gTail(x)p(x)dx − ϵ  − γES 

∞

−∞
gES(x)p(x)dx − ϵν .

(10)
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Te Lagrangian will be maximized when its functional
variation with regard to the unidentifed probability density
distribution p(x) is zero:

δL � 
∞

−∞

a + b − 1
b − a

p(x)
a+b− 2


∞
−∞ p(x)

a+b− 1dx
− λ0 − λ1x − γTailgTail − γESgES(x)⎡⎢⎣ ⎤⎥⎦δp(x) � 0. (11)

Solving the above formula and using the mean-VaR-ES
constraints, we may derive the probability density distri-
bution as follows:

p(x) �
b − a

a + b − 1

∞

−∞
p(x)

a+b− 1dx λ0 + λ1x + γTailgTail + γESgES(x)  

(1/a+b− 2)

. (12)

In accordance with the mean-VaR-ES requirements, we
may rewrite the probability density distribution as follows:

p(x) � λ0 + λ1x + γTailgTail + γESgES(x) 
(1/a+b− 2)

, (13)

where λ0 � Nλ0, λ1 � Nλ1, cTail � NcTail, and cES � NcES,
and N � [(b − a)/(a + b − 1) 

∞
−∞ p(x)a+b−1dx].

Te unity requirement (4) of the probability density
function may be expressed as follows using the probability

density distribution under the above mean-VaR-ES
constraints:


K

−∞
λ0 + λ1x + γTail + xγES 

(1/a+b− 2)
dx

+ 
∞

K
λ0 + λ1x 

(1/a+b− 2)
dx � 1.

(14)

If Varma entropy’s two parameters satisfy 1< a + b< 2,
we can integrate out equation (14) as follows:

a + b − 2
a + b − 1

1
λ1 + γES

λ0 + γTail + K λ1 + γES  
(a+b− 1/a+b− 2)

−
1
λ1

λ0 + λ1K 
(a+b− 1/a+b− 2)⎡⎣ ⎤⎦ � 1. (15)

Using the probability density distribution with the
mean-VaR-ES restrictions (13), we can rewrite the mean
constraint (5) as follows:

E(x) � 
∞

−∞
x λ0 + λ1x + γTailgTail + γESgES(x) 

(1/a+b−2)
dx � μ.

(16)

If Varma entropy’s two parameters satisfy 3/2< a + b< 2,
we can have

a + b − 2
a + b − 1

K
1

λ1 + γES
λ0 + γTail + K λ1 + γES  

(a+b− 1/a+b− 2)
−

1
λ1

λ0 + λ1K 
(a+b− 1/a+b− 2)⎡⎣ ⎤⎦

⎧⎨

⎩

−
a + b − 2

2a + 2b − 3
1

λ1 + γES 
2 λ0 + γTail + K λ1 + c

ES
  

(2a+2b− 3/a+b− 2)
−

1

λ1
2 λ0 + λ1K 

(2a+2b− 3/a+b− 2)⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎬

⎪⎭
.

(17)
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We may write the tail probability constraint (8) by using
the probability density distribution under the mean-VaR-ES
requirements (13) as follows:

P(x ≤K) � 
K

−∞
λ0 + λ1x + γTailgTail + γESgES(x) 

(1/a+b− 2)
dx � ϵ. (18)

If Varma entropy’s two parameters satisfy 1< a + b< 2,
we have

a + b − 2
a + b − 1

1
λ1 + γES

λ0 + γTail + K λ1 + γES  
(a+b− 1/a+b− 2)

� ϵ. (19)

By making use of equation (13), the expected shortfall
constraint (9) can be expressed as follows:

ES(x ≤K) � 
K

−∞
x λ0 + λ1x + γTailgTail + γESgES(x) 

(1/a+b− 2)
dx � ϵν. (20)

If Varma entropy’s two parameters satisfy 3/2< a + b< 2,
we have

a + b − 2
a + b − 1

1
λ1 + γES

λ0 + γTail + K λ1 + γES  
(a+b− 1/a+b− 2)⎧⎨

⎩

−
a + b − 2

2a + 2b − 3
1

λ1 + c
ES

 
2 λ0 + c

Tail
+ K λ1 + γES  

(2a+2b− 3/a+b− 2)
⎫⎪⎬

⎪⎭
� ϵν.

(21)

In order to build up all of the algebraic equations (15),
(17), (19), and (21) simultaneously, we restricted the spec-
ifed parameters of the Varma entropy as follows:

3
2
< a + b< 2. (22)

Setting:

a + b �
2q − 1

q
. (23)

Te limiting condition (22) gives

q≥ 2. (24)

Terefore, p(x) with mean-VaR-ES constraints may be
altered to read as follows:

p(x) �
1

λ0 + λ1x + c
TailgTail + γESgES(x) 

q , (25)

which shows that the probability density distribution with
mean-VaR-ES constraints is a power law.

Utilizing the above equation (25), the distribution pa-
rameters’ constraint (15) becomes

1
1 − q

1
λ1 + γES

λ0 + γTail + K λ1 + γES  
(1− q)

−
1
λ1

λ0 + λ1K 
(1− q)

  � 1. (26)
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Utilizing the equation (25), the distribution parameters’
constraint (17) becomes

1
1 − q

K
1

λ1 + γES
λ0 + γTail + K λ1 + γES  

(1− q)
−

1
λ1

λ0 + λ1K 
(1− q)⎡⎣ ⎤⎦

⎧⎨

⎩

−
1

2 − q
1

λ1 + c
ES

 
2 λ0 + γTail + K λ1 + γES  

(2− q)
−

1

λ1
2 λ0 + λ1K 

(2− q)⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎬

⎪⎭
� μ.

(27)

Utilizing the equation (25), the distribution parameters’
constraint (19) can be written as follows:

1
1 − q

1
λ1 + γES

λ0 + γTail + K λ1 + γES  
(1− q)

� ϵ. (28)

Utilizing the equation (25), the distribution parameters’
constraint (21) can be written as follows:

1
1 − q

1
λ1 + γES

λ0 + γTail + K λ1 + γES  
(1− q)

−
1

2 − q
1

λ1 + γES 
2 λ0 + γTail + K λ1 + γES  

(2− q)
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� ϵν. (29)

It can be seen that if the Varma entropy’s parameters and
mean-VaR-ES constraints are given, then we can use the
equations (26)–(29) to jointly determine λ0, λ1, cTail, and cES

in the probability density distribution p(x) in equation (25).

3. Calibrating Varma Entropy

In the theoretical part, we have theoretically deduced that
the tail region of the return distribution is a power-law
distribution by maximizing Varma information entropy
with mean-VaR-ES constraints. In this section, we will use
real-world data to calibrate our theoretical model.

3.1.Data. For the purpose of risk management, studying the
stock market index has a higher signifcance than studying
individual stocks. Te unsystematic risk of individual stocks
can be hedged away by appropriate diversifed investment.
However, the systemic risk caused by the fuctuation of the
stock market index cannot be reduced or eliminated through
decentralized investment, since the systematic risk has an
overall impact on the whole market. Terefore, in this paper,
we choose the stock market index to study the characteristics
of the return distribution of the stock market.

Given that China has become the second largest econ-
omy in the world and is the largest emerging economy [40],
we use the stock market index from China to calibrate the
model. In order to refect the overall situation of China’s
stock market and in line with previous research, the
Shanghai and Shenzhen 300 index (CSI 300 index) is uti-
lized. Te CSI 300 index is a capitalization-weighted stock
market index refecting the stock markets of Shanghai and
Shenzhen, which was jointly released by China Securities
Index Co., Ltd. and Shanghai and Shenzhen stock exchanges

in April 2005. Te stock scope of the CSI 300 index is
comprehensively determined according to the market value
and tradable market value of the stock, which has nothing to
do with the industry of the company. Te CSI 300 index
covers most of the circulating stocks of Shanghai and
Shenzhen stock markets and comprehensively covers large
blue chip companies and small- and medium-sized com-
panies. It is the stock market index used by most scholars to
study China’s stock market.

3.2. Market Return. Te data we use are intraday high-
frequency data. We have downloaded the high-frequency
stock index with a data frequency of 1minute using the
Wind database and calculated the logarithmic rate of return
for the stock market index Z∆t using the following equation:

Z∆t(t) ≡ ln S(t + ∆t) − ln S(t), (30)

where S(t) represents the stock market index at time t and
S(t + ∆t) represents the stock market index at time t + ∆t. In
this paper, we study the stock return of short-time interval.
We choose the time interval Δt� 10, 20, 30, 40, 50, 60, 70,
and 80minutes, respectively, to calculate the stock price
return of the corresponding time interval. 10minutes are
close to the minimum time interval for completing
a transaction. Our research is mainly based on risk man-
agement rather than high-frequency trading, so it is of little
signifcance to study smaller time intervals.

In Table 1, we list the descriptive statistics of our sample,
including the sample size, the mean value, the standard
deviation, and the minimum and maximum of the data. Te
sample period starts from January 2018 to the end of 2018. It
can be seen that the stock market may indeed fuctuate
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greatly within a short period of time. For Δt� 10minutes,
the largest decline of the CSI 300 index reached 1.56%. In
80minutes, the largest decline of the CSI 300 index reached
3.61%. It can be seen that the research on the stock return of
short-time interval and the efective management of the risk
of intraday fuctuation in the stock market are of great
signifcance in the feld of risk management.

In Table 2, we use skewness, kurtosis, Jarque–Bera test,
Kolmogorov–Smirnov test, and Anderson–Darling test,
respectively, to test whether the return distribution obeys the
normal distribution. It can be seen from Table 2 that the
skewness of the sample data is above 0, and there is positive
bias; the sample data have leptokurtosis; Jarque–Bera test,
Kolmogorov–Smirnov test, and Anderson–Darling test all
signifcantly reject the original assumption that the sample
data obey the normal distribution. Tat is, the return dis-
tribution of short-time interval does not obey the normal
distribution.

3.3. Power Law and Calibrating Varma Entropy. Now, we
analyze the tail region of the return distribution using data
from the CSI 300 index. We frst use the log-log diagram to
exhibit the power-law relationship between the rate of return
Z and the probability distribution P(Z). When there is
a power-law relationship between the rate of return Z and
the probability distribution P(Z), log Z and log P(Z) should
have a linear relationship. As shown in Figure 1, the log-log
plot of the CSI 300 index directly refects the linear re-
lationship between logZ and logP(Z). Tat is, the tail re-
gion of the short-time interval return distribution obeys the
power-law distribution.

Following [12], we also transformed the return Z∆t(t)

into the normalized form Z∆t(t) according to

Z∆t(t) �
Z∆t(t) − μZ∆t

σZ∆t
, (31)

where ∆t is the time interval, μZ∆t
is the mean of Z∆t(t), and

σZ∆t
is the standard deviation of Z∆t(t). Te log-log plot of

the probability distribution of normalized return Z∆t(t) with
diferent time intervals for CSI300 is shown in Figure 2.

We ft the tail region of the return distribution of CSI 300
index data using MATLAB. Te power-law exponent and
the R2 are exhibited in Table 3. As can be seen in Table 3, the
power-law exponents are between −7 and −2 with very high

R2. Tis indicates that the power-law distribution can de-
scribe the tail region of the short-time interval return dis-
tribution well, which is consistent with the conclusion drawn
from the log-log graph. With increasing the return lags
(from 10 to 80min), the distribution tail power-law expo-
nents are mostly expected to decrease.

We calculate the value-at-risk and the expected shortfall
of CSI300 within 5% confdence level. Solving equations
(26)–(29) jointly, we fx the four Lagrangian multipliers λ0,
λ1, cTail, and cES in the probability density distribution under
the mean-VaR-ES constraints (25). Te numerical results of
the four Lagrangian multipliers are shown in Table 3.

Having obtained the Lagrangian multipliers, we can write
the numerical form of probability density distribution for
diferent stock market indexes with diferent time intervals.

For ∆t� 10min, the probability density distribution p(Z)

of CSI300 is

p(Z) � 0.3 + 32.34Z − 0.37gTail(Z) − 1 9.21gES(Z) 
− 4.55

.

(32)

For ∆t� 20min, the probability density distribution p(Z)

of CSI300 is

p(Z) � 0.51 + 20.70Z − 0.29gTail(Z) − 99.28gES(Z) 
−  .45

.

(33)

For ∆t� 30min, the probability density distribution p(Z)

of CSI300 is

p(Z) � 0.41 + 20.91Z − 0.41gTail(Z) − 10 .09gES(Z) 
− 4.  

.

(34)

For ∆t� 40min, the probability density distribution p(Z)

of CSI300 is

p(Z) � 0.33 + 21. 1Z − 0.24gTail(Z) + 9.08gES(Z) 
− 3.35

.

(35)

For ∆t� 50min, the probability density distribution p(Z)

of CSI300 is

p(Z) � 0.39 + 18.42Z − 0.59gTail(Z) − 104. 4gES(Z) 
− 3.85

.

(36)

For ∆t� 60min, the probability density distribution p(Z)

of CSI300 is

Table 1: Descriptive statistics.

Variable Sample Mean Standard deviation Minimum (%) Maximum (%)
Δt� 10min 53460 −1.85×10−5 2.05×10−3 −1.56 1.26
Δt� 20min 48600 −7.88×10−5 2.89×10−3 −2.51 1.67
Δt� 30min 43740 −1.26×10−4 3.57×10−3 −2.64 1.83
Δt� 40min 38880 −1.75×10−4 4.13×10−3 −3.02 2.43
Δt� 50min 34020 −2.57×10−4 4.65×10−3 −3.31 2.39
Δt� 60min 29160 −3.34×10−4 5.15×10−3 −3.41 2.43
Δt� 70min 24300 −3.60×10−4 5.58×10−3 −3.45 2.71
Δt� 80min 19440 −3.50×10−4 6.00×10−3 −3.61 2.88
1Te data used are CSI 300 index of 2018 obtained from Wind.
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Table 2: Normality tests.

Variable Skewness Kurtosis
P value

Jarque–Bera test Kolmogorov–Smirnov test Anderson–Darling test
Δt� 10min 0.30 5.44 P< 0.001 P< 0.001 P< 0.001
Δt� 20min 0.19 5.44 P< 0.001 P< 0.001 P< 0.001
Δt� 30min 0.24 5.29 P< 0.001 P< 0.001 P< 0.001
Δt� 40min 0.25 5.14 P< 0.001 P< 0.001 P< 0.001
Δt� 50min 0.20 5.13 P< 0.001 P< 0.001 P< 0.001
Δt� 60min 0.19 5.13 P< 0.001 P< 0.001 P< 0.001
Δt� 70min 0.19 4.87 P< 0.001 P< 0.001 P< 0.001
Δt� 80min 0.19 4.46 P< 0.001 P< 0.001 P< 0.001
1Te data used are CSI 300 index of 2018 obtained from Wind.
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Figure 1: Log-log diagram of the probability distribution of return Z with diferent time intervals for CSI300.
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p(Z) � 0.38 + 17.49Z − 0. 4gTail(Z) − 99.89gES(Z) 
− 3. 7

.

(37)

For ∆t� 70min, the probability density distribution p(Z)

of CSI300 is

p(Z) � 0.32 + 19.32Z + 0.13gTail(Z) + 50.15gES(Z) 
− 2.83

.

(38)

For ∆t� 80min, the probability density distribution p(Z)

of CSI300 is

p(Z) � 0.30 + 22.  Z − 1.59gTail(Z) − 174.47gES(Z) 
− 2.38

.

(39)

As can be seen in Table 2 (second column), with the
increase of time lags (from 10 to 80minutes), the kurtosis
values of CSI 300 index data decrease as they should. Tis
corresponds to the decrease of tail thickness as the time lags
increase. From Table 3 column two, we can see that the
power-law exponents tend to decrease with the increase of
time lags (from 10 to 80min).We note that the rate of return
Z(t) for the stock market index is always smaller than 1
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Figure 2: Log-log diagram of the probability distribution of normalized return Z∆t(t) with diferent time intervals for CSI300.

Table 3: Power-law distribution test in the tail region of return distribution of CSI 300 index.

Variable R2 q λ0 λ1 cTail cES

Δt� 10min 0.9106 4.55 0.36 32.34 −0.37 −169.21
Δt� 20min 0.9881 6.45 0.51 20.70 −0.29 −99.28
Δt� 30min 0.9880 4.66 0.41 20.91 −0.41 −106.09
Δt� 40min 0.9943 3.35 0.33 21.61 −0.24 9.08
Δt� 50min 0.9981 3.85 0.39 18.42 −0.59 −104.64
Δt� 60min 0.9970 3.67 0.38 17.49 −0.64 −99.89
Δt� 70min 0.9895 2.83 0.32 19.32 0.13 50.15
Δt� 80min 0.9866 2.38 0.30 22.66 −1.59 −174.47
1Te data used are CSI 300 index of 2018 obtained from Wind.
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(Z(t)< 1) and in this areas Z− α >Z− β for α> β. For clearer
exhibition of the dependence relationship of the tail
thickness on the tail exponent, please see Figure 3.Tus, with
the increase of the time lags (from 10 to 80min), the dis-
tribution becomes less leptokurtic, and the tail exponent
should decrease. Tis is consistent with our empirical results
using the CSI 300 index data as shown in Tables 2 and 3
where the tail exponent decreases from 4.55 to 2.38. Ulti-
mately, for the sufciently large time lags (decades ago, it was
many weeks; nowadays, due to much faster information
transmission in the contemporary world, it is likely to take
much less time), it approaches the normal distribution as
consistent with the central limit theorem (CLT).

Tis efect can also be interpreted in terms of the Varma
entropy. Varma entropy Hab is proper to ln

∞
−∞ p(x)a+b− 1dx:

Hab ∼ ln
∞

−∞
p(x)

a+b− 1dx. (40)

As a + b is set equal to 2q − 1/q, we have

a + b − 1 � 1 −
1
q

. (41)

Terefore, Varma entropy Hab is proper to ln
∞
−∞ p

(x)1− 1/qdx:

Hab ∼ ln
∞

−∞
p(x)

1− 1/qdx, (42)

where q is the distribution tail power-law exponent of the
probability density distribution p(x) as in equation (25).

Te limiting condition gives q≥ 2; thus, when q becomes
smaller, (1 − 1/q) becomes smaller. As 0<p(x)< 1, smaller
exponent (1 − 1/q) leads to higher value for p(x)1− 1/q. In other
words, when power-law exponent q decreases with the increase
of return lag ∆t, Varma entropy Hab becomes larger. When
Varma entropy Hab reaches its maximum value, the system
reaches its equilibrium as a stable distribution. Tis is con-
sistent with the principle ofmaximum entropy as entropy tends
to increase when the system approaches its equilibrium value.

4. Robustness Tests

In this section, we apply our model to the S&P 500 of the
USA stock market and diferent stock price indices in
China’s A-share market for robustness tests.

4.1. Robustness Tests of S&P 500 Index. In order to test
whether the conclusions we draw are still robust for a mature
fnancial market, we use the high-frequency data of S&P 500
in 2018 to calibrate our theoretical model. Te results are
exhibited in Table 4.

As can be seen in Table 4, the tail region of the return
distribution is a power-law distribution with a very high R2,
which indicates that the power-law distribution can describe
the tail region of the short-time interval return distribution
well. Most of the power-law orders are between −2 and −7.
When the time interval increases, the power-law exponents
are most likely to decrease. With the calculated value-at-risk
and expected shortfall, we numerically solve the four

Lagrangian multipliers λ0, λ1, cTail, and cES and exhibit them
in Table 4. In this way, we have used Varma entropy with
VaR and ES constraints to fnd the numerical form of
probability density distribution for high-frequency data of
S&P 500.

For ∆t� 10min, the probability density distribution p(Z)

of the S&P 500 index is

p(Z) � 0.45 + 37.34Z − 0.14gTail(Z) − 139.80gES(Z) 
−  .23

.

(43)

For ∆t� 20min, the probability density distribution p(Z)

of the S&P 500 index is

p(Z) � 0.49 + 27.14Z − 0.15gTail(Z) − 103.53gES(Z) 
−  .47

.

(44)

For ∆t� 30min, the probability density distribution p(Z)

of the S&P 500 index is

p(Z) � 0.34 + 28.28Z − 0.35(Z) − 133.50gES(Z) 
− 3.94

.

(45)

For ∆t� 40min, the probability density distribution p(Z)

of the S&P 500 index is

Table 4: Power-law distribution of return distribution of S&P 500.

Variable R2 Q λ0 λ1 cTail cES

Δt� 10min 0.9059 6.2323 0.45 37.34 −0.14 −139.80
Δt� 20min 0.9660 6.4678 0.49 27.14 −0.15 −103.53
Δt� 30min 0.9789 3.9423 0.34 28.28 −0.35 −133.50
Δt� 40min 0.9741 4.2597 0.37 24.64 −0.30 −109.20
Δt� 50min 0.9854 3.9922 0.36 22.94 −0.38 −108.61
Δt� 60min 0.9798 3.0018 −0.14 −12.30 0.29 66.53
Δt� 70min 0.9959 3.4815 0.34 21.33 −0.49 −108.72
Δt� 80min 0.9733 3.0954 0.31 21.80 −0.19 19.44
1Note. Te data used are S&P 500 index of 2018 obtained from Wind.
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p(Z) � 0.37 + 24. 4Z − 0.30gTail(Z) − 109.20gES(Z) 
− 4.2 

.

(46)

For ∆t� 50min, the probability density distribution p(Z)

of the S&P 500 index is

p(Z) � 0.3 + 22.94Z − 0.38gTail(Z) − 108. 1gES(Z) 
− 3.99

.

(47)

For ∆t� 60min, the probability density distribution p(Z)

of the S&P 500 index is

p(Z) � −0.14 − 12.30Z + 0.29gTail(Z) +   .53gES(Z) 
− 3.00

.

(48)

For ∆t� 70min, the probability density distribution p(Z)

of the S&P 500 index is

p(Z) � 0.34 + 21.33Z − 0.49gTail(Z) − 108.72gES(Z) 
− 3.48

.

(49)

For ∆t� 80min, the probability density distribution p(Z)

of the S&P 500 index is

p(Z) � 0.31 + 21.80Z − 0.19gTail(Z) + 19.44gES(Z) 
− 3.10

.

(50)

4.2. Robustness Tests of the Shanghai Composite Index.
We also calibrate our theoretical model using diferent stock
price indices in China’s A-sharemarket, namely, the Shanghai
Composite index. Te results are exhibited in Table 5.

As can be seen in Table 5, the tail region of the return
distribution is a power-law distribution with very high R2,
which indicates that the power-law distribution can describe
the tail region of the short-time interval return distribution
well. Most of the power-law orders are between −2 and −7.
When the time interval increases, the power-law exponents
are most likely to decrease. We also exhibit the numerical
results of the four Lagrangian multipliers λ0, λ1, cTail, and
cES. With the solved parameters, we can write the numerical
form of probability density distribution for high-frequency
data of the Shanghai Composite index.

Tus, for ∆t� 10min, the probability density distribu-
tion p(Z) of the Shanghai Composite index is

p(Z) � 0.34 + 35.3 Z − 0.40gTail(Z) − 192.09gES(Z) 
− 4.28

.

(51)

For ∆t� 20min, the probability density distribution p(Z)

of the Shanghai Composite index is

p(Z) � 0.44 + 24.29Z − 0.32gTail(Z) − 117.99gES(Z) 
− 5.3 

.

(52)

For ∆t� 30min, the probability density distribution p(Z)

of the Shanghai Composite index is

p(Z) � 0.44 + 21.24Z − 0.42(Z) − 48.94gES(Z) 
− 5.05

.

(53)

For ∆t� 40min, the probability density distribution p(Z)

of the Shanghai Composite index is

p(Z) � 0.39 + 20.74Z − 0.49gTail(Z) − 112.10gES(Z) 
− 4.11

.

(54)

For ∆t� 50min, the probability density distribution p(Z)

of the Shanghai Composite index is

p(Z) � 0.39 + 19.21Z − 0.54gTail(Z) − 10 .29gES(Z) 
− 4.01

.

(55)

For ∆t� 60min, the probability density distribution p(Z)

of the Shanghai Composite index is

p(Z) � 0.32 + 20.7 Z − 0.78gTail(Z) − 128.03gES(Z) 
− 3.0 

.

(56)

For ∆t� 70min, the probability density distribution p(Z)

of the Shanghai Composite index is

p(Z) � 0.28 + 23.4 Z − 1.30gTail(Z) − 173.84gES(Z) 
− 2.48

.

(57)

For ∆t� 80min, the probability density distribution p(Z)

of the Shanghai Composite index is

p(Z) � 0.32 + 29.7 Z + 1.4 gTail(Z) + 182.78gES(Z) 
− 2.19

.

(58)

Overall, by empirical analysis, it is proved that the tail
region of the return distribution is a power-law distribution.
By maximizing mean-VaR-ES constraints, we can give the
concrete numerical form of the probability density distri-
bution of high-frequency stock market indexes, which are
more theoretically reasonable and consistent with real-world
characteristics. Tis conclusion is robust for data of diferent
stock price indices in China’s A-share market and for mature
capital in developed countries represented by the S&P 500 of
the United States.

Table 5: Power-law distribution of return distribution of Shanghai
Composite index.

Variable R2 q λ0 λ1 cTail cES

Δt� 10min 0.7706 4.2815 0.34 35.36 −0.40 −192.09
Δt� 20min 0.9905 5.3601 0.44 24.29 −0.32 −117.99
Δt� 30min 0.9944 5.0466 0.44 21.24 −0.42 −48.94
Δt� 40min 0.9942 4.1136 0.39 20.74 −0.49 −112.10
Δt� 50min 0.9972 4.0104 0.39 19.21 −0.54 −106.29
Δt� 60min 0.9984 3.0620 0.32 20.76 −0.78 −128.03
Δt� 70min 0.9942 2.4848 0.28 23.46 −1.30 −173.84
Δt� 80min 0.9983 2.1926 0.32 29.76 1.46 182.78
1Note. Te data used are the Shanghai Composite index of 2018 obtained
from Wind.
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5. Conclusions

It is crucial for fnancial investors to assess properly the risk
of any prospective investment. Terefore, modeling accu-
rately the probability density distribution function of f-
nancial assets is a vital issue in the feld of risk management.

Many scholars have proved empirically that the distri-
bution of return in stock markets does not obey Gaussian
distribution [33] and many stock indices do not follow the
randomwalk [1].Te distributions of stock price returns drop
ofmore slowly than the normal distributions [32]. For a stock
market with a heavy tail in return distributions, it is necessary
to use a new uncertainty measure that does not depend on
a particular distribution. Terefore, we would use entropy,
which can be applied to measure uncertainty in probability
theory [31], to model the non-Gaussian distribution.

By maximizing the Varma entropy with mean-VaR-ES
constraints, we obtained the probability distribution of stock
return in the tail region and deduced theoretically that the
tail of stock return distribution is a power law. Since the
volatility of the real stock portfolio may be stochastic, using
the mean-VaR-ES constraints to maximize the Varma en-
tropy efectively avoids the problem of assuming that the
variance is a constant value under the traditional mean-
variance constraint. In this way, the deduced probability
density distribution of return is more theoretically rea-
sonable and more consistent with the real market.

Using high-frequency data from China’s stock markets,
we calibrate our theoretical model and give the concrete form
of probability density distribution p(x) for diferent time
intervals. We fnd that the tail region of the stock market
index return distribution is a power law with most of the
power-law orders between −2 and −7.With the increase of the
time interval of return lag, the power-law exponents mostly
tend to decrease. Tis is consistent with the central limit
theorem as with the increase of the time lags, the distribution
becomes less leptokurtic, and for the sufciently large time
lags, it approaches the normal distribution. With the increase
of the time interval of return lag, the power-law exponents
mostly tend to decrease. Tis is consistent with the principle
of maximum entropy as entropy tends to increase when the
system approaches its equilibrium value. With the calculated
mean value of the return, the value-at-risk, and the expected
shortfall, we calculate the four parameters λ0, λ1, cTail, and cES

in the probability density distribution under the mean-
VaR-ES constraints and thus give the numerical form of
probability density distribution for diferent stock market
indices with diferent time intervals. We use diferent stock
price indices in China’s A-share market and stock market
index from the mature capital market represented by the S&P
500 of the United States to calibrate the Varma entropy. Te
results show that our conclusions are robust for diferent
stock markets.

Two groups may beneft from our results, namely, the-
oretical researchers and investment practitioners. For the-
oretical researchers, our model gives a complementary
insight into what leads to the heavy tails observed in fnancial
fuctuations. Besides, we also give a more theoretical ex-
planation to the phenomenon that with the increase of the

time interval of return lag, the power-law exponents mostly
tend to decrease. Our research results can also beneft in-
vestment practitioners with a decision-making basis. How-
ever, further theoretical and empirical analyses are still
needed. Further studies can be carried out by the following
directions. First, studies may be carried out to further explore
the deep meaning of the power-law parameter q and fnd
more economic explanation for themechanism leading to the
power-law distribution of stock price fuctuations on small
time scales. Second, researchers can also extend the idea with
the maximum entropy principle to derive distribution for
other fnancial assets and calibrate the model using real-
world data.
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