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Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves
enterprises’ production efciency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless,
the complex inventory data are often chaotic and nonlinear; high data complexity raises the accuracy prediction difculty. Tis
study simulated inventory records by using the dynamics inventory management system. Four deep neural network models
trained the data: short-term memory neural network (LSTM), convolutional neural network-long short-term memory (CNN-
LSTM), bidirectional long short-term memory neural network (Bi-LSTM), and deep long-short-term memory neural network
(DLSTM). Evaluating the models’ performance based on RMSE, MSE, and MAE, bi-LSTM achieved the highest prediction
accuracy with the least square error of 0.14%.Te results concluded that the complexity of the model was not directly related to the
prediction performance. By contrasting several methods of chaotic nonlinear inventory data and neural network dynamics
prediction, this study contributed to the academia.Te research results provided useful advice for companies’ planned production
and inventory ofcers when they plan for product inventory and minimize the risk of mishaps brought on by excess inventories
in warehouses.

1. Introduction

Researchers have found chaos in physics, chemistry,
ecology, geography, and economics data [1], and the dis-
crete nonlinear management system has been widely
studied by many researchers [2–8]. Te concept of chaotic
strategic management dates back to 1983. In 1994,
Feichtinger [4] studied chaotic planning, queuing, and
scheduling in management operations. Murphy [5] used
chaos to study public relations’ problems and crises. After
reviewing the chaos management research, Joseph [6]
pointed out that chaos management requires a change in
rules and adaptability [1].

Temain purpose of inventory is to meet the demand, so
demand forecasting is the basic premise of inventory

management. Boardman and others used a clustering al-
gorithm to compare new and existing similar products and
predict sales volume of new products [9]. Van der Auweraer
et al. utilized auxiliary installed base data to predict the spare
parts demand [10]. Yu et al. proposed a support vector
machine (SVM) model to predict the newspaper demand of
diferent stores by including 32 features in the model [11].
Shimmura and Takenaka used the SVM method to forecast
the demand for convenience store inventory data by re-
ducing the feature dimension and data quantity [12].
Tanizaki et al. used POS, Bayesian linear regression, and
other methods to predict hotel passenger fow [13].

In the era of big data, the cost of acquiring, storing,
and processing a large amount of data is signifcantly
reduced. Decision makers can observe historical demand
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and acquire data such as weather, prices, holidays, pro-
motion information, and demographic information to
improve demand forecasting accuracy [14, 15]. In recent
years, the advantages of machine learning in processing
large datasets and high-dimensional feature data have
attracted the attention of scientists. Te rapid increase in
data changes the prediction algorithm from traditional
forecasting approaches to deep learning [16–31]. For
example, Kong et al. used the restricted Boltzmann ma-
chine (RBM) algorithm based on deep learning to predict
trafc fow. Te phase space reconstruction of the RBM
algorithm constructed the polymorphic long-term model
of chaotic time series [17]. Wei and Wang proposed an
anomaly detection method of hierarchical spatiotemporal
feature learning network based on deep learning [18].
Zhang et al. used the residual neural network framework
to model time proximity, period, and trend characteristics
of crowd fow [19]. Haq et al. [29] utilized the multilayer
bidirectional LSTM algorithm to identify the mitochon-
drial protein of the Plasmodium falciparum parasite.
Khan et al. [30] used deep learning algorithms to predict
residential and commercial energy consumption. Azar
and Vaidyanathan [1] used a new deep learning algorithm
to predict and analyze renewable energy power genera-
tion. However, as a typical nonlinear system, the complex
inventory management presented a chaotic and nonlinear
phenomenon with high complexity and small amplitude
change during the time series change. It is impossible to
make accurate predictions by using traditional machine
learning. Tus, fnding a suitable deep learning algorithm
for prediction is necessary. Having said that, however, the
above mentioned deep learning algorithm can also be used
in other chaotic systems [32–35].

Tis paper aims to:

(1) Analyze the nonlinear characteristics of inventory
management using the nonlinear dynamics theory;

(2) Verify the inventory data characteristics and forecast
the inventory by using LSTM, bi-LSTM, and DLSTM
algorithms.

Tis paper predicted inventory data under complex,
chaotic systems. Te prediction results concluded that the
bi-LSTM algorithm is better for chaotic nonlinear datasets
and provided a reference for other chaotic datasets. Te rest
of this paper is organized as follows: in Section 2, the chaotic
inventory management system, the inventory data, and the
data irregularity are nonlinear y 0-1 test. Section 3 in-
troduces prediction models: LSTM, bi-LSTM, CNN-LSTM,
and DLSTM. Section 4 verifes the abovementioned algo-
rithms by experiments, and the optimal model is obtained by
comparing three indexes. Finally, the results are summarised
in Section 5.

2. InventoryManagement Systems andDatasets

2.1. Inventory Management Model. Many enterprises face
inventory peoblems whih can be represented in form of
complicated chaotic systems of equations as follows [36]:

xi+1 � s + pzi+1,

yi+1 � qxi+1 + ryizi,

zi+1 � 1 − xi − yi + zi,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where s, p, q, and r are the system parameters, s represents
the initial sales base, p represents the inventory fund transfer
rate, q represents the product resource rate, and r represents
the inventory efciency. xi represents the resources for sales
in period i, yi represents the number of customers in period i,
and zi represents the inventory capital of the company in
period i. Normalizing the parameters of the inventory
management model [36], the results would be:
0<xi < 10<yi < 1 and 0< zi < 1/r. Where p � 0.43, q� 0.38,
s� 0.11, and r� 0.72.Te attractors of a system (1) are shown
in Figure 1.

2.2. 0-1 Test. Tis study implemented the 0-1 test to in-
vestigate whether the data is chaotic. He et al. used 0-1 test
algorithm to make correlation analysis on the time series
of fractional order system [8]. If φ(n) (n= 1, 2, 3, . . .)
represents a one-dimensional observable iterative data, then
the two real-valued functions would be [36]:

p(n) � 
n

i�1
φ(i) cos(θ(i)),

s(n) � 

n

i�1
φ(i) sin(θ(i)),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where θ(i) � iω + 
i
j�1φ(j), the trajectories are visualised in

Figure 2. If the bounded trajectory in the Figure 2 is a regular
cloud shape, then the unbounded trajectory follows Brow-
nianmotion and the data is chaotic.Tis method was used to
study the y and z sequence of the system (1). Its parameters
were the same as those in Figure 2. Te p-s relationship is
displayed in Figure 3. Te change of inventory safety
threshold due to the change in stocks of goods with time is
irregular, which cannot be accurately predicted by tradi-
tional algorithms [36].

3. Research Method

3.1. LSTM Model. LSTM network improves RNN. RNN
neurons are shown in Figure 3. Cell memory unit structure is
added to the hidden layer of RNN, which allows themodel to
learn the information for a long time and efectively over-
come the problem of gradient disappearance or explosion
[29]. LSTM introduces a memory cell structure in the hidden
layer, including three gate controllers: input, forgetting, and
output gates [37], allowing the network to forget historical
information and update the memory state with new in-
formation. Te structural diagram of LSTM neurons is
shown in Figure 4.

Te three gates adopt the sigmoid function, and all of
them are nonlinear summation units. At the same time, the
activation functions inside and outside the module are in-
cluded. Te multiplication operation is used to control the
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activation functions of the units. Te calculation consists of
the following steps:

We calculate the value ft of the forgotten gate as follows:

ft � σ Wf · ht−1, xt  + bf . (3)

We calculate the value of the input gate as follows:

it � σ Wi · ht−1, xt  + bi( ,

ct � tan h WC · ht−1, xt  + bC( .
(4)

We calculate the current time memory unit state value Ct
as follows:

Ct � ft ∗Ct−1 + it ∗ Ct. (5)

We calculate the output gate and memory output ht of
the LSTM unit as follows:

ot � σ Wo ht−1, xt  + b0( ,

ht � ot ∗ tan h Ct( .
(6)

LSTM and RNN speculate backward data through for-
warding information. Forward and backward information is
used to predict the current time, strengthening the
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Figure 1: Attractors of system (1) with p � 0.43, q� 0.38, s� 0.11, and r� 0.72. (a) x-y phase. (b) y-z phase.
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Figure 2: p-s phase diagrams of inventory system (1). (a) p-s plot of y sequence. (b) p-s plot of z sequence.
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connection between feature information and predicted value
and improving the model’s prediction accuracy. Te re-
search shows that the LSTM network has positive results in
multivariate classifcation and prediction.

3.2. Bi-LSTM. Te LSTM prediction model only predicts
through the law of unilateral data, and it cannot fully mine
the time feature information, so the prediction accuracy
needs further improvement. Targeting the LSTM model’s
defciency, a bidirectional-LSTM (bi-LSTM) prediction
model is proposed. Te structural diagram of Bi-LSTM
neurons is shown in Figure 5. Bi-LSTM [37] uses two
unrelated LSTM models to predict data from the front and
back. Te output of the hidden layers of the two models is
used as the input of the output layer, and fnally, the built-in
function of the output layer outputs the fnal predicted
value.

h
→

t � LSTM x, h
→

t−1 ,

h
⟵

t � LSTM x, h
⟵

t−1 ,

yt−1 � g W
h

→
y h
→

t

+ W
h
⟵

y h
⟵

t

+ by .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Bi-LSTM, based on the time window method, refers to
the prediction of the next time step by using the historical
value of the time window length of data.Te parameter value
of the time window step represents the historical data for
predicting the future value. For example, if the current value
xt and the previous values xt−1 and xt−2 are used to predict
the value of the next period x+1.

Regularization avoids overftting in prediction. L1 and
L2 regularization methods introduce a penalty for the
problem of too large parameters in the model.Temost used
regularization technique for deep learning is dropout, which
randomly inactivates some neurons. Each training session is
equivalent to a diferent weak classifer, thus improving the

model’s generalization ability and using the dropout method
to improve the model’s applicability.

According to Khan et al. [38], the hybrid network DB-
Net, is proposed by combining the extended convolutional
neural network (DCNN) with the bidirectional long-term
and short-term memory (bi-LSTM). Sagheer and Kotb [39]
put forward “CL-Net” based on a new hybrid structure T of
ConvLSTM and LSTM. All the above improve LSTM and bi-
LSTM deep learning models.

3.3. CNN-LSTM. A convolutional neural network (CNN)
comprises fve parts: input layer, convolution layer, pooling
layer, full connection layer, and output layer.

X= [x1, x2, . . ., xn] is the input data matrix, where n
represents the length of the time series and m represents the
number of data features. Te time-series data are convolved
to obtain the following equation:

oc � fc X⊗Wc + bc( , (8)

where ⊗ is the convolution operation, convolution kernel
WC ∈ Rj∗m is the weight vector, j is the convolution kernel
size, and bc is the bias of this layer. fc(·) represents the
convolution layer activation function. oc is the convolution
kernel feature mapping result.
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Figure 4: General framework of LSTM.
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Figure 5: General framework of bi-LSTM.
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Pool operation selects the most critical features of the
convolution layer sequence to form the pooling layer.
Tere are two kinds of pooling operations: maximum
pooling and average pooling. Te commonly used pooling
method is maximum pooling, and the maximum global
pooling is used in the last pooling operation. Te ex-
pression is:

op(k) � max oc(2k − 1), oc(2k)( ,

op � max oc( ,

⎧⎨

⎩ (9)

where op (k) is the output result of the kth pool; op is the
output result of maximum global pooling.

A combination of timing features is realized through the
full connection layer:

od � fd op × Wd + bd . (10)

Among them, Wd is the weight matrix of the full con-
nection layer, bd is the bias, and the activation function fd(·)

of the full connection layer includes ReLU, tanh, and
sigmoid.

Te output layer outputs the results of the full con-
nection layer:

y � fo od × Wo + bo( , (11)

Wo is the weight matrix of the output layer, bo is the bias, and
the activation function fo is the softmax function.

CNN-LSTM is a combination of CNN and LSTM, which
is divided into four layers:

(1) Input layer: data input after normalization.
(2) CNN layer: this layer extracts the data features

through CNN, where the convolution layer and
pooling layer can extract the features that more
clearly refect the inventory changes and reduce
overftting. Te full connection layer can summarise
and output the abovementioned features.

(3) LSTM layer: the extracted features are converted into
the corresponding data format of LSTM, and time
series data mining is carried out through three gate
mechanisms in LSTM to obtain the internal change
rule and the prediction model.

(4) Output layer: the activation function of the output
layer is the Sigmoid function, and the LSTM pre-
diction result is the output.

3.4. DLSTM. In the Deep LSTM (DLSTM) architecture, as
shown in Figure 6 [40], the input at time t, xt is introduced to
the frst LSTM block along with the previous hidden state
St−1(1), and the superscript (1) refers to the frst LSTM. Te
hidden state at time t, s(1)

t is computed andmoves forward to
the next step and up to the second LSTM block. Te second
LSTM uses the hidden state s

(1)
t along with the previous

hidden state s
(2)
t−1 to compute s

(2)
t , which goes forward to the

next step and up to the third LSTM block and so on until the
last LSTM block is compiled in the stack.

Te beneft of such stacked architecture is that each layer
can process some part of the desired task and subsequently
pass it on to the next layer until the last accumulated layer
fnally provides the output. Another beneft is that such
architecture allows the hidden state at each level to operate
diferently. Te previous two benefts have a signifcant
impact in scenarios showing the use of data with long-term
dependency or in the case of handling multivariate time
series datasets.

Te prediction results of Bi-LSTM can be compared with
LSTM. Te model structure of LSTM itself is relatively
complex, and training is more time-consuming than CNN.
Te characteristics of RNN networks determine that they
cannot process data in parallel. Furthermore, although
LSTM can alleviate the long-term dependence of RNN to
some extent, it is difcult for longer sequence data.

4. Experimental Results

4.1. Data Sources. Te experimental data in this paper come
from dynamic equation (1). According to the defnition of
the state variable of dynamic system (1), the state variable Z
is the inventory data. Te frst 70000 datasets were used as
training datasets and the last 3000 test datasets, totalling
10000. In this paper, system (1) state Z was adopted, and
10000 samples were selected, as shown in Figure 7. Te
abovementioned analysis showed that the inventory data are
chaotic. To fully use the time series between the data, this
paper predicts and evaluates the inventory data and verifes
it with the actual data.

4.2.Evaluation IndexandModelParameters. Tis paper used
LSTM, bi-LSTM, GRU, CNN-LSTM, and other algorithmic
models for prediction. To evaluate the efectiveness of these
methods, mean square error (MSE), root mean square error
(RMSE), and mean absolute error (MAE) were used to
evaluate the model. Tese indicators are defned as follows
[19]:

MSE �
1
N

�����������



N

i�1
yi − yi( 

2




,

RMSE �

�������������

1
N



N

i�1
yi − yi( 

2




,

MAE �
1
N



N

i�1
yi − yi


,

(12)

where yi is the observed inventory quantity, yi is the forecast
quantity of the inventory, and N is the number of test
samples.

In this paper, LSTM, DLSTM, GRU, CNN-LSTM, and
bi-LSTM algorithms were adopted, and the main parameter
values in the algorithms are shown in Table 1.
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4.3. Results. Te inventory forecasting model adopted the
LSTM algorithm, and the comparison between the predicted
result and the actual value is shown in Figure 8. Te change
of the Loss function after 50 cycles is displayed in Figure 9.
Figure 8 shows the last 150 data of the test set, allowing the
readers to check the predicted and actual values. MSE was
0.005315, RMSE was 0.072905, and MAE was 0.060346. All
in all, the prediction errors were quite small.

Te comparison between the predicted result by using
the bi-LSTM algorithm and the actual value is shown in
Figure 10. Te change of the Loss function after 50 cycles is
shown in Figure 11. Figure 10 shows the last 150 data of the
test set for the convenience of readers to check the predicted

and actual values. MSE was 0.001475, RMSE was 0.038405,
MAE was 0.029732, and the forecasting errors were small.

Te inventory forecasting model adopted the
CNN-LSTM algorithm. Te comparison between the pre-
dicted result and the actual values is shown in Figure 12. Te
change of the Loss function after 50 cycles is shown in
Figure 12. Figure 12 shows the last 150 data of the test set for
the convenience of readers to check the predicted and actual
values. MSE is 0.027766, RMSE is 0.166631, MAE is
0.117720, and the forecasting errors are relatively small.

Te inventory forecasting model adopted Figure 13 the
DLSTM algorithm. Figure 14 shows that the last 150 data of
the test set were used for the convenience of readers to check
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Table 1: Parameters of four models.

LSTM DLSTM CNN-LSTM Bi-LSTM
Number of neurons 80 2 80 80
Dropout 0.3 0.3 0.3 0.3
Loss function mean_squared_error mean_squared_error mean_squared_error mean_squared_error
Optimizer Adam Adam Adam Adam
Training times 50 50 50 50
Batch_size 64 1 64 64
Training set 7000 7000 7000 7000
Test set 3000 3000 3000 3000
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Figure 8: Timing diagram of real and predicted value (LSTM).
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the predicted and actual values.Te comparison between the
predicted result and the actual value is shown in Figure 14.
MSE was 0.462163, RMSE was 0.6798, and MAE was
0.570947.

By comparing the abovementioned evaluating indicator,
the results are shown in Table 2. Te results obtained by bi-
LSTM were the best with the slightest error, despite all other

algorithms being used due to relatively small errors. Because
the data fuctuation was not particularly large, DLSTM had
no apparent advantages in this scenario. At the same time,
we found no correlation between the complexity and per-
formance of the model. For example, the DLSM algorithm is
more responsible but is not the best for inventory safety
prediction.
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Figure 10: Te timing diagram of the actual and predicted values (bi-LSTM).
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Tere are often uncertain factors in the production
process, such as many sudden orders, temporary con-
sumption increases, the sudden advance of delivery, late
delivery, and so on. Trough the abovementioned four

algorithms, we can see that the bi-LSTM algorithm accu-
rately predicted the inventory capacity, and it is of sub-
stantial value for enterprises to make purchase and
demand plans.
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Figure 12: Timing diagram of actual and predicted value (CNN-LSTM).
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5. Conclusion

Excessive inventory capacity causes inventory backlog, di-
rectly afecting the company’s production efciency. In this
paper, we focused on the prediction of inventory capacity. It
used an inventory management dynamics system to obtain
10000 inventory data and used four prediction algorithms in
artifcial intelligence: LSTM, BI-LSTM, CNN-LSTM, and
DLSTM to train and predict. Te prediction results showed
that bi-LSTM had the best prediction results.

Tis study contributed to the academic circle by comparing
diferent forms of neural network prediction of dynamics and
chaotic nonlinear inventorymanagement data. It also provided
theoretical support for other predictions. Te predicted results
ofered practical suggestions for enterprises’ planned pro-
duction and inventory ofcers when they decide on the optimal
inventory of goods and reduce the likelihood of accidents due
to excessive amounts of goods in warehouses. In future work,
other algorithms, such as CNN-BILSTM and CNN-DLSTM, as
well as AutoML as per Li et al. [41, 42], could be used to predict
inventory and compare with the four deep learningmethods in
this research.
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