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Tis study introduces a novel deep modeling approach that utilizes Hamiltonian neural networks to address the challenges of
modeling the six degrees of freedom rigid-body dynamics induced by control inputs in various domains such as aerospace,
robotics, and automotive engineering. Te proposed method is based on the principles of Hamiltonian dynamics and employs an
inductive bias in the form of a constructed bias for both conservative and varying energies, efectively tackling the modeling issues
arising from time-varying energy in controlled rigid-body dynamics.Tis constructed bias captures the information regarding the
changes in the rigid body’s energy. Te presented method not only achieves highly accurate modeling but also preserves the
inherent bidirectional time-sliding inference in Hamiltonian-based modeling approaches. Experimental results demonstrate that
our method outperforms existing techniques in the time-varying six degrees of freedom dynamic modeling of aircraft and missile
guidance, enabling high-precision modeling and feedback correction. Te fndings of our research hold signifcant potential for
the kinematic modeling of time-varying energy systems, parallel system state prediction and control, inverse motion inference,
and autonomous decision-making in military applications.

1. Introduction

Six-degree-of-freedom (6-DoF) rigid-body dynamic mod-
eling is crucial in numerous applications, such as aerospace,
robotics, and automotive sectors. Tis modeling assists
designers and controllers in understanding the motion at-
tributes and behaviors of rigid bodies, leading to better
control strategies. Particularly in high-velocity motion and
complex environments, modeling and predicting rigid-body
dynamics are vital. Te model requires considering factors
such as mass, inertia, rotational capability, and equations of
motion and accurately forecasting the forthcoming position,
velocity, and acceleration parameters. Traditional numerical
simulation techniques demand manual model construction
and initial condition confgurations, often requiring sig-
nifcant human resources and time. However, deep-learning
models enable rapid training of an efcient model capable of
concurrently predicting motion trajectories and states of

multiple rigid bodies, performing backward inference, and
making swift decisions. Consequently, deep-learningmodels
exhibit extensive potential for application in 6-DoF rigid-
body dynamic modeling.

In recent years, deep-learning methodologies have
emerged as an innovative approach to 6-DoF rigid-body
dynamic modeling. Deep neural networks are multilayered
models based on neuronal structures that can autonomously
extract features from input data and execute intricate
nonlinear mappings. Moreover, deep neural networks in-
herently possess the capacity to perform large-scale batch
inferences. Employing deep-learning techniques for learning
6-DoF rigid-body dynamic models entails training neural
networks to automatically discern motion patterns and
characteristics of rigid bodies from motion data, as opposed
to traditional approaches that necessitate manual design of
rigid-body dynamic models and feature extraction
algorithms.
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Deep learning-based dynamic modeling ofers several
advantages over traditional approaches:

(1) Deep learning can automatically extract information
from data, expediting the dynamic modeling process

(2) By learning models directly from data containing
interference, deep dynamic models exhibit enhanced
robustness and resilience against interference

(3) Deep dynamic models can seamlessly integrate with
deep reinforcement learning to generate a unifed
control strategy

(4) Inference can be naturally conducted in parallel on
a large scale using batch processing

(5) Te model can be easily fne-tuned based on new
rigid-body motion data to adapt to novel problems

Tere are two primary approaches to addressing the
problem of 6-DoF rigid-body dynamic modeling based on
deep learning. Te frst approach is knowledge-driven, ex-
emplifed by the physics-informed neural network (PINN)
method, a physics-constrained reasoning technique
grounded in deep neural networks.Tis method is employed
to solve partial diferential equations with physical con-
straints or to incorporate partial diferential equations di-
rectly into the neural network learning process. For example,
PINNs have been utilized to replicate 6-DoF equations of
aircraft dynamics [1]. However, due to potential interference
or errors in rigid-body fight data, the rigid-body dynamic
model generated by the PINN method may be afected by
interference, compromising its accuracy.

Te alternative approach is data-driven, aiming to learn
the underlying physical laws concealed within the collected
data. Representative studies include [2, 3] and [4], which
strive to learn the precise output corresponding to the input
that aligns with the data under the data-driven paradigm.
Another approach involves meticulously designing the in-
trinsic components of deep learning, forming specifc in-
duction biases that naturally align with the physical essence
embedded within the data. For instance, the authors in [5]
devised a robust induction bias for energy conservation,
yielding an intriguing byproduct: time reversibility. Building
upon, the authors in [5, 6] proposed a deep generative model
termed the Hamiltonian generative network (HGN), which
can learn the Hamiltonian dynamics of continuous-time
evolution systems, exhibiting features such as time re-
versibility and smooth temporal interpolation.

In the context of 6-DoF equations for rigid bodies,
energy is typically not conserved. External control quantities
or passive drag forces exert torques on the rigid body, en-
abling its dynamic and potential energy to fuctuate. Tese
fuctuations largely depend on external conditions in which
the rigid body is situated. Terefore, constructing a 6-DoF
deep model for rigid bodies requires considering factors that
disrupt energy symmetry to ensure the model’s accuracy and
reliability.

Motivated by prior research [5, 6], this study aims to
develop a method that captures the inductive bias of energy
changes in rigid bodies as external conditions vary while
preserving the high-precision modeling of 6-DoF equations

for rigid bodies and the high-precision forward and back-
ward sliding along the temporal dimension. Te proposed
method, an energy variational Hamiltonian neural network
(VHNN), has been experimentally validated on a relevant
dataset [7]. Results demonstrate that VHNN outperforms
other methods, such as Hamiltonian neural networks
(HNNs) and Hamiltonian graph networks (HGNs), in
modeling the 6-DoF equations of rigid bodies and per-
forming temporal sliding.

To ensure a clear presentation of the research content,
this paper will be structured into the following sections:
Section 2 reviews relevant prior research related to this
study, with a particular focus on similar works that employ
Hamiltonian methods for deep modeling, which lay the
foundation for energy-inductive biases. Section 3 provides
a brief introduction to Hamiltonian equations and the six
degrees of freedom equations for rigid bodies and exten-
sively discusses the principles of the proposed method,
including the neural network module and architecture de-
sign, optimization objectives, and specifc algorithms. Sec-
tion 4 assesses the efectiveness and advantages of the
proposed method through an analysis of complex dynamic
modeling experiments involving aircraft and missiles. Sec-
tions 5 and 6 analyze the potential future directions and
application prospects of this method and provide a com-
prehensive evaluation of the method.

2. Related Work

2.1. Dynamic Modeling Using Neural Networks. In recent
years, considerable advancements have been made in the
domain of dynamic modeling using neural networks. Tis
progress spans various felds, such as fuid dynamic property
modeling [8], chemical reaction process modeling [9], mi-
croscopic particle dynamic modeling [10, 11], and rigid-
body dynamic modeling.

2.2. Rigid-Body Dynamic Modeling. In the realm of rigid-
body dynamics, the authors in [12] introduced a graph-
based model for simulating the dynamics of joint rigid
bodies, facilitating perceptual modeling. Tey described the
architecture and operational principles of Lagrangian graph
neural networks (LGNNs) and assessed their efcacy in
rendering joint rigid-body processes. Te performance of
LGNN was corroborated across multiple simulation tasks,
yielding superior accuracy in learning physical models
compared to alternative models.

Wang et al. [13] proposed a deep learning-based ap-
proach for robot dynamic parameter identifcation and
compensation, in addition to the UCM model, efectively
addressing the limitations of robot physical dynamic models
and enhancing the environmental adaptability of conven-
tional physical models.

Millard et al. [14] presented a diferentiable rigid-body
dynamic simulator. Tey employed a variety of techniques
for integrating diferential equations and computing gra-
dients and compared diferent parameter estimation
methods. In trajectory optimization algorithms, simulation
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parameters were procured empirically, and closed-loop
model predictive control algorithms were implemented to
attain cost and performance optimization.

Sun et al. [15] suggested a deep neural network with
dynamic keypoint selection, extracting 6-DoF object pose
states from image pixels. Zhang et al. [16] proposed a deep-
learning methodology for predicting 6-DoF ship motion,
constructing a transformer neural network accounting for
the efects of operating conditions on ship dynamics for 6-
DoF state transition equations.

2.3. Hamiltonian-Based Models. Research on Hamiltonian
neural networks (HNNs) and Hamiltonian generative net-
works (HGNs) directly models dynamics using Hamiltonian
diferential equations, resulting in slower divergence rates
for extended trajectories. Although these methods bear
similarities to neural ODE work [17, 18], Hamiltonian dy-
namics exhibit time reversibility, rendering HNN and HGN
methods more advantageous in terms of computational
efciency and applicability to physical systems and other
processes possessing these characteristics.

2.3.1. Hamiltonian Neural Networks (HNNs). HNNs in-
corporate energy conservation as an inductive bias for neural
networks, allowing them to learn conservation laws from
data. HNNs learn a parameterized function Hθ(q, p). To
train HNNs, the error between the time derivatives of known
coordinates p and q and the symplectic gradient of H

concerning input coordinates is minimized. Tis structure
permits HNNs to learn conservation laws from arbitrary
coordinates. HNNs have established neural network models
for ideal springs, the three-body problem, and other dy-
namics using Hamilton’s equations.

2.3.2. Hamiltonian Generative Networks (HGNs). HGNs
constitute a class of generative models that learn time-
reversible Hamiltonian dynamics in abstract phase space
representations, commencing from image inputs. HGNs
learn in three stages. Initially, they encode a sequence of
images into initial states St in the abstract state space and
map these states to a scalar that can be interpreted as
Hamiltonian. Subsequently, they estimate dynamics in the
abstract state space using Hamiltonian and project the re-
sults back into pixel representations employing a deconvo-
lution network. Ultimately, they optimize the network using
a loss akin to that of a time-extended variational
autoencoder.

2.3.3. Other Hamiltonian-Based Models. Additional
Hamiltonian-based models have been developed building
upon the foundation of HNNs.Te authors in [19] proposed
symplectic recurrent neural networks, which utilize sym-
plectic integrators, multistep training, and initial state op-
timization to learn superior Hamiltonians compared to
HNNs. Te authors in [20] combined graph networks with
diferentiable ODE integrators and Hamiltonian inductive
bias to predict the dynamics of particle systems. Te authors

in [21] targeted dissipative systems’ dynamic modeling,
proposing an inductive bias related to Hamiltonian and
Helmholtz decomposition, achieving favorable results in
elementary rigid-body dynamic modeling.

2.4. Limitations and the Proposed Approach. Despite these
methods forging new pathways for deep learning-based
modeling, energy conservation inductive bias may not be
applicable to numerous real-world modeling problems.
Specifcally, for intricate rigid-body 6-DoF equation mod-
eling, encompassing the aerodynamic characteristics and 6-
DoF equations of complex behavior rigid-body systems such
as missiles or airplanes, energy is not conserved from the
perspective of mechanical energy. Consequently, for such
dynamic modeling problems, it is imperative to consider
breaking the energy conservation assumption.

Tis study proposes a rigorous and coherent approach to
modeling the dynamics of rigid bodies with variable energy
under external perturbations, based on Hamiltonian me-
chanics.Temethod distinguishes between two components
of energy during object motion: a constant energy com-
ponent unafected by external infuences, which adheres to
the principle of energy conservation, and a variable energy
component that changes with variations in external con-
ditions. Building upon this framework, the method in-
corporates targeted design of deep models to capture biases
and achieve high-precision modeling of complex motions.
Te efectiveness of this approach is validated through ex-
periments involving complex rigid-body motions, such as
the guidance processes of aircraft and missiles.

3. Method

3.1. Hamiltonian. Te Hamiltonian equation is one of the
important mathematical tools for describing the motion of
physical systems, developed based on Hamilton’s principle.
Te Hamiltonian equation describes the laws governing the
position and momentum of a system in a generalized co-
ordinate space as a function of time, and its form is as
follows:

dqi

dt
�

zH

zpi

,
dpi

dt
� −

zH

zqi

, (1)

where qi represents the generalized coordinates of the
system, pi represents the generalized momentum of the
system, H(qi, pi) represents the Hamiltonian of the system,
and t represents time.Tese two equations can be referred to
as Hamiltonian equations.

Hamiltonian is the energy function of the system, which
can be calculated using the Lagrangian L(qi, qi

.
) of the

system and generalized momentum pi:

H qi, pi(  � 
i

piqi

.
− L qi, qi

.
( . (2)

Te physical signifcance of the Hamiltonian equation
describes the laws governing the motion of physical systems
in the generalized coordinate and momentum spaces. Te
frst equation indicates that the rate of change of generalized
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coordinates with respect to time is equal to the partial de-
rivative of the Hamiltonian with respect to the generalized
momentum, that is, the direction of the system’s motion in
the generalized momentum space. Te second equation
indicates that the rate of change of the generalized mo-
mentum with respect to time is equal to the negative partial
derivative of the Hamiltonian with respect to the generalized
coordinates, that is, the direction of the motion of the system
in the generalized coordinate space.

Te Hamiltonian equation has a wide range of appli-
cations in classical mechanics. It can be used to solve many
practical problems, such as describing the motion of celestial
bodies, gas dynamics, and the motion of electromagnetic
felds. Te simple Hamiltonian equation of an undamped
spring is represented by following formulas (3)–(5). Fur-
thermore, the Hamiltonian equation is a classical corre-
spondence of the Hamiltonian operator in quantum
mechanics, which has important theoretical signifcance:

H �
p
2

2m
+
1
2

kx
2
. (3)

Here, H is the Hamiltonian, p is the particle’s mo-
mentum, m is the mass, k is the spring constant, and x is the
displacement of the particle. According to Hamiltonian
mechanics, the evolution of momentum and position can be
determined using the following equations:

dx

dt
�

zH

zp
�

p

m
, (4)

dp

dt
� −

zH

zx
� −kx. (5)

3.2. Six Degrees of Freedom Equations for Rigid Bodies.
Classical mechanics mainly includes Newtonian mechanics,
Lagrangian mechanics, and Hamiltonian mechanics, which
primarily describe the motion laws of macroscopic objects
under the infuence of forces. Te 6-DoF equations for a rigid
body use Newtonian mechanics to describe the motion state of
a rigid object in a three-dimensional space, including changes
in its position and attitude. In these equations, the rigid body
has three translational degrees of freedom and three rotational
degrees of freedom, allowing the object to move and rotate
arbitrarily in space. Generally, the six degrees of freedom
equations for a rigid body consist of linear motion equations
and angular momentum equations, expressed as follows.

Linear motion equations are as follows:

(1) Force synthesis:  F
→

� m a
→

(2) Center of mass acceleration: a
→

� (d2 r
→/dt2)

Angular momentum equations are as follows:

(1) Torque synthesis:  M
�→

� (d L
→
/dt)

(2) Angular momentum: L
→

� Iω→

(3) Angular velocity: ω→ � (d θ
→
/dt)

Here, F
→

is the external force acting on the rigid body, m

is the mass of the rigid body, a
→ is the acceleration of the

center of mass of the rigid body, r
→ is the position vector of

the center of mass of the rigid body, M
�→

is the torque acting
on the rigid body, L

→
is the angular momentum of the rigid

body, I is the moment of inertia of the rigid body, ω→ is the
angular velocity of the rigid body, and θ

→
is the rotation angle

vector of the rigid body.
Te relationship between the six degrees of freedom

equations and Hamilton’s equations can be established
through Lagrangian equations. Lagrangian equations are
a type of equation used to describe the motion of objects,
derived from the principle of least action. By introducing
generalized coordinates and generalized momenta, La-
grangian equations can be transformed into Hamilton’s
equations. For a 6-DoF rigid body, Lagrangian equations can
be used to describe its motion laws, and then, the generalized
coordinates and generalized momenta can be used to
transform them into Hamilton’s equations. Terefore, the
six degrees of freedom equations for the dynamic model of
a rigid body can naturally apply the Hamiltonian repre-
sentation learning to capture inductive biases.

3.3. Hamiltonian Neural Network Missile Dynamic Modeling
Based on Energy Variation Estimation. Te energy variation
of a 6-DoF rigid body is infuenced by various factors related
to both the body itself and external conditions or external
control variables. On the body side, factors such as the
energy output of the propulsion system, attitude control, and
guidance system afect the energy variation. In addition, the
mass and movement speed of the body are important factors
that infuence its energy variation. Moreover, external
conditions or external control variables, such as the dynamic
and spatial characteristics of a target or external control
force, also afect the body’s energy variation. Terefore,
when using deep learning for 6-DoF rigid-body dynamic
modeling, it is necessary to incorporate the dynamic
characteristics of the external conditions or external control
variables. In other words, the establishment of a neural
network mapping relationship takes the body’s state and the
state of external conditions or external control variables as
inputs and outputs the body’s state at the next moment; i.e.,
f(St, Ct)⟶ St+1 requires the introduction of dynamic
information of the external conditions or external control
variables into the model. In order to achieve bidirectional
time sliding for this mapping function, i.e.,
f− 1(f(St, Ct), Ct+1) � St, the dynamic information of the
external conditions or external control variables must be
incorporated into the model.

Six-degree-of-freedom equations encompass the system
state and system control variables, which can be infuenced
by external active control or external conditions. Terefore,
when representing dynamic characteristics using a neural
network, it efectively establishes a statistical mapping re-
lationship between the joint distribution of the system state
and system control variables and the distribution of future
system states. In certain scenarios, the system’s own control
variables may not be directly observable but are infuenced
by external conditions. Hence, system control variables can
be treated as latent variables, enabling the direct con-
struction of a statistical mapping relationship between the
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joint distribution of the system state and external conditions
and the distribution of future system states.

Similar to HNN, to use the Hamiltonian mechanism to
achieve time sliding in the 6-DoF rigid-body dynamic
model, without relying on the manual design of the Ham-
iltonian equation, we need to build a deep-learning model to
convert the body state into implicit generalized position and
momentum vectors and then convert them into Hamilto-
nian. On this basis, we introduce the external conditions or
infuencing factors’ dynamic information into the model to
describe the variation of the body Hamiltonian with the
external conditions or infuencing factors’ dynamic in-
formation. Finally, we train a decoder to restore the gen-
eralized position vector to the state of the body. Te model
can slide forward and backward along the time dimension
with high-precision modeling. In other words, we divide f

into four parts.
Similar to HNN, the achievement of time sliding in the 6-

DoF rigid-body dynamic model using the Hamiltonian
mechanism involves the construction of a deep-learning
model. Tis model is responsible for converting the body
state into implicit generalized position and momentum
vectors, which are further transformed into a Hamiltonian.
Te manual design of the Hamiltonian equation is not relied
upon in this process. Te dynamic information of the ex-
ternal conditions or infuencing factors is then introduced
into the model to depict the variations of the body’s
Hamiltonian in response to these dynamic factors. Sub-
sequently, a decoder is trained to restore the generalized
position vector to the body’s state. With this model, high-
precision modeling enables forward and backward time
sliding along the time dimension. In other words, f is di-
vided into four parts.

3.3.1. Encoder Network

qt, pt � Encoder St, Ct; θenc( , (6)

where θenc represents the parameters of the encoder net-
work, Encoder represents the encoder neural network, q and
p represent the generalized coordinate vector and gener-
alized momentum vector, respectively, and St and Ct rep-
resent the state vectors of the rigid body and external
conditions at time t, respectively.

3.3.2. HAMILTON Network

ht � HAMILTON qt, pt; θhnn( , (7)

where θhnn represents the parameters of the HAMILTON
network, HAMILTON represents the Hamiltonian neural
network, h represents the Hamiltonian, and qt and pt

represent the generalized coordinate vector and generalized
momentum vector, respectively.

3.3.3. Energy Network

∆e � Energy St, qt, pt; θene( , (8)

where θene represents the parameters of the energy network,
Energy represents the energy neural network, STt

represents
the state vector of the target at the current time, h represents
the Hamiltonian, and Δe represents the energy change.

3.3.4. Decoder Network

St+1 � Decoder qt+1; θdec( , (9)

where θdec represents the parameters of the decoder net-
work, Decoder represents the decoder neural network, qt+1
represents the generalized coordinate vector of the missile at
the next time step, and St+1 represents the state vector of the
missile at the next time step.

Te system structure consisting of these four parts is
shown in Figure 1.

3.3.5. Positive-Negative Sliding Core. Te generalized co-
ordinate vector and the generalized momentum vector at the
next time step are calculated as follows:

dq

dt
�

zh

zp
+

zΔe
zp

, (10)

dp

dt
� −

zh

zq
−

zΔe
zq

. (11)

In the above equations, q and p represent the generalized
coordinate and momentum vectors, respectively, h denotes
the Hamiltonian, and de represents the energy change.
(zh/zp) and (zh/zq) are partial derivatives of h with respect
to p and q, respectively. Similarly, (zΔe/zp) and (zΔe/zq)

are partial derivatives of Δe with respect to p and q,
respectively.

We estimate the future state and historical state of dy-
namic systems from inferred values of the system position
and momentum by numerically integrating the Hamilto-
nian. We explore Euler integration to estimate the value of
a function at time t + dt by incrementing the function’s
value with the value accumulated by the function’s de-
rivative, assuming it stays constant in the interval [t, t + dt].
For the estimation of future states, that is, the forward sliding
of time, Euler integration takes the form:

q′ � qt+dt � qt + dt
zh

zp
+

zΔe
zp

 


p�pt

, (12)

p′ � pt+dt � pt − dt
zh

zq
−

zΔe
zq

 


q�qt

. (13)

For the estimation of historical states, that is, the
backward sliding of time, Euler integration takes the form:

q′ � qt−dt � qt − dt
zh

zp
+

zΔe
zp

 


p�pt

, (14)

p′ � pt−dt � pt + dt
zh

zq
+

zΔe
zq

 


q�qt

. (15)
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Forward inference with time

Rigid State at time t Encoder Hamiltonian
Decoder Rigid State at time t+1

external conditions at time t Energy

q

p

q

p

+

-

∂h
∂p ∂p

∂Δe dt+

∂h
∂q ∂q

∂Δe dt+

h

e

(a)

backward inference with time

Rigid State at time t Encoder Hamiltonian
Decoder Rigid State at time t-1

external conditions at time t Energy

q

p

q

p+

-∂h
∂p ∂p

∂Δe dt+

∂h
∂q ∂q

∂Δe dt+

h

e

(b)

Figure 1:Te transmission path of the rigid states and external conditions or control variables in VHNN. (a) Forward inference with respect
to time and (b) backward inference with respect to time.

Real State at time 0
External conditions at time 0

Model State at time 1
External conditions at time 1

Model State at time t
External conditions at time t

Model State at time T-1
External conditions at time T-1

VHNN VHNN VHNN VHNN

Model State at time 1 Model State at time2 Model State at time t+1 Model State at time T

Forward inference with time

… …

(a)
Model State at time 1

External conditions at time 1
Model State at time 2

External conditions at time 2
Model State at time t

External conditions at time t
Real State at time T

External conditions at time T

VHNN VHNN VHNN VHNN

Model State at time 0 Model State at time2 Model State at time t-1

Backward inference with time

Model State at time T-1

… …

(b)

Figure 2: Te VHNN network model performs inference over time and interdependence between the input and output. (a) Forward
inference with respect to time and (b) backward inference with respect to time.
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Require: D � (St, Ct), St+1 t�1: N

Ensure: θenc, θhnn, θene, θdec
(1) Initialize θenc, θhnn, θene, θdec.
(2) Loop until the loss converges:
(3) while loss not converged do
(4) St, Ct⟶ Encode r, and output q and p.
(5) Input q, p⟶ HAMILTON, and output h.
(6) Input p, Ct⟶ Energy, and output Δe.
(7) Calculate the next state of the missile q′, p′ using formula (12) and (13).
(8) Input q′ ⟶ Decoder, and output S

′
t+1.

(9) Calculate the mechanical energy E from St+1.
(10) Calculate the loss using (16) and gradient.
(11) Update all θenc, θhnn, θene, θdec.
(12) end while

return θenc, θhnn, θene, θdec

ALGORITHM 1: VHNN forward inference and training algorithm.

Require: θenc, θhnn, θene, θdec, Ct t�1: N

Ensure: Dback
(1) init Dback � St 

(2) for t in T: 1 do
(3) St, Ct⟶ Encoder, and output q and p.
(4) Input q, p⟶ HAMILTON, and output h.
(5) Input p, Ct⟶ Energy, and output Δe.
(6) Calculate the next state of the missile q′, p′ using formula (14) and (15)
(7) Input q′ ⟶ Decoder, and output St−1.
(8) add St−1 to Dback
(9) end for

return θenc, θhnn, θene, θdec

ALGORITHM 2: VHNN backward inference.
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Figure 3: Te trajectories of all comparative models and the actual model under identical initial conditions, with aircraft performing the
same random action sequences (a). In addition, the mean absolute error (MAE) of all models’ coordinates in relation to the actual model (b)
and the energy-time variation curves of all models and the actual aircraft model (c).
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Te objective function of design philosophy of the loss
function is to approach the true value in terms of both state
and energy, which can be expressed as “encouraging the
inferred posterior to match a prior:”

L θenc, θhnn, θene, θdec; Si, Ci, Si+1( 

�
1
N



N

i�1
EPθenc qiSi|( )

logPθhnn,θene ,θdec Si
′
 qi   

+ KL Pθenc,θhnn,θene h + Δe | Si(  Em Si
′( 

���� .

(16)

Te frst term of the equation represents the negative
log-likelihood expectation of the future system state Si

′
given the current system state Si and generalized posi-
tional variables. It quantifes the reconstruction error
between the predicted system state and the true system
state. By minimizing this term, the model aims to improve
the accuracy of sequence generation. Te second term
represents KL divergence between the conditional dis-
tribution of the sum of future system-conserved energy
and the change in energy relative to the current system
state and the true energy distribution of the future system.
It encourages the latent representation to approximate the
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Figure 4: A comparison of forward and backward extrapolation over time in the aircraft modeling experiment using the VHNN model.
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Missile Guidance Dynamic Time Reverse Trajectory
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Figure 6: Comparison between forward and backward extrapolation over time in the VHNN model during the missile guidance modeling
experiment.
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prior distribution. Minimizing this term helps the model
learn additional latent representations of energy changes
and inductive biases.

Te forward inference and training algorithms of VHNN
as well as the backward inference algorithm are shown in
Algorithm 1 and 2. Figures of forward and reverse deduction
are shown in Figures 1 and 2.

4. Experiment

In order to verify the efectiveness of the proposed rigid-
body dynamic modeling method, we selected two complex
rigid-body 6-DoF dynamic equations as experimental
subjects and conducted comparative experiments using the
multilayer perceptron (MLP), Hamiltonian neural network
(HNN), Hamiltonian graph network (HGN), and proposed
variational Hamiltonian neural network (VHNN) method.
Te experimental subjects are derived from the 6-DoF
aircraft equation model in [7] and a missile guidance
model that includes proportional navigation. Both tasks
belong to high-precision regression of rigid-body dynamic

models, as the error at each moment accumulates over time
and has a cumulative efect on future states. Tis requires
deep modeling to have a smaller single-step mean absolute
error (MAE) and a feedback correction mechanism for
a long-term cumulative error. Tat is, the deep model is
required to learn the inherent laws of rigid-body dynamics,
as shown in Algorithm 1 and 2.

4.1. Deep Modeling Experiment of 6-DoF Aircraft Equations.
First, the advantages of our method were demonstrated
using the data generated by the 6-DoF aircraft model in [7].
Te experimental subject was a 6-DoF aircraft model with
state variables including the position, velocity, heading
angle, and pitch angle, and control variables were acceler-
ations in three directions. Our task was to ensure that the
response generated by the deep model was as consistent as
possible with the real aircraft model when any control
variable was applied at any given current state. Moreover, it
was hoped that the fnal state was as consistent as possible
with the model-generated fnal state after a given initial
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state and a sequence of control variables at equal intervals for
a period of time. Experiments were conducted using MLP,
HNN, HGN, and the proposed VHNNmethod, with specifc
experimental settings detailed in Appendix A. Te com-
parison of various methods is shown in Figure 3.

In Figure 3, the 3D trajectories of diferent models show
that the real aircraft trajectory can be almost perfectly cloned
by the VHNN method proposed in this paper, while the
trajectory begins to diverge from the frst half by both MLP
and HGN, but the overall trend is close to the real aircraft
trajectory. A signifcant deviation from the beginning of the
trajectory is produced by the HNN model. In terms of the
mean absolute error (MAE) of the coordinates, a relatively
low level is maintained by VHNN and HGN, with an MAE
close to 0 throughout for VHNN, while HGN begins to
increase linearly slightly after 1500 steps. Te process of
error accumulation is clearly shown by the MAE curve of
MLP, while HNN is in a divergent state. In terms of energy
correlation, the highest degree of overlap with the real
aircraft trajectory is achieved by VHNN, indicating that

there is a causal relationship between VHNN’s good energy
control and MAE regression accuracy. Energy conservation
is tended to be maintained in the frst half by HNN, leading
to excessive deviation accumulation, and energy is in a di-
vergent state in the second half. More charts about this
experiment can be found in Appendix A.

Like other Hamiltonian-based deep modeling methods,
the characteristic of time-reversed inference is exhibited by
VHNN. For related charts of time-reversed inference, please
refer to Figure 4 in Appendix A.

Te experimental results indicate that (1) in the case of
aircraft, where a rigid-body motion equation accepts external
control variables, energy plays a crucial role in dynamic
changes and (2) VHNN achieves high-precision modeling of
rigid-body dynamics controlled by external conditions due to
the introduction of inductive bias for energy changes.

4.2. Proportional Navigation Missile Guidance Deep
Modeling Experiment. Subsequently, the slightly more com-
plex rigid-body dynamicmodel of amissile was employed as the

HGN aircraft run trajectory
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experimental subject, with the control variables implicitly
determined by the dynamic target being attacked and
generated by a proportional navigation algorithm based on
the changes in the relative position of the attacked target and
the missile. Tis results in corresponding control variables
that enable the missile to intersect and complete the attack
on the target’s motion trajectory. Te efectiveness of our
method was validated using the 6-DoF missile model
combined with the proportional navigation algorithm in [7].
Te state variables of this model include the current position,
velocity, heading angle, and pitch angle of the missile, with
the state of the attacked target considered as control vari-
ables, namely, the position, velocity, heading angle, and
pitch angle of the attacked target. Our task is to ensure that
the next moment’s missile state generated by the deep model
is as consistent as possible with the original model when any
givenmissile and attacked target’s current state are provided.
Moreover, we aim for the fnal state to be as consistent as
possible with the model-generated fnal state after a given
initial state of the missile and the attacked target, along with
a sequence of motion states of the attacked target at equal
intervals for a period of time. Specifc experimental settings

can be found in Appendix A. Te comparison of various
methods is shown in Figure 5.

Te fgure demonstrates that the VHNN model remains
the best-performing model, almost perfectly replicating the
response of the original model and achieving an almost
perfect overlap with the original model trajectory
throughout the entire missile guidance cycle. In terms of the
MAE curve, although VHNN exhibits a slight deviation in
the later stage, it still maintains a very low level. MLP and
HNN, on the other hand, display larger deviations. From the
energy curve, VHNN continues to achieve the best overlap
with the real missile energy curve. More charts about this
experiment can be found in Appendix A. For related charts
of time-reversed inference, please refer to Figure 6 in
Appendix A.

Te experimental results demonstrate that (1)
whether the external control variables of the rigid-body
dynamic model are implicit and unknown but can be
infuenced by certain other conditions, estimating the
overall energy change of dynamics remains highly ben-
efcial for modeling under such condition-based dy-
namics. For instance, the dynamic control variables of
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Figure 10: Aircraft dynamic modeling experiment simulation trajectory of the VHNN model, including normalized energy discrepancies,
mean absolute error (MAE) of normalized energies, diferences in the Cartesian coordinate system’s three-axis coordinates, and disparities
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missiles are calculated using a proportional navigation
algorithm based on the state of the attacked target and
their own state, although this is not explicitly considered
in deep modeling; (2) the VHNNmodel still exhibits good
performance for deep modeling of such implicit external
control variables.

5. Discussion and Future Work

Te experimental results of this study demonstrate that
signifcant advantages have been achieved in the modeling of
rigid-body 6-DoF equations through our proposed
Hamiltonian-based method (VHNN). In both experiments,
higher accuracy and lower errors are exhibited by the VHNN
model, particularly in terms of trajectory overlap with the
original model, surpassing other methods.

First, during the 6-DoF modeling experiment of
aircraft, it was discovered that the dynamic changes of
rigid-body motion equations, subjected to external
control inputs like those found in aircraft, are signif-
cantly infuenced by energy. Te VHNN model, which
incorporates inductive bias for energy changes, enables
high-precision modeling of rigid-body dynamics con-
trolled by external conditions. In comparison to other

methods, the VHNN model demonstrates superior per-
formance in terms of the mean absolute error (MAE) and
energy correlation.

Second, in the deep modeling experiment of missile
proportional guidance, it was found that even when the
external control input of the rigid-body dynamics model
is implicit and unknown, estimating the overall energy
changes in dynamics remains highly advantageous for
modeling such condition-based dynamics. Te VHNN
model retains its efectiveness in deep modeling of im-
plicit external control inputs, outperforming other
methods in both MAE curves and energy curves.

Te experimental results of this study indicate that the
VHNN model exhibits signifcant advantages in
addressing complex rigid-body motion problems en-
countered in aircraft and missile guidance processes. Tis
ofers a novel approach to solving practical engineering
applications’ rigid-body dynamics modeling problems. In
the military domain, deep dynamic models of missiles and
fghter jets can be seamlessly integrated with deep re-
inforcement learning to holistically generate control
strategies. Specifcally, for missile deep modeling, the
VHNN model can accurately extrapolate the positions of
numerous incoming missiles in batches, which is of great
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Figure 11: Trajectory simulation of the missile guidance dynamic modeling experiment using the MLP model, including the diferences in
the Cartesian coordinate system’s three-axis coordinates and the diferences in velocity scalar magnitudes.
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importance for ofensive and defensive purposes. Te
Hamiltonian-based deep modeling method also possesses
the additional capability of performing backward in-
ference over time. Tis implies that given the current state
of a missile, its historical trajectory can be deduced
conveniently, enabling rapid localization of missile launch
coordinates and targeted countermeasures.

However, it is important to note that this study solely
focuses on the experimental validation of aircraft and missile
motion, which is a typical example of rigid-body motion. In
the missile guidance modeling experiment, the modeling

issue of unobservable system control variables was initially
considered.Tese two experimental cases represent complex
rigid-body motions and serve as highly representative ex-
amples, demonstrating the capability of our approach to
perform deep modeling of complex rigid bodies with var-
iable system energy in the presence of unobservable control
variables. Nonetheless, further exploration is required in
practical applications to establish an inductive bias for the
VHNN model when dealing with incomplete or missing
system states. Particularly, when system states are in-
complete or unobservable, it becomes necessary to address

HNN missile run trajectory
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Figure 12: Trajectory simulation of the missile guidance dynamic modeling experiment employing the HNN model, encompassing the
disparities in normalized energy, normalized energy’s mean absolute error (MAE), deviations in the Cartesian coordinate system’s three-
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how to represent these incomplete system states within the
neural network and design appropriate optimization func-
tions that induce the model to learn the correlation between
the missing system states and the observed ones. Currently,
one possible approach we consider is deepening the design

of deep models using time-series inference methods in
a latent variable space to tackle this problem. In addition,
further research can be conducted on parameter optimi-
zation and structural design of the VHNNmodel to enhance
its performance and applicability.
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Figure 13: Trajectory simulation of the missile guidance dynamic modeling experiment using the HGN model, comprising the dis-
crepancies in normalized energy, normalized energy’s mean absolute error (MAE), variations in the Cartesian coordinate system’s three-axis
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6. Conclusion

A deep modeling approach for rigid-body dynamics
based on Hamiltonian dynamic neural networks is pro-
posed in this study. Te temporal variations in energy,
including factors and rules infuencing energy changes,
are captured by incorporating an inductive bias into our
method. Te concept of Hamiltonian neural networks
serves as the foundation for this approach. Te superior
accuracy and feedback correction achieved by our
method are demonstrated through experimental mod-
eling of the 6 degrees of freedom dynamics of aircraft and
missiles. It is argued that this approach is particularly
suitable for extracting fundamental physical laws gov-
erning rigid-body dynamics under the infuence of ex-
ternal control variables. More accurate and efcient
model support for precise rigid-body motion control is
provided, especially in domains and military applications
that necessitate large-scale distributed predictive control
of system dynamics, batch retrospective of historical
states through dynamics, and the construction of dif-
ferentiable simulation models.

Moving forward, further optimization of our method is
aimed at enhancing the accuracy and robustness of the
model, enabling more precise and efcient rigid-body
control. In addition, integration of this method into
a model-based reinforcement learning framework is planned
to explore further application directions.

Appendix

A. Experimental Setup and Plots

A.1. Dataset Generation

A.1.1. Aircraft Dynamic Modeling Experiment. Given the
initial position of an aircraft, the aircraft model in [7] cal-
culates the guidance behavior based on the current state and
control commands and outputs the next state of the aircraft.
Te control commands consist of six types of discrete in-
structions, each of which is composed of accelerations in the
x, y, and z directions of the Cartesian coordinate system.
Tese six instructions represent level fight at constant speed,
horizontal right turn, horizontal left turn, climbing, diving,

VHNN missile run trajectory
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Figure 14: Trajectory simulation of the missile guidance dynamic modeling experiment conducted with the VHNN model, incorporating
the diferences in normalized energy, normalized energy’s mean absolute error (MAE), fuctuations in the Cartesian coordinate system’s
three-axis coordinates, and the discrepancies in velocity scalar magnitudes.
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and horizontal acceleration. Te data features include two
parts: (1) the one-hot representation of the aircraft’s control
command index at the current moment and (2) the current
state of the aircraft, including the x, y, and z positions in the
Cartesian coordinate system, scalar velocity, pitch angle, and
heading. Te data labels not only contain the aircraft state at
the next moment (0.005 seconds later) but also include the x,
y, and z positions, scalar velocity, pitch angle, and heading
in the Cartesian coordinate system.

Each fight trajectory lasts 3,000 time steps, with the
initial state of the aircraft randomly distributed in the x, y,
and z directions of the Cartesian coordinate system within
a range of 1,000meters. Te entire dataset consists of 200
random fight trajectories, approximately 600,000 samples,
of which 80% are used for training and 20% for testing.

A.1.2. Missile Dynamic Modeling Experiment. Te cloning
or modeling object employed in this study is the missile
model from [7], and the proportional guidance method is
adopted. Given the initial state of the missile and the target,
the missile model calculates the corresponding guidance
maneuvers based on its current state and the relative state of
the target and outputs the next state of the missile using the
RK4 numerical integration method with an adjustable time
step based on the proportional guidance formula. Te
missile state comprises six dimensions: coordinates x, y, z in
the inertial coordinate system, scalar velocity, heading, and
pitch angle. Similarly, the state of the target aircraft includes
these six dimensions, represented by x, y, z, v, ψ, and c.
After providing the initial state of the missile and the target
aircraft, the target aircraft can freely execute various ma-
neuvers. Te missile adjusts its three accelerations according
to the diferent states generated by the target and ultimately
intercepts the target aircraft.

Te data features include two parts: (1) the current state of
the target aircraft, including the x, y, and z positions in the
Cartesian coordinate system, scalar velocity, pitch angle, and
heading; (2) the current state of the missile, including the x, y,
and z positions in the Cartesian coordinate system, scalar
velocity, pitch angle, and heading. Te data labels not only
contain the missile state at the next moment (0.005 seconds
later) but also include the x, y, and z positions, scalar velocity,
pitch angle, and heading in the Cartesian coordinate system.

Since the time for the missile to attack the target aircraft
is not fxed, each missile fight trajectory lasts between 2,000
and 4,000 time steps. To maintain generality, the missile
launch coordinates are fxed at the origin, and the initial state
of the aircraft is randomly distributed in the x, y, and z

directions of the Cartesian coordinate system within a range
of 1,000meters. Te entire dataset consists of 200 random
fight trajectories, approximately 600,000 samples, of which
80% are used for training and 20% for testing.

A.2. Experimental Details. Te VHNN model constructs
a residual module with a three-layer MLP neural network
with 256 hidden units, connecting the encoder, decoder, and
Hamiltonian network or energy network. Each network uses
this residual module as the main body to ensure smooth

gradient fow between diferent network structures. Te
encoder takes data features as inputs and outputs 32-di-
mensional generalized coordinates q and 32-dimensional
generalized momenta p. Te energy and Hamiltonian net-
works take q, p, and the target state as inputs and output a 1-
dimensional abstract energy. Te energy derivatives with
respect to p and q are calculated using Hamilton’s equations
(10) and (11), and the next moment’s generalized co-
ordinates q′ and momenta p′ are obtained using Euler in-
tegration within the time interval Δt. Te next moment’s
rigid-body state is then decoded by the decoder.

Four models are trained using the same dataset: a three-
layer MLP with 512 hidden units, VHNN, and HNN and
HGN models with network structures and hyperparameters
similar to VHNN. It is worth noting that the original HGN
paper primarily focuses on image sequences, but techniques
related to image sequences are not necessary for the rig-
id-body model cloning task. Terefore, only the core idea of
HGN is retained for comparison. In addition, to incorporate
an input mechanism for external control variables, the
conditional input is integrated into the encoder module
based on the experimental feature requirements, while the
decoder still outputs the next moment’s state.

Te energy comparisons of each model in Appendices B
and C are formed by scaling the Hamiltonian or VHNN
energy to the mechanical energy of the true trajectory,
resulting in a contrast of energy diferences.

A.3. Aircraft Dynamic Modeling Experiment Plots. Deep
aircraft dynamic modeling experiment results are shown in
Figures 4, 7–10.

A.4. Missile Guidance Dynamic Modeling Experiment Plots.
Deep modeling experimental results of missile guidance
dynamics are shown in Figures 6, 11–14.

Data Availability

All data have been generated with https://github.com/
ajfrewin/pn-guidance, which allows anyone to regenerate
the data used in this paper.
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